
Send Orders for Reprints to reprints@benthamscience.ae

252 The Open Electrical & Electronic Engineering Journal, 2014, 8, 252-257

 1874-1290/14 2014 Bentham Open

Open Access

RandomBug: Novel Path Planning Algorithm in Unknown Environment

Qi-lei Xu*

College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, 266042,
China

Abstract: This paper presents a novel real-time path planning algorithm for an autonomous mobile agent in completely
unknown environment. In this algorithm, all the planned paths are described and stored in the form of vectors in the algo-
rithm. Only the rotation angle and the movement distance in a single direction are considered when the autonomous
moves along the planned paths. The algorithm combines range sensor data with a safety radius, which determines the
blocking obstacles and calculates a shorter path by choosing the random intermediate points. These random intermediate
points are be generated when blocking obstacles exist in the current path. Then the optimal intermediate points are se-
lected and inserted into the current path to regenerate a new planned path. Simulation results are shown that the proposed
algorithm is effective.

Keywords: Autonomous mobile agents, bug algorithm, complete unknown environment, path planning.

1. INTRODUCTION

Path planning for autonomous mobile agents in unknown
environment needs to satisfy some requirements, such as
accessibility, obstacle avoidance, optimal performance etc
[1].

In terms of the path planning in completely unknown en-
vironment, common methods includes: Artificial potential
field method [2-4], fuzzy logic algorithm [5, 6], and the Bug
approach. Lumelsk, Mukhopadhyay, et al. proposed the Bug
[7, 8] and the VisBug [9] algorithm. In their researches, the
robot moved towards the goal position with a contact sensor
or a range sensor detecting the boundary of obstacles. When
the robot encountered the obstacles, it circumnavigated the
obstacles until the motion towards the goal position was ac-
cessible again. This algorithm was simple, yet when the ro-
bot circumnavigated the obstacles it was unable to select an
optimal circulatory direction. Like the VisBug algorithm,
DistBug [10] and TangentBug [11] algorithm iterated two
behaviors, motion-to-goal and boundary-following. They
calculated a shorter path to the goal position by selecting an
optimal circulatory direction and leaving obstacles’ bound-
ary as soon as possible. The path length generated by the
TangentBug algorithm was shorter than the one obtained by
DistBug algorithm, but the computational burden of the
TangentBug algorithm was heavy caused by the real-time
local tangent graph (LTG) calculation of the obstacles in its
sensor range. In all of the Bug approaches, the robots moved
along obstacles’ boundary without the consideration of the
safe radius of the moving robots, hence their security needs
to be enhanced. Rapidly-exploring random tree (RRT) algo-
rithm is suited for searching high-dimensional configuration
space. Many variants of RRT were presented to solve the

*Address correspondence to this author at the College of Automation and
Electronic Engineering, Qingdao University of Science and Technology,
No.53, Zhengzhou Road, Qingdao, 266042, China; Tel: 13153268302;
E-mail: candy_hxu@sina.com

path planning in dynamic environment with unknown mov-
ing obstacles. In order to decrease the calculation burden,
DRRTs [12] and MP-RRT [13] tried to effectively use the
information from the previous planning result. Multi-stage
probabilistic strategy was presented in [14] to further reduce
the complexity of path planning in complex and dynamic
environment; however its accessibility was lower than
DRRTs and MP-RRT’s.

In this paper, we present a novel path planning and ob-
stacle avoidance strategy called RandomBug for an omni-
directional autonomous mobile agent in completely unknown
environment. The agent computes its own path and regener-
ates the path by using its own sensor data to achieve the goal
position without collision. In this algorithm, all the planned
paths are described and stored in the form of vectors. All the
vectors compose the vector path set. In an initial path vector
set, there is only one vector that is generated by connecting
the start position and the goal position. When the agent
moves along the path vector and an obstacle blocks the
planned path, several intermediate points are randomly gen-
erated. The algorithm will select the optimal point and re-
generate the path vector set by inserting this point. Finally, a
collision-free and feasible path is generated by constantly
iterating the actions: moving along the path, detecting the
obstacles, calculating the intermediate points and regenerat-
ing the path. The paper is organized as follows. The problem
that we would like to solve is described in Section 2. In Sec-
tion 3, our solution approach and the outline of the overall
structure of the algorithm are described. In Section 4, we
analyze the experimental results which show the satisfactory
performance of our approach in completely unknown envi-
ronment. Finally, the conclusion is presented in Section 5.

2. PROBLEM DESCRIPTION

We consider the planning path for an omnidirectional
autonomous mobile agent in completely unknown environ-

RandomBug: Novel Path Planning Algorithm in Unknown Environment The Open Electrical & Electronic Engineering Journal, 2014, Volume 8 253

ment. The agent is assumed as an operating point in a plane
with a range sensor detecting obstacles. Assume that the
range sensor could provide perfect readings of the distance
between the mobile agent and the obstacles within the
maximum detecting radius. The similar problem was solved
in the configuration spaces [14]. The start and the goal are
labeled

start
q and goalq .

The planned path is described by a vector set called path
vector set. In this set, the former vector’s terminal point is
the latter’s starting point, and every vector represents a path
section which the agent should move along with. When the
agent moves to the next section, it only need to steer to the
next vector’s direction, and then moves forward until it ar-
rives at the next section or the goal position.

Pi denotes any ith planned path vector set and in this set,
the former vector's terminal point is its starting point.

i i1 i2 in
P = á ,á , ,áL (1)

where, aik(k = 1,2,L,n) is the kth vector in the path vector set

Pi, and the terminal point of vector ()i k -1
á is the start point of

vector ik
á . (),

ik
!

ik ik
á = á , where ik

! is the angle between

the vector ik
á and ()i k -1

á , and ik
! " !# $ $. The clockwise

direction is positive, and the counterclockwise direction is

negative. ik
á is the vector module, which is the distance

the agent should move after it turns ik
! angle.

In this algorithm, the planned for the agent is obtained by
three steps. Firstly, according to the start and goal position,
the initial path vector set is built. Secondly, it is determine
whether there is an obstacle blocking the current path vector.
When there is an obstacle blocking, the intermediate points
are randomly generated. And then the path vector set is re-
generated by inserting the selected intermediate point into
the current path vector set.

3. PLANNING ALGORITHM

3.1. Obstacle Detection

In order to get a collision-free planned path during the
process, the agent detects the obstacle in its sensor range
with constant intervals. When the agent moves to a turning
point of the path, it detects the obstacle immediately. Unlike
in the past, the safety radius of the agent was considered to
improve the safety of the algorithm.

In Fig. (1), the solid black line, from start
q to goalq , repre-

sents the current path vector, q is the current position of the
agent. The larger circle with hashed lines represents the sen-
sor range and its radius is denoted by mnge

R . The smaller one
represents the safety radius and is denoted by safeR . ! is the
angle between two vectors: vector (1) starting at agent’s cur-
rent position 1

q and terminating at the obstacle point o
p

and vector (2), the current path vector. The module of vector
(1), denoted by d , represents the distance between the agent
and detected obstacle. When the obstacle holds two condi-

tions: sin safed R!" < and d is not bigger than the difference
between current path remnant distance and safeR , we believe
that an obstacle is in the current path. The first condition en-
sures that the agent keeps a safe distance from the obstacle.

Fig. (1). Obstacle detection of a mobile agent.

3.2. Generation of Intermediate Points

Once there is an obstacle blocking the current path, sev-
eral intermediate points are generated randomly.

Fig. (2). shows the generation of the random intermediate
points. When the agent moves to the position q , it can detect
the obstacle point

o
p which blocks the current path. Then

the random intermediate points
1
p to

10
p are generated with

the angle ranging from ! to 2! and the module ranging
from safeR to range

R . Although
4
p is in the range,

4
p should

be removed from those points because it is on the obstacle.
When there are more than half of the points on the obstacle,
the points are regenerated randomly.

Then through calculation, we insert the selected points
into the path vector set.

i
p is any ith random intermediate

point,
i1
â and

i2
â are two vectors built by q ,

i
p and goalq ,

i
S is the sum of the two vectors’ modules. Take the interme-
diate point

2
p for instance, 2

S = +
21 22
â â . Then calcu-

late the minimum
i
S of these points. The point with the

minimum sum is selected as an intermediate point. In
Fig. (2),

1
p is the selected as the intermediate point.

3.3. Path Regeneration

Insert the selected point into the path vector set and re-
generate a new path vector set.

As shown in Fig. (3a), in the initial path vector set
0
P ,

there is only one vector formed by the line connecting the
start position

start
q with the goal position goalq . The angle of

the vector is zero. When the agent does not face the goal

254 The Open Electrical & Electronic Engineering Journal, 2014, Volume 8 Qi-lei Xu

position, the agent is steered to the goal position in its origi-
nal place.

0 01
P = á (2)

(0,)=
01 01
á á (3)

Assuming an obstacle blocked the path, we insert inter-
mediate point

1
q into initial path vector set

0
P to get the

regenerated path vector set
1
P ,

1 11 12 13
P = á ,á ,á (4)

11(,)!=
11 11
á á (5)

12(,)!=
12 12
á á (6)

13(,)!=
13 13
á á (7)

where, 11
á , 01

á , 12
á and

12
! are known. 13

á and
13
!

can be calculated based on the Cosine theorem,

() ()
2 2

12
2 cos!= " + " " # #

13 01 11 12 01 11 12
á á á á á á á (8)

()()()1

12 12
cos cos /! !"= " # "

01 11 12 13
á á á á (9)

As shown in Fig. (3b), the agent keeps moving in accor-
dance with

1
P . When the agent moves to the turning

point
1
p , it detects the obstacles immediately, and finds ob-

stacle in the path. We insert intermediate point
2
p into

1
P to

get the regenerated path vector set
2
P ,

=
2 21 22 23 24
P á ,á ,á ,á (10)

()2 2 2
, , 1, 2,3, 4

k k k
k!= =á á (11)

where,
22 12
! != , 32

á ,
23
! and 13

á are known. 24
á and

24
! can be calculated based on the Cosines theorem,

2 2

23
2 cos!= + " # #

24 13 23 13 23
á á á á á (12)

()()1

24 23
cos cos /! !"= # "

13 23 24
á á á (13)

Similarly, we insert intermediate point i 1
p

+ into
i
P to

get regenerated path vector set +i 1
P , and Fig. (3c) shows the

path vectors in path vector set +i 1
P .

Fig. (2). Generation of intermediate points.

(a) Path vector set P1

(b) Path vector set P2

(c) Path vector set Pi+1.

Fig. (3). Path regeneration.

RandomBug: Novel Path Planning Algorithm in Unknown Environment The Open Electrical & Electronic Engineering Journal, 2014, Volume 8 255

() () (), , ,=
i+1 i+1 1 i+1 2 i+1 m
P á á áL

 (14)

() () ()()1
,

i l
!

+
=

i+1 1 i+1 1
á á

, 1,2, ,l m= K (15)

where, (1)i n in
! !

+
= , +(i 1)n

á , -
+in (i 1)n

á á , + +(i 1)(n 1)
á and

(1)(1)i n
!

+ + are known. + +(i 1)(n 2)
á and (1)(2)i n

!
+ + can be calcu-

lated based on the Cosines theorem,

()() ()() ()()

()() ()() ()()

2 2

1

2
1 1

-

2 - cos

[

]
i n

!
+ +

= +

" # #

ini+1 i+2 i+1 n i+1 n+2

in i+1 n i+1 n+2

á á á á

á á á

 (16)

()()

()() ()() ()()

()()

1 2

1 1
1

cos

cos

i n

i n

!

!

+ +

+ +
"

=

$" % "
& '
& '
& '
()

in i+1 n i+1 n+2

i+1 n+2

á á á

á

 (17)

4. SIMULATION RESULTS

In order to prove the feasibility and the optimality of the
proposed algorithm, we simulate the algorithm which is pro-
grammed in C#. The simulations include the cases with dif-
ferent planning parameters for the same map. The simulation
results are shown in Fig. (4). The map size is 1024×768 pixel
with each pixel representing one unit length. The map is
used as an unknown actual environment. The initial distance
between the start position and goal position is 1250.61. In
Fig. (4), ● represents the start position, █ represents the goal
position, and ○ represents the inserted intermediate point.
The entities are obstacles, and the solid line is the moving
path of the agent.

(Table 1) shows the data of simulation results. It is as-
sumed that the moving and obstacle sensing time is zero.
Therefore the planning time is the total time cost during the
path planning. It is indicated that the agent can move closer
to obstacle’s contour by reducing safety radius or increasing
the number of random intermediate points, when the sensor
range and the number of random points are constant. In a
special case, with a narrow channel, the safety radius cannot
be too large, otherwise the agent will not able to move
through the narrow channel and the path length will increase.
The path becomes smoother by increasing the number of
random intermediate points, whereas the time cost and path
length increases considerably. In order to avoid the local
optimal, the number of random points cannot be too large.
Because the modular range of random points is from safety
radius to sensor range, the number of inserting points can be
reduced to some extent by decreasing the sensor range.
Simulation was performed in plenty of maps, and all of the
agents can achieve the goal position without collision It is
proved that the accessibility, obstacle avoidance, and real-
time performance of RandomBug algorithm meet the re-
quirements.

Taking 200
range
R = and 10safeR = , ten random points,

we simulated the proposed algorithm in several maps and
compared with the TangentBug using sensor range as 200.

The planning results are shown in Figs. (5) and (6) with the
result data listed in (Table 2).

(a)

(b)

(c)

(d)

Fig. (4). Simulation results of different parameters in the same map.

256 The Open Electrical & Electronic Engineering Journal, 2014, Volume 8 Qi-lei Xu

Table 1. Result contrast of different parameters in the same map.

Map Rrange /Pixel Rsafe /Pixel Random Point Inserting Point Path Length /Pixel Time /ms

(a) 200 20 10 16 1716.10 19.35

(b) 300 10 10 24 1484.04 29.35

(c) 200 10 20 15 1450.83 17.83

(d) 200 10 10 11 1436.45 16.51

Table 2. Planning results with different algorithms.

Algorithm Map Path Length /Pixel Time /ms

RandomBug 1 1497.09 11.34

TangentBug 1 1422.32 18.92

RandomBug 2 1456.74 18.46

TangentBug 2 1307.21 64.47

(a)RandomBug

(b)TangentBug

Fig. (5). Contrast simulation results of map 1.

From Figs. (5, 6) and (Table 2), it is found that the path
planned by TangentBug is close to the obstacle contour,
whereas the agent and obstacles can keep a certain safe dis-
tance away from each other in the proposed algorithm. Con-
sequently, the path planned by the proposed algorithm is
longer than TangentBug.

(a) RandomBug

(b) TangentBug

Fig. (6). Contrast simulation results of map 2.

In addition, TangentBug requires continuously comput-
ing the LTG of obstacles in its 360°sensor range, which
makes its computation more complex than our algorithm.
The proposed algorithm surpasses TangentBug in the plan-
ning, time and cost and but as the obstacles and environment be-
comes more complex its superiority becomes more apparent.

CONCLUSION

A novel path planning algorithm is presented in this pa-
per. In this algorithm, the planned paths are described and

RandomBug: Novel Path Planning Algorithm in Unknown Environment The Open Electrical & Electronic Engineering Journal, 2014, Volume 8 257

stored in the form of vectors. The path planning result is easy
to execute, and the requirement of storage space is greatly
decreased especially in large area and complex environment.
We fully considered the safety distance between the agent
and obstacles in order to improve the practicality and safety
of the algorithm. The presented strategy for selecting random
intermediate points only requires simple calculation, which
is beneficial for agents to regenerate their path in real-time. It
is proved that the proposed algorithm can achieve the path
planning for agents in completely unknown environment.

CONFLICT OF INTEREST

The author confirms that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work is supported by Scientific Research Founda-
tion of Qingdao University of Science and Technology.

REFERENCES
[1] D. Dolgoy, S. Thrum, M. Montemerlo, and J. Diebel, “Path plan-

ning for autonomous vehicles in unknown semi-structured envi-
ronments”, Int. J. Rob. Res., vol. 29, pp. 485-501, 2010.

[2] A. Masoud, “Decentralized self-organizing potential field-based
control for individually motivated mobile agents in a cluttered en-
vironment: A vector-harmonic potential field approach”, IEEE
Transact. Syst. Man and Cybern., vol. 37, pp. 372-390, 2007.

[3] P. Vadakkepat, K. Tan, and M. Wang, “Evolutionary artificial
potential fields and their application in real time robot path plan-

ning”, In: Proc. 2000 Congress Evolu. Comput.: Academic, vol. 1,
pp. 256-263, 1963.

[4] P. Kim, and D. Kurabayashi, “Forming an artificial pheromone
potential field using mobile robot and RFID tags”, In: IEEE/SICE
Int. Symp. Syst. Integrat., pp. 621-625, 2011.

[5] G. Antonelli, and S. Chiaverini, “A Fuzzy-logic-based approach for
mobile robot path tracking”, IEEE Transact. Fuzzy Syst., vol. 15,
no. 2, pp. 211-221, 2007.

[6] K. Sefer, C. Omer, and K. Okyay, “Fuzzy logic based approach to
design of flight control and navigation tasks for autonomous un-
manned aerial vehicles”, J. Intell. Robotic Syst., vol. 54, pp.229-
244, 2009.

[7] I. Jacobs, and C. Bean, “Fine Particles, Thin Films and Exchange
Anisotropy”, In: Magnetism, vol. III, G. T. Rado and H. Suhl, Eds.
New York: Academic, 1963, pp. 271-350.

[8] V. Lumelsky, S. Mukhopadhyay, and K. Sun, “Dynamic path plan-
ning in sensor-based terrain acquisition”, IEEE Transact. Rob.
Automat., vol. 6, pp. 462-472, 1990.

[9] V. Lumelsky, and T Skewis, “Incorporating range sensing in the
robot navigation function”, IEEE Transact. Syst. Man Cybernet.,
vol. 20, pp. 1058-1068, 1990.

[10] I. Kamon, and E. Rivlin, “Sensory-based motion planning with
global proofs”, IEEE Transact. Rob. Automat., vol. 13, pp. 814-
822, 1997.

[11] I. Kamon, and E. Rivlin, “TangentBug: A range-sensor-based navi-
gation algorithm”, Int. J. Rob. Res., vol. 17, pp. 934-953, 1998.

[12] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs”, In:
IEEE Int. Conf. Rob. Automat., pp. 1243-1248, 2006.

[13] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for
rapid replanning in dynamic environments”, In: Int. Conf. Rob.
Automat., pp. 1603-1609.

[14] H.Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.
Kavraki, and S. Thrun, Principles of Robot Motion-theory: Algo-
rithms, and Implementation. MIT Press, Cambridge, 2005.

Received: June 09, 2014 Revised: September 22, 2014 Accepted: November 24, 2014

© Qi-lei Xu; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-
licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

