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Abstract: This paper presents a novel real-time path planning algorithm for an autonomous mobile agent in completely 
unknown environment. In this algorithm, all the planned paths are described and stored in the form of vectors in the algo-
rithm. Only the rotation angle and the movement distance in a single direction are considered when the autonomous 
moves along the planned paths. The algorithm combines range sensor data with a safety radius, which determines the 
blocking obstacles and calculates a shorter path by choosing the random intermediate points. These random intermediate 
points are be generated when blocking obstacles exist in the current path. Then the optimal intermediate points are se-
lected and inserted into the current path to regenerate a new planned path. Simulation results are shown that the proposed 
algorithm is effective.  
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1. INTRODUCTION 

Path planning for autonomous mobile agents in unknown 
environment needs to satisfy some requirements, such as 
accessibility, obstacle avoidance, optimal performance etc 
[1]. 

In terms of the path planning in completely unknown en-
vironment, common methods includes: Artificial potential 
field method [2-4], fuzzy logic algorithm [5, 6], and the Bug 
approach. Lumelsk, Mukhopadhyay, et al. proposed the Bug 
[7, 8] and the VisBug [9] algorithm. In their researches, the 
robot moved towards the goal position with a contact sensor 
or a range sensor detecting the boundary of obstacles. When 
the robot encountered the obstacles, it circumnavigated the 
obstacles until the motion towards the goal position was ac-
cessible again. This algorithm was simple, yet when the ro-
bot circumnavigated the obstacles it was unable to select an 
optimal circulatory direction. Like the VisBug algorithm, 
DistBug [10] and TangentBug [11] algorithm iterated two 
behaviors, motion-to-goal and boundary-following. They 
calculated a shorter path to the goal position by selecting an 
optimal circulatory direction and leaving obstacles’ bound-
ary as soon as possible. The path length generated by the 
TangentBug algorithm was shorter than the one obtained by 
DistBug algorithm, but the computational burden of the 
TangentBug algorithm was heavy caused by the real-time 
local tangent graph (LTG) calculation of the obstacles in its 
sensor range. In all of the Bug approaches, the robots moved 
along obstacles’ boundary without the consideration of the 
safe radius of the moving robots, hence their security needs 
to be enhanced. Rapidly-exploring random tree (RRT) algo-
rithm is suited for searching high-dimensional configuration 
space. Many variants of RRT were presented to solve the  
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path planning in dynamic environment with unknown mov-
ing obstacles. In order to decrease the calculation burden, 
DRRTs [12] and MP-RRT [13] tried to effectively use the 
information from the previous planning result. Multi-stage 
probabilistic strategy was presented in [14] to further reduce 
the complexity of path planning in complex and dynamic 
environment; however its accessibility was lower than 
DRRTs and MP-RRT’s. 

In this paper, we present a novel path planning and ob-
stacle avoidance strategy called RandomBug for an omni-
directional autonomous mobile agent in completely unknown 
environment. The agent computes its own path and regener-
ates the path by using its own sensor data to achieve the goal 
position without collision. In this algorithm, all the planned 
paths are described and stored in the form of vectors. All the 
vectors compose the vector path set. In an initial path vector 
set, there is only one vector that is generated by connecting 
the start position and the goal position. When the agent 
moves along the path vector and an obstacle blocks the 
planned path, several intermediate points are randomly gen-
erated. The algorithm will select the optimal point and re-
generate the path vector set by inserting this point. Finally, a 
collision-free and feasible path is generated by constantly 
iterating the actions: moving along the path, detecting the 
obstacles, calculating the intermediate points and regenerat-
ing the path. The paper is organized as follows. The problem 
that we would like to solve is described in Section 2. In Sec-
tion 3, our solution approach and the outline of the overall 
structure of the algorithm are described. In Section 4, we 
analyze the experimental results which show the satisfactory 
performance of our approach in completely unknown envi-
ronment. Finally, the conclusion is presented in Section 5. 

2. PROBLEM DESCRIPTION 

We consider the planning path for an omnidirectional 
autonomous mobile agent in completely unknown environ-
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ment. The agent is assumed as an operating point in a plane 
with a range sensor detecting obstacles. Assume that the 
range sensor could provide perfect readings of the distance 
between the mobile agent and the obstacles within the 
maximum detecting radius. The similar problem was solved 
in the configuration spaces [14]. The start and the goal are 
labeled 

start
q  and goalq .  

The planned path is described by a vector set called path 
vector set. In this set, the former vector’s terminal point is 
the latter’s starting point, and every vector represents a path 
section which the agent should move along with. When the 
agent moves to the next section, it only need to steer to the 
next vector’s direction, and then moves forward until it ar-
rives at the next section or the goal position. 

Pi denotes any ith planned path vector set and in this set, 
the former vector's terminal point is its starting point. 

i i1 i2 in
P = á ,á , ,áL              (1) 

where, aik(k = 1,2,L,n) is the kth vector in the path vector set 

Pi, and the terminal point of vector ( )i k -1
á  is the start point of 

vector ik
á . ( ),

ik
!

ik ik
á = á , where ik

!  is the angle between 

the vector ik
á  and ( )i k -1

á , and ik
! " !# $ $ . The clockwise 

direction is positive, and the counterclockwise direction is 

negative. ik
á  is the vector module, which is the distance 

the agent should move after it turns ik
! angle. 

In this algorithm, the planned for the agent is obtained by 
three steps. Firstly, according to the start and goal position, 
the initial path vector set is built. Secondly, it is determine 
whether there is an obstacle blocking the current path vector. 
When there is an obstacle blocking, the intermediate points 
are randomly generated. And then the path vector set is re-
generated by inserting the selected intermediate point into 
the current path vector set. 

3. PLANNING ALGORITHM 

3.1. Obstacle Detection 

In order to get a collision-free planned path during the 
process, the agent detects the obstacle in its sensor range 
with constant intervals. When the agent moves to a turning 
point of the path, it detects the obstacle immediately. Unlike 
in the past, the safety radius of the agent was considered to 
improve the safety of the algorithm. 

In Fig. (1), the solid black line, from start
q  to goalq , repre-

sents the current path vector, q is the current position of the 
agent. The larger circle with hashed lines represents the sen-
sor range and its radius is denoted by mnge

R . The smaller one 
represents the safety radius and is denoted by safeR . ! is the 
angle between two vectors: vector (1) starting at agent’s cur-
rent position 1

q  and terminating at the obstacle point o
p  

and vector (2), the current path vector. The module of vector 
(1), denoted by d , represents the distance between the agent 
and detected obstacle. When the obstacle holds two condi-

tions: sin safed R!" < and d is not bigger than the difference 
between current path remnant distance and safeR , we believe 
that an obstacle is in the current path. The first condition en-
sures that the agent keeps a safe distance from the obstacle.  

 
Fig. (1). Obstacle detection of a mobile agent. 

3.2. Generation of Intermediate Points 

Once there is an obstacle blocking the current path, sev-
eral intermediate points are generated randomly. 

Fig. (2). shows the generation of the random intermediate 
points. When the agent moves to the position q , it can detect 
the obstacle point 

o
p  which blocks the current path. Then 

the random intermediate points 
1
p  to 

10
p  are generated with 

the angle ranging from !  to 2!  and the module ranging 
from safeR  to range

R . Although 
4
p  is in the range, 

4
p  should 

be removed from those points because it is on the obstacle. 
When there are more than half of the points on the obstacle, 
the points are regenerated randomly. 

Then through calculation, we insert the selected points 
into the path vector set. 

i
p  is any ith random intermediate 

point, 
i1
â  and 

i2
â are two vectors built by q , 

i
p  and goalq , 

i
S is the sum of the two vectors’ modules. Take the interme-
diate point 

2
p  for instance, 2

S = +
21 22
â â . Then calcu-

late the minimum 
i
S  of these points. The point with the 

minimum sum is selected as an intermediate point. In  
Fig. (2), 

1
p is the selected as the intermediate point. 

3.3. Path Regeneration 

Insert the selected point into the path vector set and re-
generate a new path vector set. 

As shown in Fig. (3a), in the initial path vector set 
0
P , 

there is only one vector formed by the line connecting the 
start position 

start
q  with the goal position goalq . The angle of 

the vector is zero. When the agent does not face the goal 
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position, the agent is steered to the goal position in its origi-
nal place. 

0 01
P = á                  (2) 

(0, )=
01 01
á á               (3) 

Assuming an obstacle blocked the path, we insert inter-
mediate point 

1
q  into initial path vector set 

0
P  to get the 

regenerated path vector set
1
P , 

1 11 12 13
P = á ,á ,á               (4) 

11( , )!=
11 11
á á               (5) 

12( , )!=
12 12
á á               (6) 

13( , )!=
13 13
á á               (7) 

where, 11
á , 01

á , 12
á  and 

12
!  are known. 13

á  and 
13
!  

can be calculated based on the Cosine theorem, 

( ) ( )
2 2

12
2 cos!= " + " " # #

13 01 11 12 01 11 12
á á á á á á á    (8) 

( )( )( )1

12 12
cos cos /! !"= " # "

01 11 12 13
á á á á     (9) 

As shown in Fig. (3b), the agent keeps moving in accor-
dance with

1
P . When the agent moves to the turning 

point
1
p , it detects the obstacles immediately, and finds ob-

stacle in the path. We insert intermediate point 
2
p  into 

1
P  to 

get the regenerated path vector set
2
P , 

=
2 21 22 23 24
P á ,á ,á ,á           (10) 

( )2 2 2
, , 1, 2,3, 4

k k k
k!= =á á         (11) 

where, 
22 12
! != , 32

á , 
23
! and 13

á  are known. 24
á  and 

24
!  can be calculated based on the Cosines theorem, 

2 2

23
2 cos!= + " # #

24 13 23 13 23
á á á á á     (12) 

( )( )1

24 23
cos cos /! !"= # "

13 23 24
á á á      (13) 

Similarly, we insert intermediate point i 1
p

+  into 
i
P  to 

get regenerated path vector set +i 1
P , and Fig. (3c) shows the 

path vectors in path vector set +i 1
P . 

 

Fig. (2). Generation of intermediate points. 

 
(a) Path vector set P1 

 
(b) Path vector set P2 

 
(c) Path vector set Pi+1. 

Fig. (3). Path regeneration. 
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( ) ( ) ( ), , ,=
i+1 i+1 1 i+1 2 i+1 m
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á á
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+
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!
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á and ( 1)( 2)i n
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4. SIMULATION RESULTS 

In order to prove the feasibility and the optimality of the 
proposed algorithm, we simulate the algorithm which is pro-
grammed in C#. The simulations include the cases with dif-
ferent planning parameters for the same map. The simulation 
results are shown in Fig. (4). The map size is 1024×768 pixel 
with each pixel representing one unit length. The map is 
used as an unknown actual environment. The initial distance 
between the start position and goal position is 1250.61. In 
Fig. (4), ● represents the start position, █ represents the goal 
position, and ○ represents the inserted intermediate point. 
The entities are obstacles, and the solid line is the moving 
path of the agent. 

(Table 1) shows the data of simulation results. It is as-
sumed that the moving and obstacle sensing time is zero. 
Therefore the planning time is the total time cost during the 
path planning. It is indicated that the agent can move closer 
to obstacle’s contour by reducing safety radius or increasing 
the number of random intermediate points, when the sensor 
range and the number of random points are constant. In a 
special case, with a narrow channel, the safety radius cannot 
be too large, otherwise the agent will not able to move 
through the narrow channel and the path length will increase. 
The path becomes smoother by increasing the number of 
random intermediate points, whereas the time cost and path 
length increases considerably. In order to avoid the local 
optimal, the number of random points cannot be too large. 
Because the modular range of random points is from safety 
radius to sensor range, the number of inserting points can be 
reduced to some extent by decreasing the sensor range. 
Simulation was performed in plenty of maps, and all of the 
agents can achieve the goal position without collision It is 
proved that the accessibility, obstacle avoidance, and real-
time performance of RandomBug algorithm meet the re-
quirements. 

Taking 200
range
R =  and 10safeR = , ten random points, 

we simulated the proposed algorithm in several maps and 
compared with the TangentBug using sensor range as 200. 

The planning results are shown in Figs. (5) and (6) with the 
result data listed in (Table 2). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. (4). Simulation results of different parameters in the same map.  
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Table 1. Result contrast of different parameters in the same map. 

Map Rrange /Pixel Rsafe /Pixel Random Point Inserting Point Path Length /Pixel Time /ms 

(a) 200 20 10 16 1716.10 19.35 

(b) 300 10 10 24 1484.04 29.35 

(c) 200 10 20 15 1450.83 17.83 

(d) 200 10 10 11 1436.45 16.51 

 
Table 2. Planning results with different algorithms. 

Algorithm Map Path Length /Pixel Time /ms 

RandomBug 1 1497.09 11.34 

TangentBug 1 1422.32 18.92 

RandomBug 2 1456.74 18.46 

TangentBug 2 1307.21 64.47 

 

 
(a)RandomBug 

 
(b)TangentBug 

Fig. (5). Contrast simulation results of map 1. 

From Figs. (5, 6) and (Table 2), it is found that the path 
planned by TangentBug is close to the obstacle contour, 
whereas the agent and obstacles can keep a certain safe dis-
tance away from each other in the proposed algorithm. Con-
sequently, the path planned by the proposed algorithm is 
longer than TangentBug.  

 
(a) RandomBug 

 
(b) TangentBug 

Fig. (6). Contrast simulation results of map 2. 

In addition, TangentBug requires continuously comput-
ing the LTG of obstacles in its 360°sensor range, which 
makes its computation more complex than our algorithm. 
The proposed algorithm surpasses TangentBug in the plan-
ning, time and cost and but as the obstacles and environment be-
comes more complex its superiority becomes more apparent. 

CONCLUSION 

A novel path planning algorithm is presented in this pa-
per. In this algorithm, the planned paths are described and 
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stored in the form of vectors. The path planning result is easy 
to execute, and the requirement of storage space is greatly 
decreased especially in large area and complex environment. 
We fully considered the safety distance between the agent 
and obstacles in order to improve the practicality and safety 
of the algorithm. The presented strategy for selecting random 
intermediate points only requires simple calculation, which 
is beneficial for agents to regenerate their path in real-time. It 
is proved that the proposed algorithm can achieve the path 
planning for agents in completely unknown environment. 
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