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Abstract: An exact solution is presented to the problem of scattering of a plane electromagnetic wave from a metamate-

rial hemispherical boss located on an infinite conducting plane, using the method separation of variables. The formulation 

is based on an image technique, where the original problem is replaced by that of scattering of two plane waves by the 

corresponding sphere in the absence of the infinite plane. The solution is obtained by expressing all the electromagnetic 

fields associated with the problem in terms of vector spherical wave functions, and then imposing the appropriate bound-

ary conditions. Numerical results are presented as normalized backscattering cross sections for hemispherical bosses of 

different sizes and types, for both transverse electric and transverse magnetic polarizations of the incident wave.  

INTRODUCTION 

 Analyses pertaining to the scattering of a plane wave 
from a semi-cylindrical boss, a hemispherical boss [1-4] and 
a hemispheroidal boss [5], and scattering of a Gaussian beam 
from a hemispherical boss [6] have been presented in the 
literature, when the boss is located on an infinite conducting 
plane. These analyses have been carried out using the 
method of separation of variables and the image theory, and 
serve as benchmarks for validating solutions obtained using 
other approximate and/or numerical methods. The main mo-
tivation for these solutions has been the ability to model a 
rough surface using a distribution of such bosses [1]. All of 
the bosses considered in the above mentioned analyses have 
been either perfectly conducting or non-lossy dielectric. In 
this paper, we analyze the scattering of a plane electromag-
netic wave from a metamaterial hemispherical boss located 
on an infinite perfectly conducting plane, also using the 
method of separation of variables. 

 Since recently, there has been a lot of interest in metama-
terials, as a result of the peculiar properties associated with 
these materials [7-9]. A metamaterial is categorized accord-
ing to whether its permittivity and permeability are positive 
or negative. If permittivity and permeability are both posi-
tive, it is known as a double positive (DPS) metamaterial, 
and if both of them are negative it is known as a double 
negative (DNG) metamaterial. If the permittivity is negative 
and the permeability is positive the material is called an epsi-
lon negative (ENG) metamaterial and if the permittivity is 
positive and the permeability is negative, the material is 
called a mu negative (MNG) metamaterial [10]. 

 In this paper, we will be considering the scattering effects 
of hemispherical bosses made up of all four kinds of meta-
materials, when they are illuminated by a plane wave. 

FORMULATION OF THE PROBLEM 

 Consider a monochromatic plane electromagnetic wave 
incident at an arbitrary angle on a hemispherical boss made  
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up of a metamaterial substance of permittivity t  and 

permeability tμ , located on an infinite perfectly conducting 

plane. The center of the boss of radius a is assumed to be 

located at the origin O of a Cartesian coordinate system as 

shown in Fig. (1), so that the infinite conducting plane is the 

x-y plane. The medium in which the boss is located is 

assumed to be free space with permittivity 0 and perme-

ability 0μ . Without any loss of generality, the 0=y  plane 

can be assumed to be the plane of incidence of the arbitrary 

polarized plane wave, with the incident propagation 

vector ik making an angle i  with the z axis. A time 

dependence of )exp( tj  is assumed throughout, but 

suppressed for convenience.  

 

 

 

 

 

 

 

 

Fig. (1). Geometry of the hemispherical boss located on the infinite 
plane. 

 

 If image theory is used, then the solution to the above 

problem shown in Fig. (1) can be obtained by solving the 

alternative problem of scattering of two plane waves by the 

corresponding full sphere, in the absence of the infinite per-

fectly conducting plane, as shown in Fig. (2). 

 One of these plane waves is the original incident wave 

while the other is its image on the infinite conducting plane, 

in the absence of the boss. The arbitrarily polarized incident 
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wave can be resolved into transverse electric (TE) and trans-

verse magnetic (TM) components. 

 

 

 

 

 

 

 

 

 

Fig. (2). Geometry of the equivalent problem. 

 

EXPANDING THE FIELDS IN TERMS OF VECTOR 

WAVE FUNCTIONS (TE CASE) 

 For TE polarization, the electric field of the original inci-

dent wave can be written as 

rk
yE = ij

i eˆ               (1) 

where ŷ  is the unit vector along the positive y axis, and ik  

is the incident propagation vector given by 

)ˆcosˆ(sin0 zxk iii k +=           (2) 

in which 000 μ=k  is the wavenumber in free space. 

The electric field corresponding to the image of this incident 

wave on the infinite conducting plane in the absence of the 

boss, is given by 

rk
yE = ij

i eˆ             (3) 

with 

]ˆ)(cosˆ)([sin0 zxk iii k += .          (4) 

 The image wave is the corresponding plane wave re-

flected by the infinite perfectly conducting plane in the ab-

sence of the boss, such that the tangential components of 

ii EE +  are zero on this plane. 

 The electric field of the original incident wave can be 

expanded in terms of vector spherical wave functions as [11, 

12] 
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where 
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nemM  and 
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omnN  are the vector spherical wave func-

tions given in the Appendix, r denotes the spherical coordi-

nate triad ),,(r , and mnc , mnd are the incident field ex-

pansion coefficients given by 
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where m0 is the Kronecker delta function and )(uPm

n is the 

associated Legendre function of the first kind of order m, 

degree n and argument u. 

 The expansion of the magnetic field corresponding to the 

original incident wave in terms of vector spherical wave 

functions can be obtained from that of the original incident 

electric field by using Maxwell’s equations as  
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where 000 /μ= is the free space wave impedance. The 

unknown scattered and transmitted electric and magnetic 

fields due to iE  and iH can similarly be expanded in terms 

of vector spherical wave functions as 
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with tttk μ=  and ttt μ /= being the wave-

number and wave impedance of the medium inside the sphe-

roid. 

 The expansions of iE  and iH  in terms of vector spheri-

cal wave functions can be obtained from those of iE  and 

iH , respectively, by replacing i  by i . Thus, we have 
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where mn

mn

mn cc = )1( and mn
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 The unknown scattered and transmitted electric and mag-

netic fields due to iE  and iH  can similarly be expanded in 

terms of vector spherical wave functions as 
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EXPANDING THE FIELDS IN TERMS OF VECTOR 

WAVE FUNCTIONS (TM CASE) 

 For TM polarization, the electric field of the original in-

cident wave can be written as 

rk
zxE += ij

iii e)ˆsinˆcos(         (19) 

and that of the image wave as 

rk
zxE += ij

iii e]ˆ)(sinˆ)(cos[        (20) 

 The electric and magnetic fields corresponding to the 

original incident wave can then be expanded in terms of vec-

tor spherical wave functions as 
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and the unknown scattered and transmitted electromagnetic 

fields due to the original incident wave as 
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 The electric and magnetic fields corresponding to the 

image wave can now be expanded in terms of vector spheri-

cal wave functions as 
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with ,)1(~ 1
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, and the unknown 

scattered and transmitted electromagnetic fields due to the 

image wave as 
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BOUNDARY CONDITIONS  

 The boundary conditions require that the tangential com-

ponents of the total electric and magnetic fields be continu-

ous at the surface of the sphere. These can be expressed for 

the scattering due to the original incident wave as  

artaris ==
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and for the scattering due to the image wave as 
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where r̂  is the unit normal to the spherical surface. Substi-

tuting for the different electric and magnetic fields in (33)-

(36) from (5)-(12) and (13)-(18) for TE polarization, and 

from (21)-(26) and (27)-(32) for TM polarization, integrating 

over the surface of the sphere, and using the orthogonal 

properties of the associated Legendre functions and the 

trigonometric functions, a set of linear equations can be ob-

tained. These equations corresponding to TE polarization of 

the incident wave are given by 
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and those corresponding to the TM polarization of the inci-

dent wave are given by 
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with )(kajn , )()2( kahn  being the spherical Bessel function of 

the first kind and the spherical Hankel function of the second 

kind, respectively, of order n and argument ka. 

 The solution of these equations yields the unknown 

expansion coefficients, which can be expressed in matrix 

form for the case of TE polarization as 
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in which akq t=  and akp 0= . The solution for the case of 

TM polarization can be expressed in matrix form as 
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FAR FIELD  

 The scattered electric field in the far zone is obtained by 

considering the asymptotic forms of the vector spherical 

wave functions, which are dependent on the asymptotic 

forms of the spherical Hankel function and its derivative. 

These asymptotic forms can be written as [13, 14] 
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 Thus, the scattered electric field in the far zone can be 
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 Explicit expressions of functions ),(sF and ),(sF  

can be obtained from the corresponding expressions of 

),(sF and ),(sF , respectively, by replacing the coeffi-

cients ,~,, mnmnmn and mn

~
by ,~,, mnmnmn and mn

~
, 

respectively. 

 The magnitude of the scattering cross section ),(  is 

given by 
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where ),,(riE is the magnitude of the incident wave, 

which is unity in this case. After substituting from (61) and 

(66) in (67), we can write the magnitude of the normalized 

scattering cross section as 
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 The normalized backscattering cross section is obtained 

from (68) for i= and 0= : 
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NUMERICAL RESULTS 

 Results are presented as normalized backscattering cross 

sections for spheres of different sizes made of DPS, DNG, 

ENG, and MNG materials. Since the expressions for the 

various electromagnetic fields and the normalized backscat-

tering cross section are in the form of infinite series, to ob-

tain numerical results, these series have to be truncated ap-

propriately. From the numerical experiments performed, we 

have found that for all the results that we have obtained, it is 

sufficient to consider the index m in the series from 0 to 

(ka+4), with ka being the radius of the sphere a multiplied by 

the wavenumber, and the index n to be from m to m+8, to get 

a two significant digit accuracy. 

 To verify our analysis and the accuracy of the results 

obtained, we have calculated the normalized backscattering 

cross sections for a sphere of size ka=0.1 for both TE and 

TM polarizations of the incident wave, and compared these 

results with those obtained from [1]. The expressions of the 

backscattering cross-section magnitudes as obtained from [1] 

are 
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for TE polarization, and 
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for TM polarization. 

These magnitudes are plotted in Fig. (3), together with the 
corresponding magnitudes of the backscattering cross section 

calculated using our analysis, by substitut-

ing
18

0 10/ == tr , 
18

0 10/ == μμμ tr . The results are 

in very good agreement, verifying our analysis and the accu-
racy of the results. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Normalized backscattering cross section magnitudes ob-
tained from our analysis (SWF) and from [1]. 
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Fig. (4). Variations of normalized backscattering cross section 

magnitudes with the angle of incidence, for spherical bosses made 

of different DPS metamaterials, for (a) TE and (b) TM polarization 
of the incident wave. 
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 Fig. (4) shows the variations of the normalized backscat- 

tering cross section magnitudes with the incident angle for  

spherical bosses of radius ka=2 made of DPS materials of  

relative permittivity ( r) 2.0, 3.0, 4.0, and relative permeabil- 

ity (μr) 2.0, 3.0, 4.0, for both TE and TM polarizations of the  

incident wave. As r increases with μr remaining constant at  

2.0, we find a sharpening of the minima, for both polariza- 

tions. On the other hand, when μr increases with r remaining  

constant at 2.0, the sharpening of the minima is much less.  

When the angle of incidence is larger than about 60 degrees,  

the magnitudes of the scattering cross sections for TE polari- 

zation steadily decreases for all r and μr combinations. But  

for TM polarization, this happens only when r= μr=2. 

 Variations of normalized backscattering cross section 

magnitudes with the incident angle for spherical bosses of 

radius ka=2 made of DNG materials are shown in Fig. (5), 

for both TE and TM polarizations of the incident wave. 

Since both r and μr are negative for a DNG metamaterial, 

the wavenumber becomes negative within the metamaterial 

medium, but the wave impedance remains positive. 
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Fig. (5). Variations of normalized backscattering cross section 

magnitudes with the angle of incidence for spherical bosses made 

of different DNG metamaterials, for (a) TE and (b) TM polarization 
of the incident wave. 

 

 In this case, for TE polarization of the incident wave, the 

magnitudes of all the scattering cross sections steadily de-

crease as the angle of incidence increases from 0 to 90 de-

grees, except for that corresponding to relative permittivity 

2.0 and relative permeability 2.0. When considering the case 

corresponding to TM polarization, we find that the scattering 

cross section magnitudes for r=-3.0, μr=-2.0 and r=-2.0, 

μr=-3.0 are higher than those for r=-4.0, μr=-2.0 and r=-2.0, 

μr=-4.0 at 90 degree angle of incidence, in contrast to the 

opposite in Fig. (4b) for a DPS metamaterial. Also, the mag-

nitudes of the different scattering cross sections at 0 degrees 

are almost the same in contrast to those in Fig. (4). 

 Fig. (6) shows the variations of the normalized back-

scattering cross section magnitudes with the angle of inci-

dence for spherical bosses of radius ka=2 made of ENG 

metamaterials, for both TE and TM polarizations of the inci-

dent wave. In this case, since r is negative and μr is positive, 

the wavenumber and the wave impedance are both negative 

imaginary numbers. 
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Fig. (6). Variations of normalized backscattering cross section 

magnitudes with the angle of incidence for bosses made of different 

ENG metamaterials, for (a) TE and (b) TM polarization of the inci-

dent wave. 

 

 Again for the TE polarization of the incident wave, we 

can observe the magnitudes of the scattering cross sections 

decreasing steadily with the angle of incidence, except for 

the cases r=-2.0, μr=2.0 and r=-3.0, μr=2.0. 

 For TM polarization of the incident wave, scattering 

cross section magnitudes are more oscillatory with much 
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sharper minima and are higher in value when the angle of 

incidence is 90 degrees, than for the cases corresponding to 

DPS and DNG metamaterials.  

 Variations of normalized backscattering cross section 

magnitudes with the incident angle for spherical bosses of 

radius ka=2 made of MNG metamaterials are shown in Fig. 

(7) for both TE and TM polarizations of the incident wave. 

In this case, since r is positive and μr is negative, the wave-

number is negative imaginary, but the wave impedance is 

positive imaginary. 
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Fig. (7). Variations of normalized backscattering cross section 

magnitudes with the angle of incidence for bosses made of different 

MNG metamaterials, for (a) TE and (b) TM polarization of the 
incident wave. 

 

 In Fig. (7a), the magnitudes of the scattering cross sec-

tions are oscillatory for lower values of r and μr. However, 

as the values of r and μr increase, the oscillatory behavior 

becomes reduced. In Fig. (7b), the variations in magnitudes 

of the scattering cross sections with the angle of incidence 

become less significant as r and μr increase. In this case, the 

magnitudes of the cross sections also remain at a relatively 

higher value. 

 Fig. (8) shows the variations of the normalized back-

scattering cross section magnitudes with the angle of inci-

dence for spherical bosses of different radii, made of a DPS 

material with r=3.0 and μr=2.0, for both TE and TM polari-

zation of the incident wave. When referring to these figures, 

we find that the scattering cross section magnitudes in gen-

eral become higher for both polarizations as the size of the 

sphere increases. This is due to the area available for scatter-

ing becoming larger for a bigger sphere. Also, for TM po-

larization, we can observe an increase in the oscillatory na-

ture of the patterns with the size of the sphere.  
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Fig. (8). Variations of normalized backscattering cross section 

magnitudes with the angle of incidence for DPS bosses of different 

radii with r=3.0, μr=2.0, for (a) TE and (b) TM polarization of the 

incident wave. 

 

 Fig. (9) shows the variations of the normalized back-
scattering cross section magnitudes with the angle of inci-
dence for spherical bosses of the same size as those conside-
red in Fig. (8), but made up of a MNG metamaterial with 

r=3.0 and μr=-2.0, for both TE and TM polarizations of the 
incident wave. 

 When compared to Fig. (8), we find that the cross sec-
tions in this case are more oscillatory for TE polarization, 
but less oscillatory for TM polarization. However, as the size 
of the sphere increases, the oscillatory behavior of the curves 
increases for both TE and TM polarizations. 

CONCLUSION 

 An exact solution has been presented to the problem of 
scattering of a plane wave from a metamaterial boss on an 
infinite conducting plane, using the method of separation of 
variables. Numerical results have been presented as normal-
ized backscattering cross sections for bosses of different 
sizes made up of DPS, DNG, ENG, and MNG metamateri-
als, to show the effects of these on the scattering cross sec-
tions. 
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APPENDIX 

 The vector spherical wave functions M and N used in the 

analysis are defined in terms of the spherical scalar wave 

function 
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where )()( krz i

n is the spherical Bessel function of order n, 

kind i, and argument kr with k being the wave-number of the 

medium, and )(cosm

nP  is the associated Legendre function 

of order m, degree n, and argument cos . 
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where r̂ is the unit position vector, and 
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Fig. (9). Variations of normalized backscattering cross section 

magnitudes with the angle of incidence for MNG bosses of differ-

ent radii with r=3.0 and μr=-2.0, for (a) TE and (b) TM polariza-

tion of the incident wave. 


