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Abstract: Two effective approaches for compensating the positioning errors in a near-field–far-field (NF-FF)  

transformation technique with spherical scanning for long antennas using a nonredundant number of data are presented. 

The transformation technique relies on the nonredundant sampling representations of the electromagnetic fields and on the 

optimal sampling interpolation (OSI) expansions, and assumes the antenna under test as enclosed in a prolate ellipsoid, a 

source modelling particularly suitable to deal with elongated antennas. In order to evaluate the NF data at the points fixed 

by the nonredundant representation from the acquired irregularly spaced ones, the former approach employs the singular 

value decomposition method, whereas the latter makes use of an iterative technique. The former can be applied when the 

irregularly samples lie on nonuniform parallels, thus allowing to reduce the starting two-dimensional problem into two  

independent one-dimensional ones. The latter can be employed also when such a hypothesis does not hold, but requires 

the existence of a one-to-one correspondence associating at each uniform sampling point the nearest irregular one. In both 

the cases, the NF data needed by a probe compensated NF–FF transformation with spherical scanning are efficiently 

evaluated by using an OSI algorithm. Numerical tests assessing the effectiveness of the proposed approaches and their 

stability with respect to random errors affecting the NF data are shown. 

Keywords: NF–FF transformations, spherical scanning, nonredundant sampling representations of electromagnetic fields, 
probe positioning error compensation. 

1. INTRODUCTION 

Among the near-field–far-field (NF–FF) transformation 
techniques, that using the spherical scanning is particularly 
attractive, since it allows the reconstruction of the full radia-
tion pattern of the antenna under test (AUT) from a single set 
of NF measurements [1-10]. However, the data processing is 
considerably more complex than that required by planar and 
cylindrical NF facilities. In [8], the classical NF–FF trans-
formation with spherical scanning [1] has been modified by 
taking into account the spatial bandlimitation properties of 
the electromagnetic (EM) fields [11]. In particular, the 
choice of the highest spherical wave to be considered has 
been rigorously fixed by the bandlimitation properties and no 
longer determined according to a rule-of-thumb related to the 
smallest sphere containing the AUT. Moreover, the number 
of data on the parallels has resulted to be decreasing towards 
the poles. In the same paper, the nonredundant sampling 
representations of the EM field [12] have been applied to 
reduce in a significant way the number of needed NF data 
when dealing with an antenna having one or two predomi-
nant dimensions, which has been considered as enclosed in a 
prolate or oblate ellipsoid, respectively. Then, an optimal 
sampling interpolation (OSI) formula, which allows the re-
construction of the data required by the aforementioned NF–
FF transformation from a nonredundant number of NF  
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samples, has been developed. In [9], the ideal probe assump-
tion made in [8] has been removed by proposing an efficient 
probe compensated NF–FF transformation with spherical 
scanning tailored for elongated or quasi-planar antennas. At 
last, effective NF–FF transformations with spherical scan-
ning tailored for nonspherical antennas and based on very 
flexible AUT modellings have been developed in [10].  
In particular, a cylinder ended in two half-spheres has been 
adopted to shape an electrically long antenna, whereas a 
quasi-planar antenna has been considered as enclosed in a 
surface formed by two circular bowls with the same aperture 
diameter but different lateral bends. 

Unfortunately, the errors due to an inaccurate control of 

the positioning systems prevent the possibility to get regu-

larly spaced NF measurements, even though their position 

can be accurately read by optical devices. In addition, the 

finite resolution of the positioning devices and their impre-

cise synchronization do not allow one to exactly locate the 

probe at the points fixed by the sampling representation. 

Therefore, the development of an effective reconstruction 

algorithm from irregularly spaced data becomes relevant. A 

procedure based on the conjugate gradient iteration method 

and employing the unequally spaced fast Fourier transform 

[13, 14] has been proposed in the standard planar [15] and 

spherical [16] scannings. However, such a procedure is not 

suitable for scanning techniques taking advantage of the non-

redundant sampling representations of EM fields, wherein 

the “a priori” information on the AUT and proper OSI for-

mulas are exploited to reconstruct the NF data required by 

the corresponding classical NF–FF transformation. As it has 
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been clearly stressed in [17], wherein a more comprehensive 

discussion can be found, the formulas available in literature 

for the direct reconstruction from nonuniform samples are 

valid only for particular sampling points distributions, are 

not user friendly and unstable. A feasible and convenient 

strategy is to recover the uniform samples from those non-

uniformly spaced and then determine the value at any point 

of the scanning surface by an accurate and stable OSI for-

mula. Two approaches [17-20] have been proposed to this 

end and compared and experimentally validated in the cylin-

drical scanning case [21]. The former [17, 18] is based on an 

iterative technique which converges only if it is possible to 

build a biunique correspondence associating at each uniform 

sampling point the nearest nonuniform one. The latter [19, 

20] makes use of the singular value decomposition (SVD) 

method [22] and can be conveniently applied when the start-

ing two-dimensional problem can be reduced to find the so-

lution of two independent one-dimensional ones. If this is 

not the case, the dimension of the involved matrixes would 

become very large, thus requiring a massive computational 

effort. This occurs, f.i., in the helicoidal scanning, where, in 

presence of positioning errors, the acquired NF data are no 

longer on a  helix. Accordingly, in such a case, the iterative 

technique can be conveniently employed [23]. 

The aim of this paper is just the application of the 
abovementioned approaches to the compensation of the 
probe positioning errors in the NF–FF transformation with 
spherical scanning [8, 9]. For space saving, only the prolate 
ellipsoidal modelling of the AUT will be considered in the 
following, so that the resulting NF–FF transformation from 
nonuniformly distributed spherical NF data is tailored for 
electrically long antennas. The extension to the case of the 
oblate modelling of the AUT being straightforward. 

2. NONREDUNDANT SAMPLING REPRESENTA-
TION OF THE VOLTAGE 

Since, as shown in [24], the voltage V measured by a 
nondirective probe has the same effective spatial bandwidth 
of the AUT field, the nonredundant sampling representations 
of EM fields [12] can be applied to such a voltage. Let us 
consider an electrically long AUT, a probe scanning a 
spherical surface of radius d in the NF region, and adopt the 
spherical coordinate system (r, , ) to denote an observa-
tion point. An effective source modelling for such a kind of 
antenna is obtained by choosing the surface  (enclosing it) 
coincident with the smallest prolate ellipsoid having major 
and minor semi-axes equal to a and b (Fig. 1). 

According to [12], let us introduce the probe “reduced 
voltage” 

 
V ( ) = V ( )  e j ( )

 (1) 

where  ( ) is a phase function to be determined and  is an 

optimal parameter used to describe each of the curves C 

(meridians and parallels) representing the spherical surface. 

The error occurring when  V  is approximated by a bandlim-

ited function becomes negligible as the bandwidth exceeds a 

critical value W  [12], so that it can be effectively controlled 

by choosing a bandwidth equal to 'W , ' > 1
 
being an 

excess bandwidth factor. When C is a meridian, by adopting 

 
W = ' / 2  (  is the wavenumber and 

 
' = 4aE / 2 2( )  is the length of the ellipse  C

', intersec-

tion curve between the meridian plane through the observa-

tion point P and ), we get [8, 12]: 

= a v
v2 1

v2 2
E cos 1

1 2

v2 2
2  (2) 

=
2
1+

E sin 1u 2( )
E / 2 2( )

 (3) 

where E ( ) denotes the elliptic integral of second kind, 

= f /a  
is the eccentricity of  C ' , 2f is its focal distance and 

u = (r1 r2) / 2 f  and v = (r1+ r2) / 2a  are the elliptic coordi-

nates, r1,2 being the distances from the observation point P to 

the foci of  C '. Relation (3) is valid for  belonging to the 

range [0, /2]. The case  belonging to [ /2, ] can be han-

dled by determining the value ' corresponding to the point 

specified by the angle  and then putting = ' . As 

shown in [12], the curves  = const and  

 = const are ellipses and hyperbolas confocal to  C ' . When 

the curve C is a parallel at ( ) , the phase function is con-

stant, the optimal parameter is the azimuthal angle  and the 

corresponding bandwidth is, W ( ) = b sin ( )  

= sin 1(u) + / 2
 
being the polar angle of the asymptote 

to the hyperbola through P [8, 12]. 

According to the above results, the reduced voltage at P 
on the meridian fixed by  can be evaluated via the follow-
ing OSI expansion 

 

V ( ),( ) = V n,( ) N n( )DN" n( )

n = n0 q+1

n0+q

 (4)

 

where n0= n0 ( ) = Int ( )  is the index of the sample 

nearest to the output point, 2q is the number of retained in-

termediate samples
  
V n,( ) , i.e., the reduced voltages at 

the intersection points between the sampling parallels and 

the considered meridian,
 
and 

 

Fig. (1). Geometry of the problem. 
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DN "( ) =
sin (2N "+1) / 2[ ]

(2N "+1) sin( / 2)
 (5) 

N ( ) =
TN 2cos2 / 2( ) cos2 0 / 2( ) 1

TN 2 cos2 0 / 2( ) 1
 (6) 

are the Dirichlet and Tschebyscheff Sampling functions. 
Moreover, Int(x) denotes the integer part of x, 

n = n = 2 n (2N"+1);N" = Int ( N ') +1  ; (7) 

N ' = Int ( 'W ) +1; N = N" N '  (8) 

 being the oversampling factor needed to control the trunca-

tion error. In (6), TN ( )  is the Tschebyscheff polynomial of 

degree N and 0 = q . 

The intermediate samples are given by: 

V n,( ) = V n, m, n( ) Mn m, n( ) DMn" m, n( )

m =m
0
p +1

m
0
+ p

 (9) 

where 
 
V n, m, n( )  are the reduced voltage samples, uni-

formly spaced on the parallel at ( n) , 2p is the retained 

samples number, m0 = m0 ( ) = Int ( n) , and  

m, n = m n = 2m (2Mn" +1)  
(10) 

Mn" = Int Mn'( ) +1 ; Mn' = Int *W ( n)( ) +1  (11) 

* =1+ ' 1( ) sin n( )[ ]
2/3 ;Mn= Mn" Mn' ; (12) 

By using the OSI expansions (4) and (9), it is possible to 
evaluate the probe voltage at any point on spherical surface 
and, in particular, at the points required by the classical NF–
FF transformation with spherical scanning [1] as modified in 
[8-10]. 

3. RECONSTRUCTION OF THE UNIFORM  
SAMPLES 

Two different approaches for reconstructing the uni-
formly spaced samples from the irregularly distributed ones 
will be described in this section by highlighting all their fea-
tures. 

3.1. The SVD Approach 

Let us now assume that, apart from the sample at the pole 

= 0 , the irregularly distributed samples lie on parallels not 

regularly spaced (see Fig. 1). This hypothesis can really rep-

resent the spatial distribution of the NF measurements when 

the acquisition is made by parallels, as needed to exploit the 

reduction in the number of NF data on noncentral parallels, 

made possible by the nonredundant sampling representation. 

Accordingly, the considered two-dimensional problem can 

be split in two independent one-dimensional ones. In this 

framework, let us assume to know the probe voltage at 

Jk 2Mk" + 1  nonuniform sampling points ( k , j )  on the 

nonuniform parallel at ( k) , 2Mk" + 1  
being the number of 

the corresponding uniform sampling points 

m, k = m k = 2m (2Mk" + 1) . The reduced voltage  V  

at each nonuniform sampling point can be expressed via the 

OSI expansion (9), thus obtaining the linear system:  

V ( k , j ) = V k , m, k( ) Mk j m, k( )DMk" j m, k( ) ; j = 1,..., Jk

m=m
0
p +1

m
0
+ p

 (13) 

The overdetermined linear system (13) can be expressed 

in matrix form as A x = b , where b is the sequence 

 
V k, j( )  of the known nonuniform samples, x is the se-

quence of the unknown uniformly distributed ones 

 
V k , m, k( ) , and A  is the Jk (2Mk" +1)  matrix, whose 

elements are given by the weight functions in the considered 

OSI expansion:  

ajm = Mk j m, k( )DMk" j m, k( )  (14) 

It is useful to note that, for a fixed row j, the elements of 
the matrix are equal to zero if the index m is out of the range 
[m0 ( j ) p +1, m0 ( j ) + p] . A solution, which is the best 
approximation in the least squares sense of the linear system 
(13), is obtained by using the SVD method [22]. 

Let us now tackle the problem of evaluating the probe 

voltage at a point P ,( )  on the sphere from the knowledge 

of the recovered uniform samples on the irregularly spaced 

parallels. To this end, the OSI expansion (9) can be em-

ployed to determine the intermediate samples 
 
V k,( )  on 

the meridian through P. Since these intermediate samples are 

nonuniformly distributed on the considered meridian, the 

voltage at P can be found in analogous way by recovering 

the regularly spaced intermediate samples again via SVD 

and then interpolating them by means of (4). 

It must be stressed that both the displacements between the 

uniform and nonuniform samples on the nonuniform paral-

lels and those between the uniform and nonuniform parallels 

are assumed such that to each uniform sampling position 

must correspond at least a nonuniform one whose distance is 

less than one half the uniform sampling spacing ( k
 

or ) to avoid a strong ill-conditioning of the related linear 

system [19, 20]. Moreover, in order to minimize the compu-

tational effort for reconstructing the uniformly spaced sam-

ples on the uniform parallels, it is convenient to determine 

the same number Ns of samples on each of them. This num-

ber is fixed according to the sampling rate on the equator. In 

such a way, although the so recovered NF data are slightly 

redundant in , the number of SVD relevant to the meridians 

is minimized being these samples aligned. It is worthy to 

note that the overall number of SVD required to recover 

them is Ns plus the number of nonuniform parallels. Once 

these samples have been determined, the data required by the 

NF–FF transformation with spherical scanning can be evalu-
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ated by using the OSI expansions (4) and (9), this last prop-

erly modified to take into account the redundancy in . 

When removing the hypothesis that the nonuniformly 
distributed samples lie on parallels not regularly spaced, the 
two-dimensional problem can no longer be reduced to find 
the solution of two independent one-dimensional problems. 
In such a case, the SVD-based approach could be still used, 
but the dimension of the involved matrix would become very 
large, thus requiring a huge computational effort. Accord-
ingly, it is convenient to resort to the iterative technique [17, 
18]. 

3.2. The Iterative Approach 

Let us assume in the following that the nonuniformly dis-

tributed samples are such that it is possible to build a one-to-

one correspondence associating at each uniform sampling 

point the “nearest” nonuniform one. In such a case, by ex-

pressing the reduced voltage at each nonuniform sampling 

point ( k , j, k)  as a function of the unknown values at the 

nearest uniform ones ( n , m,n)  by using the OSI expansions 

(4) and (9), it results: 

 

V ( k , j, k) = N k n( ) DN" k n( ){
n = n0 q+1

n0+q

 

 
m=m0 p+1

m0+ p

V n , m,n( ) Mn j, k m,n( )

 DMn" j, k m, n( )}
 (15)

  The resulting linear system can be again rewritten in the 

matrix form A x = b , where now b  is the sequence 

 
V ( k, j, k)  of the known nonuniform samples, x is the se-

quence of the unknown uniformly distributed ones 

 
V n, m,n( ) , and A  is a Q Q

 
sparse matrix whose ele-

ments are given by the weight functions in the considered 

OSI expansion, Q being the overall number of the nonuni-

form/uniform samples. By splitting the matrix A  into its 

diagonal part AD and nondiagonal one , multiplying both 

members of the relation A x = b  by AD
1  and rearranging the 

terms, the following iterative procedure results: 

x( ) = AD
1 b AD

1 x( 1)
= x(0) AD

1 x( 1)
 (16) 

where x( )  is the vector of the uniform samples estimated at 
the th  step. Necessary conditions for the convergence of 
such an iterative algorithm are that the modulus of each ele-
ment on the principal diagonal of the matrix A  be not zero 
and greater than those of the other elements on the same row 
and column. These conditions are certainly fulfilled in the 
considered hypothesis of biunique correspondence between 
each uniform sampling point and the “nearest” nonuniform 
one. By straightforward evaluations, we finally get:  

 

V ( ) n , m, n( ) =
1

N n n( ) DN" n n( )
.

 

 

. 1

Mn m, n m, n( ) DMn" m, n m, n( )
V ( n, m, n) +

 

= 0 q+1

0+q

N n( )DN" n( )
i = i0 p +1

i0+ p

( n) ( i m)

 

 
M m, n i,( )DM " m, n i,( )V ( 1) , i,( )

 
 (17)

 

Once the uniform samples have been so retrieved, the 
OSI expansions (4) and (9) can be used to reconstruct the NF 
data needed by the classical NF–FF transformation with 
spherical scanning [1] as modified in [8-10]. 

4. NUMERICAL SIMULATIONS 

The effectiveness and robustness of the proposed algo-

rithms to compensate the probe positioning errors in the NF–

FF transformation with spherical scanning have been as-

sessed by many numerical tests. The reported simulations 

refer to a uniform planar array of /2 spaced elementary 

Huygens sources polarized along the z axis (  being the 

wavelength). This array covers an elliptical zone in the plane 

y = 0, with major and minor semi-axes equal to 20  and 5 , 

respectively, so that such a long antenna can be very well 

fitted by a prolate ellipsoid. An open-ended circular 

waveguide with radius 0.338  is considered as probe and a 

sphere of radius d = 25  as scanning surface. 

In the first set of figures (from Fig. 2 to Fig. 9), the non-

uniformly distributed sampling points lie on parallels not 

regularly spaced. In particular, the NF data have been gener-

ated in such a way that the distance between the position of 

each nonuniform parallel and the associated uniform one is a 

random variable uniformly distributed in ( /2, /2) . In 

a similar way, the distances between the nonuniform sam-

pling points and the corresponding uniform ones on each of 

 

Fig. (2). Amplitude of the probe voltage V '  on the meridian at 

= 90° . Solid line: exact. Crosses: reconstructed from nonuni-

form samples via the SVD based algorithm. 
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these parallels are random variables uniformly distributed 

in ( k /2, k /2) . The amplitude and phase of the ro-

tated probe voltage V '
 
relevant to the meridian at  = 90° 

reconstructed via the SVD-based approach are shown in 

(Figs. 2 and 3). As can be seen, although the considered val-

ues of probe positioning errors are very pessimistic in an 

actual scanning, there is an excellent agreement between the 

reconstructed voltage (crosses) and the exact one (solid line). 

To assess the algorithm performances in a more quantitative 

way, the mean-square error in the reconstruction of the uni-

form samples has been evaluated. It is normalized to the 

voltage maximum value on the sphere and has been obtained 

by comparing the reconstructed and the exact uniform sam-

ples on the scanning sphere. Fig. (4) shows this error for 

' = = 1.20  and p = q ranging from 3 to 13. As can be 

seen, it decreases up to very low values on increasing the 

number of retained samples, thus assessing the effectiveness 

of the procedure. Even better results are to be expected when 

the distances between the position of each nonuniform sam-

ple and the associate uniform one are smaller. This is con-

firmed by the results shown in the same figure, which are 

relevant to the error in the reconstruction of the uniform 

samples when the displacements are random variables uni-

formly distributed in ( /4, /4)  and 

( k /4, k /4). The algorithm stability has been as-

sessed (see Fig. 5) by adding random errors to the exact 

samples. These errors simulate a background noise (bounded 

to a in amplitude and with arbitrary phase) and uncertain-

ties on the data of ± ar in amplitude and ±  in phase. As 

expected (see Fig. 6), the stability can be improved by ex-

ploiting the redundancy for filtering the errors affecting the 

data. The same nonuniform NF data (used in Fig. 2) have 

been employed to reconstruct the voltage on the meridian at 

 = 90° by using the iterative approach (see Fig. 7). As can 

be seen, the reconstruction obtained by employing 5 itera-

tions coincides with that relevant to the use of the SVD ap-

proach. Moreover, in order to give an insight on the conver-

gence of the technique, the intermediate results when no it-

erations are used ( = 0 ) are shown in the same figure. The 

described SVD based procedure has been applied to effi-

ciently recover the NF data needed to perform the NF–FF 

transformation. The reconstructed FF patterns in the princi-

pal planes E and H are compared with the exact ones in Figs. 

(8 and 9). As can be seen, the exact and recovered fields are 

practically indistinguishable, thus assessing the effectiveness 

of the technique. Identical results (not reported here for 

space saving) are obtained when the NF data required to 

carry out the transformation are retrieved from the same 

nonuniform NF data via the iterative approach. 

In the second set of figures (from Fig. 10 to Fig. 15), the 

hypothesis of nonuniform sampling points lying on parallels 

is removed. Accordingly, the nonuniform samples have been 

generated in such a way that the distances in  and  

 between the position of each nonuniform sample and the 

associated uniform one are random variables uniformly dis-

tributed in ( /3, /3)  and ( n /3, n /3) . The am-

plitude and phase of the rotated probe voltage relevant to the 

meridian at  = 90°, reconstructed via the iterative tech-

nique, are compared in Figs. (10 and 11) with the exact ones. 

 

Fig. (3). Phase of the probe voltage V ' on the meridian at 

= 90° . Solid line: exact. Crosses: reconstructed from nonuni-

form samples via the SVD based algorithm.  

 

Fig. (4). Normalized mean-square error in the recovery of the uni-

form samples of. V '  Dots: displacements in [ /2, /2] , 

[ k /2, k /2] . Squares: displacements in [ /4, /4] ,
 

[ k /4, k /4] . 

 

Fig. (5). Amplitude of the probe voltage V '  on the meridian at 

= 90° . Solid line: exact. Crosses: reconstructed from error af-

fected nonuniform samples via the SVD based algorithm. 
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Fig. (6). Amplitude of the probe voltage V '  on the meridian at = 90° . Solid line: exact. Crosses: reconstructed from error affected nonuni-

form samples (increased by 20%) via the SVD based algorithm. 

 

Fig. (7). Amplitude of the probe voltage V '  on the meridian at = 90° . Exact: solid line. Reconstructed from nonuniform samples via the 

iterative algorithm: red dots for = 0  and black crosses for = 5 . 

 

Fig. (8). Far-field pattern in the E-plane. Solid line: exact. Crosses: reconstructed from irregularly spaced NF samples via the SVD based 

algorithm. 
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The evaluation of the mean-square error (normalized to the 
maximum value of V '  on the sphere) in the reconstruction of 
the uniform samples assesses more quantitatively the effec-
tiveness of the iterative algorithm (Fig. 12). As can be seen, 
on increasing the number of iterations, the error decreases 

quickly until a constant saturation value is reached. Such a 
value decreases on increasing the retained samples number. 
Also in this case, the robustness of the algorithm has been 
assessed. As can be seen in Fig. (13), the algorithm exhibits 
a good rejection to the data noise. At last, Figs. (14 and 15) 
show the antenna FF pattern in the principal planes E and H 
reconstructed from the irregularly distributed samples. As 
can be seen, the exact and recovered patterns are practically 

 

Fig. (9). Far-field pattern in the H-plane. Solid line: exact. Crosses: 

reconstructed from irregularly spaced NF samples via the SVD 

based algorithm. 

 

Fig. (10). Amplitude of the probe voltage V '  on the meridian at 

= 90° . Solid line: exact. Crosses: reconstructed from nonuni-

form samples via the iterative algorithm (v = 5). 

 

Fig. (11). Phase of the probe voltage V '  on the meridian at 

= 90° . Solid line: exact. Crosses: reconstructed from nonuni-

form samples via the iterative algorithm (v = 5). 

 

Fig. (12). Normalized mean-square error in the reconstruction of 

the uniform samples of V '  when using the iterative algorithm as 

function of v. 

 

Fig. (13). Amplitude of the probe voltage V '  on the meridian at 

= 90° . Solid line: exact. Crosses: reconstructed from error af-

fected nonuniform samples via the iterative algorithm (v = 5). 

 

Fig. (14). Far-field pattern in the E-plane. Solid line: exact. 

Crosses: reconstructed from irregularly spaced NF samples via the 

iterative algorithm (v = 5). 
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indistinguishable, thus providing an overall assessment of 
the described iterative technique. 

It can be interesting to compare the number of the em-
ployed nonuniform NF data (9 139) with those (130 562) 
needed by the classical NF–FF transformation with spherical 
scanning [1]. 

CONCLUSIONS 

In this paper, two different techniques to compensate the 
probe positioning errors in a nonredundant NF–FF transfor-
mation with spherical scanning have been presented. The 
former makes use of the SVD method for recovering the 
uniformly distributed samples from the irregularly spaced 
ones and has been applied when the two-dimensional prob-
lem can be reduced to find the solution of two independent 
one-dimensional ones. The latter employs an iterative tech-
nique which requires a biunique correspondence, associating 
at each uniform sampling point the nearest nonuniform one. 
Although the considered positioning errors are very pessi-
mistic in an actual scanning, excellent results have been 
achieved both in the NF and FF reconstructions. 
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Fig. (15). Far-field pattern in the H-plane. Solid line: exact. 

Crosses: reconstructed from irregularly spaced NF samples via the 

iterative algorithm (v = 5). 


