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Abstract: Two different forms of a preconditioning process (i.e. standard preconditioning and quasi-diagonalization) are 

presented, in conjunction with the Method of Auxiliary Sources (MAS), when the latter is applied to a specific class of 

two-dimensional scattering problems. The method enhances the efficiency of MAS, when the linear system becomes ill-

conditioned, due to distancing of the auxiliary surface from the outer boundary. If the cross-sectional boundary is geomet-

rically close to a circle, it is proven that the MAS matrix becomes quasi-circulant, as intuition dictates. By exploiting the 

properties of the exactly circulant matrix, pertaining to the original circular configuration, the perturbed system is trans-

formed to a quasi-diagonal one, whose inversion is a numerically stable operation. 

INTRODUCTION 

 It is well known that the performance of the Method of 
Auxiliary Sources (MAS) depends on the location of the 
auxiliary sources (ASs). If the latter is not carefully chosen, 
numerical inaccuracy may constitute a severe problem. This 
complication has been resolved so far only for a few canoni-
cal geometries (i.e. [1-6]). In general terms, the singularities 
of the scattered field should be enclosed by the auxiliary 
surface as tightly as possible. Although the exact location of 
these singularities is unknown for arbitrary geometries, it 
was shown in [7] that the radius of the smallest possible cir-
cle, or sphere (in 2D and 3D respectively), surrounding them 
all, can be determined analytically. An auxiliary surface, 
conformal to the scatterer surface, circumscribing this cir-
cle/sphere is expected to yield optimal results, i.e. minimize 
the boundary condition error. In the same way, for a given, 
sufficiently low boundary condition error, the optimal auxil-
iary surface will contain the minimum number of unknowns, 
which is of high significance when large scatterers are con-
sidered. From the results of [8] it is implied that this observa-
tion holds true indeed, for various geometries, including an 
elliptic cylinder, where scattered field singularities coincide 
with the foci. However, the actual error behavior in such a 
situation is usually unclear, due to additive numerical noise. 
As a matter of fact, when the AS’s lie close to singularities, 
the condition number of the MAS linear system increases 
dramatically, and hence numerical inversion of the system 
may become inaccurate, leading to deterioration of the over-
all computational error. To alleviate this effect, matrix pre-
conditioning is employed in this paper for several 2D  
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configurations, which can be considered as perturbations of a 
circle.  

 If the geometry closely resembles an exact circle, the 
pertinent MAS matrix is found to be a perturbation of the 
circulant matrix, corresponding to that circle. Since inversion 
of the latter can be performed analytically [1], multiplication 
of its inverse with the original, perturbed matrix can be car-
ried out with maximal accuracy. The product of the two will 
have the form of a perturbed identity matrix, which is natu-
rally well- conditioned, and hence easily invertible from a 
numerical point of view. Alternatively, the concept of quasi-
diagonalization may be invoked. The original matrix is mul-
tiplied from the right with the eigenvector matrix of the cir-
cular case and from the left with its transpose (equal to its 
inverse). This bilateral multiplication yields an almost di-
agonal matrix. Its most significant elements lie on the diago-
nal, and are essentially perturbations of the eigenvalues of 
the circular case. Again, this resulting quasi-diagonal matrix 
is readily invertible via a numerical scheme, since the inver-
sion procedure has been stabilized. Results are presented for 
several, circle-like geometries, validating the preconditioning 
concept, and leading to high precision MAS solutions of 
complex scattering problems. Preliminaries of this work 
have been presented in [9]. 

STANDARD PRECONDITIONING  

 In [1] it was proven that for the benchmark problem of 

scattering from a perfectly conducting (PEC) circular cylin-

der (see Fig. 1), the MAS matrix is circulant, and therefore 

diagonalizable and analytically invertible. Using the notation 

in [1] the elements of the MAS matrix are given by 

 Zmn
0( ) j

4
Jl ka( )Hl

2( ) kb( )exp jl m n( ){ }
l=

         (1) 
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where b is the cylinder radius, a is the radius of the auxiliary 

surface, k is the wavenumber, Jl •( )  is the Bessel function of 

order l, Hl
2( )

•( )  is the Hankel function of the second kind 

and order l, Nm
m

2  is the azimuth angle of the m
th 

collocation point (CP), Nn
n

2  is the azimuth angle of 

the n
th 

AS and N is the number of ASs. 

 This matrix can be diagonalized as follows: 

Z 0( )[ ] = G[ ] L 0( )[ ] G[ ]
1

           (2) 

where L 0( )[ ]  is a diagonal matrix with elements equal to the 

eigenvalues of Z 0( )[ ] , namely  

( ) ( ) ( ) NqkbHkaJ
jN

s

sNqsNqq ,...,1
4

2
==

=

++
         (3) 

and [ ]G  is the unitary matrix (i.e. [ ] [ ]*1
GG = ) containing all 

eigenvectors  

{ } { } { } { }[ ]T
Nq jq,...,jq,jq

N
= expexpexp

1
21g    (4)  

as consecutive columns. Essentially, [ ]G  is the well-known 

Fourier matrix. As explained in [1], the MAS system is ana-

lytically invertible, a property attributed to the exact diago-

nalizability expressed by (2). Although (1)-(4) are exclu-

sively applicable to circular cross-sections, in this paper it 

will be shown that they can be exploited indirectly even in 

the case of non-circular configurations.  

 To prove this claim, assume an infinite, cylindrical, PEC 

scatterer with a cross-section, which can be considered as a 

deformation (perturbation) of a circle (see Fig. 2). Let the 

analytical expression of the cross- sectional boundary be (in 

polar coordinates) 

( ) ( )+= b            (5) 

 

 

 

 

 

 

 

 

 

Fig. (1). Geometry of the problem. Black, white and gray bullets 

represent Auxiliary Sources (ASs), Collocation Points (CPs) and 
Midpoints (MPs) respectively. 

 

where b is the radius of the unperturbed circular geometry 

and ( ) is the (relatively small) perturbation at an arbi-

trary angle . At the MAS CPs Nm
m

2 we set. 

( ) ( ) ( )
mmmmm

bbbb +=+=+= 1         (6) 

 

 

 

 

 

 

 

 

 

Fig. (2). Geometry of the perturbed problem. Black, white and gray 

bullets represent Auxiliary Sources (ASs), Collocation Points (CPs) 

and Midpoints (MPs) respectively. 

 

where 1<<
m

. Similarly, for the auxiliary surface, which 

is again a deformed circle of original radius a, the radii of 

the auxiliary sources’ locations are equal to  

( ) ( ) ( )
nnnnn

aaaa +=+=+= 1         (7) 

where the ’s are the same in (6) and (7), since the auxiliary 

surface remains conformal (similar) to the outer boundary. 

The resulting MAS matrix of the perturbed problem, with 

elements given by  

( ) ( )( ) ( ){ }
=l

nmmlnlmn jlkHkJ
j

Z exp
4

2         (8) 

is no longer circulant, and hence the diagonalization proce-

dure described in [1]-[6] is not directly applicable to this 

case. However, via Taylor expansion 

( ) ( ) ( )
( )

( ) ...
2

2

+++= kaJ
ka

kaJkakaJkJ
l

n

lnlnl
        (9) 

where the dot denotes differentiation with respect to the en-

tire argument. Similarly,  

( ) ( ) ( )++= kbHkbkbHkH
lmlml

)2()2()2(
 

( )
( ) ...

2

)2(
2

++ kbH
kb

l

m           (10) 

 Up to the first order in ’s, the MAS matrix can be ap-

proximated, due to (9) and (10) as 

Z[ ] Z 0( )[ ]+ ka E[ ] Z 1( )[ ]+ kb Z 2( )[ ] E[ ]        (11) 

where  

 

Zmn
1( ) j

4
Jl ka( )Hl

2( ) kb( )exp jl m n( ){ }
l=

      (12) 

 

Zmn
2( ) j

4
Jl ka( )Hl

2( ) kb( )exp jl m n( ){ }
l=

      (13) 

and 

E[ ] diag 1, 2 ,..., N[ ]          (14) 
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 Obviously, Z 1( )[ ]  and Z 2( )[ ]  are also circulant, and can 

therefore be diagonalized in a manner analogous to (2). The 

eigenvectors remain the same as in (4), and the eigenvalues 

are similar to (3), the dot being the only difference. 

 Let the original MAS system be written as 

Z[ ] J{ } = V{ }           (15) 

where J{ } is the column vector of the unknowns and 

V{ } contains the samples of the incident field [1]. Using 

(11) and multiplying from the left by Z 0( )[ ]
1
, (15) can be 

written as 

I[ ]+ ka Z 0( )[ ]
1
E[ ] Z 1( )[ ]+ kb Z 0( )[ ]

1
Z 2( )[ ] E[ ]( ) J{ }

Z 0( )[ ]
1
V{ }           (16) 

where [ ]I  is the NN identity matrix. Given the properties 

of the circulant matrices involved, (16) can be written explic-

itly as 

 

I[ ]+ ka G[ ] L 0( )[ ]
1
E L 1( )[ ] G[ ]

1( +  

 

+kb G[ ] L 0( )[ ]
1
L 1( )[ ] E G[ ]

1) J{ }

G[ ] L 0( )[ ]
1
G[ ]

1 V{ }          (17) 

where  

 
E G[ ]

1 E[ ] G[ ]          (18) 

and L 0,1,2( )[ ]  are diagonal matrices with elements equal to the 

eigenvalues of Z 0,1,2( )[ ] . In (17) the matrix on the left hand 

side, defined here for brevity as K[ ] Z 0( ) 1
Z[ ] , is read-

ily identifiable as a perturbation of the identity matrix. 

Since 1<<
m

, the magnitudes of the second and third terms 

in the system matrix are generally much smaller than the 

diagonal elements, due to the strongly diagonal character 

of [ ]I . Therefore, (17) is a much better conditioned system 

than (15), and hence it is numerically tractable. Thus, the 

preconditioning proposed herein, can be performed via left 

multiplication of the original system by Z 0( )[ ]
1
, which is 

known analytically, due to (2). Furthermore, (2) facilitates an 

easy implementation of this multiplication, since only diago-

nal and Fourier matrices are involved in the calculations.  

 Although the inversion of the MAS matrix has been sta-

bilized, accurate calculation of the auxiliary currents J{ }  

may still cause problems for very small auxiliary surfaces. 

This is due to the occurrence of very small eigenvalues in the 

unperturbed, circulant matrix, when the auxiliary surface 

shrinks too much, i.e. when approaching the origin. In that 

case, even inversion of the diagonal 
 

L
0( )  in (17) is nu-

merically challenging, since a few of its entries are vanish-

ingly small. Inaccuracies are observed again, and apparently 

not much has been gained after all. However, the objective in 

a scattering problem is the calculation of the scattered field, 

and not the auxiliary currents, which is only an intermediate 

step (see [10] for analogous reasoning in a slightly different 

topic). The field can still be accurately calculated, by artifi-

cially cancelling out any exceedingly large matrix entries. To 

demonstrate how this can be achieved, let us calculate the 

scattered field at the midpoints (MPs) of the scattering sur-

face, in a way similar to [1]. Calculation of these values will 

also reveal the behavior of the boundary condition error [1].  

 Let the samples of the scattered (i.e. radiated from the 

ASs) field at the MPs be contained in
 
V{ } . Then, according 

to [1],  

 
V{ } = Z J{ }          (19) 

where 

 

Zmn

j

4
Jl k n( )Hl

2( ) k m( )exp jl m n( ){ }
l=

   (20) 

and 
 

m , m( )  is the location of the m
th

 MP. Evidently, 

 
Z is amenable to a perturbation analysis similar to (9)-

(14). Let 
 
Z 0( )  be the corresponding circulant matrix, 

 
L 0( )  the diagonal matrix containing the eigenvalues of 

 
Z 0( ) , and let

 
K Z 0( ) 1

Z . Then, from (16), (17) 

and (19) it follows that 

 
V{ } = G[ ] L 0( ) G[ ]

1 K K[ ]
1 G[ ] L 0( )[ ]

1
G[ ]

1 V{ }   (21) 

 From (21), it can be seen that 
 
V{ }  can be accurately 

calculated, irrespective of vanishingly small eigenvalues. 

Indeed, 
 
K K[ ]

1
 is nearly an identity matrix, 

 
G[ ]

1 K K[ ]
1 G[ ]  likewise, and hence, when  

 
L 0( ) G[ ]

1 K K[ ]
1 G[ ] L 0( )[ ]

1
 is calculated, very small 

entries on the diagonal of 
 
L 0( )  almost cancel out the very 

large entries on the diagonal of
 

L
0( ) 1

, thus circumventing 

the problem reported before. The numerical results will 

demonstrate the validity of this procedure. 

QUASI-DIAGONALIZATION 

 Alternatively, another convenient transformation of the 

original linear system can be derived as follows: Multiplying 

(15) from the left by [ ] 1
G yields 

G[ ]
1 Z[ ] G[ ] G[ ]

1 J{ } = G[ ]
1 V{ }        (22) 

 Due to (11), (22) can be written as 

L 0( )[ ]+ ka G[ ]
1 E[ ] Z 1( )[ ] G[ ]+ kb G[ ]

1 Z 2( )[ ] E[ ] G[ ]( )•  
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• G[ ]
1 J{ }( ) G[ ]

1 V{ }( )         (23) 

 The square matrix on the left hand side is evidently a 

perturbation of the diagonal matrix L 0( )[ ] , thus the procedure 

can be named as “quasi-diagonalization”. Solving (23) for 

G[ ]
1 J{ }  is a numerically stable operation, although the 

solution of the original system may not necessarily be. Fi-

nally, retrieval of J{ }  from G[ ]
1 J{ }  is trivially per-

formed through multiplication by G[ ] .  

NUMERICAL RESULTS 

 Several configurations were investigated numerically, to 

validate the mathematical concepts of the previous sections. 

First, an elliptic, infinite, PEC cylinder with ellipticity 

=0.95 and maximum radius b=  was considered, and plots 

of the system condition number (in the 1-norm) before and 

after preconditioning and quasi-diagonalization are depicted 

in Figs. (3 and 4). It is evident that the system conditioning 

improves significantly, especially for standard precondition-

ing. Condition improvement may not be as spectacular for 

quasi-diagonalization, however even the small change shown 

in Fig. (4) affects the solution accuracy considerably. Indeed, 

the effect is reflected on Fig. (5), where the solution error (2-

norm of the difference between the left and the right hand 

side of the linear system) is plotted before and after quasi-

diagonalization. It should be emphasized that the foci of this 

ellipse lie at a distance equal to 0.31  from the origin, and 

therefore the MAS system is not capable of solving the scat-

tering problem for very small auxiliary surfaces not enclos-

ing these two points [7]. Hence, the deterioration of the con-

dition number for small a/b, as seen in Figs. (3 and 4), does 

not have any consequence on the MAS solution of the prob-

lem, since this solution is meaningless, anyway. Figs. (6 and 

7) depict the boundary condition error (in the sense of [1]) 

for an elliptic cylinder with =0.995, N=30 and N=40 respec-

tively. The reduction of the boundary condition error is sig-

nificant for a wide range of similarity ratios. Also, Fig. (8) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Condition number for the MAS system of the elliptic cyl-

inder with =0.95, maximum radius b= , and N=30, before and 

after standard preconditioning. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Condition number for the MAS system of the elliptic cyl-

inder with =0.95, maximum radius b= , and N=30, before and 

after quasi- diagonalization. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Solution error for the MAS system of the elliptic cylinder 

with =0.95, maximum radius b= , and N=30, before and after 

quasi-diagonalization. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Boundary condition error for the MAS system of the ellip-

tic cylinder with =0.995, maximum radius b= , and N=30, before 

and after standard preconditioning. 
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presents the boundary condition error for a supper-elliptic 

cylinder (defined by ( ) ( ) 1=+ byax ) with =2.5 and 

N=20, before and after preconditioning. The reduction of the 

overall boundary condition error is visible in this case, too. 

Finally, Figs. (9, 10 and 11) depict the diagonally dominant 

behavior of the MAS matrix for the ellipse of Figs. (3-5), 

after preconditioning and quasi-diagonalization. As it can be 

easily seen, after enforcement of either type of precondition-

ing (standard or quasi-diagonalization), the matrix elements 

concentrate towards the diagonal, simultaneously increasing 

their magnitude. Therefore, in a loose sense, the matrix be-

comes “more diagonal”, and hence the linear system be-

comes much easier to solve. 

CONCLUSIONS 

 This paper proposed two different versions of a precondi-
tioning technique, applicable to two-dimensional scattering  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Magnitude of the original matrix elements, corresponding 

to the geometry of Figs. (3-5). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Magnitude of the matrix elements corresponding to the 

geometry of Figs. (3-5), after standard preconditioning. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Magnitude of the matrix elements, corresponding to the 

geometry of Figs. (3-5), after quasi-diagonalization 

 
problems, being solved via MAS. It was shown that the fun-
damental concept of the procedure is the exploitation of the 
properties of the MAS circulant matrix, associated with the 
geometrically closest circular configuration. The original  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Boundary condition error for the MAS system of the ellip-

tic cylinder with =0.995, maximum radius b= , and N=40, before 

and after standard preconditioning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Boundary condition error for the MAS system of the su-

per-elliptic cylinder with a=b= , =2.5 and N=20 before and after 

standard preconditioning. 
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system, which is quasi-circulant (but not exactly circulant), 
can be transformed to a quasi-diagonal one, which demon-
strates remarkable numerical stability during the inversion 
process. Several quasi-circular cylinders can hence be ana-
lyzed via MAS, disregarding possible ill-conditioning of the 
original system. Therefore, shrinking of the auxiliary surface 
away from the boundary of the geometry is feasible, since it 
is not affected by numerical noise, allowing accurate solu-
tions based only on a very small number of unknowns. 
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