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Abstract: Packed bed is generally recommended for attaching with solar air heater in order to store thermal energy of hot 

air. For designing such a system under the given system and operating parameters, it is required to predict performance of 

the system by using mathematical models. In the present paper an attempt has been made to discuss mathematical models 

reported in the literature for predicting thermal performance of packed bed energy storage system for solar air heaters. The 

designer may be benefited from the consolidated information reported in the present paper. 
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1. INTRODUCTION 

 The continuous use of fossil fuels resulted energy crisis 
and environmental threat. It is felt that renewable energy 
sources are quite capable of meeting energy demand of 
today’s world. The use of renewable energy sources for 
meeting energy needs can conserve the conventional energy 
sources for more number of decades. Among renewable 
energy sources solar energy is considered to be one of the 
most dominating energy source. It has many advantages like 
large potential, free of cost, available everywhere, 
environment friendly etc. However time dependent nature is 
the major disadvantage of solar energy. In order to overcome 
this disadvantage it is required to attach an energy storage 
system with the solar energy utilization system. With such a 
provision the stored energy can be utilized in the absence of 
solar radiation or under peak load conditions. 

 In case of solar air heaters it is required to store thermal 
energy of flowing hot air. Packed bed is generally 
recommended for such an application. Packed bed consists 
of a container in which solid material elements having good 
heat capacity remain packed. The hot air flows from top to 
bottom of the bed to transfer heat energy. The rise in 
temperature of solid material takes place and energy can be 
retained by having properly insulated packed bed. The stored 
energy can be retrieved by making flow of cold air from 
bottom to top of the bed. The schematic of packed bed 
energy storage system for solar air heaters is shown in Fig. 
(1). The working of such a system is described in detail by 
Duffie and Beckman [1]. 

 In order to design packed bed energy storage system for 
the given system and operating parameters, it is required to  
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predict performance of such type of a system. In the present 
paper an attempt has been made to discuss mathematical 
models reported in the literature for predicting thermal 
performance of packed bed energy storage system for solar 
air heaters. The designer can be benefited from the 
consolidated information reported in the present paper. 

2. THERMAL PERFORMANCE OF PACKED BED 

 Thermal performance of a packed bed is concerned with 
heat transfer from flowing air to solid material packed in a 
container and vice versa. Hot air flows from top to bottom of 
the bed and heat transfer takes place from air to storage 
material during charging phase. The rate of heat transfer to 
or from the storage material elements in a packed bed is a 
function of physical properties of air and solid, local 
temperature of air and surface of material elements, mass 
flow rate of air and characteristics of the packed bed. The 
bed may be arranged in an orderly or randomly fashion. 
Random packing is the most common arrangement and 
results when particles of the same approximate size and 
shape are packed in a container. The characteristics of the 
packed bed are dependent upon the shape and orientation of 
the storage material elements and void fraction of the bed. 
Heat transfers between air and solid through a complex 
mechanism. Major resistance to heat transfer takes place at 
the interface of air and solid and is inversely proportional to 
the convective heat transfer coefficient. Rise in temperature 
of material elements is dependent upon transient heat 
conduction from surface to interior of the solid. It also 
depends, to a lesser degree, on inter-particle conduction of 
heat when the adjacent material element comes in direct 
physical contact. Transfer of heat through the container walls 
also influences performance of the packed bed. Another 
factor influencing the rate of heat transfer is mixing action 
within the air that results from the eddies created as the fluid 
flows through the complex set of flow passages. 
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3. MODELS FOR PREDICTING THERMAL 
PERFORMANCE OF PACKED BED 

 In order to predict thermal performance of a packed bed 

system, several models have been reported in literature based 

on the theoretical and experimental investigations. A typical 

packed bed unit of length or height ‘L’, diameter ‘Db’ and 

cross sectional area ‘A’ packed with material elements 

and having void fraction ‘ ’ as shown in Fig. (2) is 

considered to report and discuss these mathematical 

models in the following sections. It is assumed that initial 

uniform temperature of the bed is ‘Tbi’. The air enters at 

mass flow rate ‘ m ’ and temperature ‘Tai’. The 

temperature of air at exit of the bed is ‘Tao’. The bed is 

assumed to consist of ‘N’ number of elements of 

thickness x  each. One of the bed element ‘m’ at initial 

uniform temperature Tb,m is shown in Fig. (3). Air enters 

into this bed element at temperature Ta, m and exits at  

Ta, m+1 as has been described by Howell et al. [2]. 

3.1. Two Phase Model (Schumann Model) 

 A packed bed in solar heating system does not normally 
operate with constant inlet temperature. During the day, 
variable solar radiation, ambient temperature, collector inlet 
temperature, load requirements and other time dependent 
conditions result in variable collector outlet temperature. 
This leads to transient inlet condition of the packed bed 
during charging. For determination of transient response of 
packed bed heat storage units, two phase and single-phase 
models have been proposed. Two-phase models allow fluid 
and solid temperatures to be different, with an inter phase 
heat transfer described by a mean heat transfer coefficient. It 
is reported in literature that the first analytical study on 
modeling of a packed bed was conducted by Schumann and 
most of the work reported till date has been focused on 
Schumann model. This model predicts mean fluid and solid 
temperatures at a given cross-section as a function of axial  
 

 

Fig. (2). Packed bed (voids are not shown). 

position and time. Duffie and Beckman [1] presented 
Schumann’s two-phase model of packed bed system as has 
been discussed below. 

 

 

 

Fig. (1). Schematic of packed bed energy storage system for solar air heaters. 
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Fig. (3). Element ‘m’ of packed bed. 

 Assumptions made in Schumann’s two-phase model are; 

(i). Bed material has an infinite thermal conductivity in 
the radial direction and the flow is plug flow i.e. no 
temperature gradients in the radial direction. 

(ii). Bed material has zero thermal conductivity in axial 
direction. 

(iii). Thermal and physical properties of both solid and 
fluid are uniform and constant. 

(iv). Heat transfer coefficient does not vary with time and 
place inside the bed. 

(v). No fluid phase axial conduction or dispersion takes 
place. 

(vi). No mass transfer occurs. 

(vii). No heat loss to environment. 

(viii). No thermal capacitance of the fluid. 

 Energy balance for air is given as; 

 Rate of energy supply by air at entry to the bed = (Rate of 
energy transfer to bed material) + (Rate of energy 
accumulation by air in the bed) + (Rate of energy leaving the 
bed with flowing air) + (Rate of energy loss to environment) 

 It can be represented mathematically as; 
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 Energy accumulated with air in the bed and energy loss 

to the environment can be neglected as per the assumptions. 

By multiplying with ‘ L ’ on both sides, the above equation 

can be written as; 
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 Energy balance for material elements can be written as; 

 Rate of energy transfer by air to the material elements = 
Rate of energy storage in the material elements 
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 Eqs. (4) and (8) are partial differential equations which 
describe thermal performance of a packed bed. Air 
temperature leaving the bed element ‘m’ may be obtained by 
integrating Eq. (4) as given below; 
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 Eq. (12) can be written as; 
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 Substituting value of ( ), , 1a m a m
T T +  from Eq. (14) in 

above equation; 
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 Air temperature at exit of bed elements can be obtained 
by solving above equation. 

 Similarly Eq. (8) can be transformed to obtain mean 
temperature of bed element ‘m’ as given below; 
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 Eq. (18) can be solved by finite difference method. 
Initially all bed elements are at ‘Tbi’ (initial bed 
temperature). The process will start at bed element ‘1’ to 
which an inlet air temperature is known. An outlet air 
temperature from Eq. (16) and a new mean temperature of 
bed element can be calculated from Eq. (18). This outlet air 
temperature will become an inlet temperature for bed 
element ‘2’. This process will continue till last element of 
the bed. 

3.2. Intraparticle Conduction and Dispersion Model 

 As described above, Schumann model is based on 
number of assumptions. Hughes et al. [3] discussed these 
assumptions in detail. Sodha et al. [4] mentioned that 
assumption of infinite thermal conductivity is not realistic, 
since most materials used for thermal storage are poor 
conductors of heat. The assumptions of Schumann model 
like temperature gradients within the particles of the packed 
bed are not significant and there is no axial conduction and 
dispersion in the packed bed are relaxed by presenting an 
approach suggested by Jaffreson [5] for corrected value of 
NTU i.e. NTUc. 
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where ‘ Bi ’ and ‘ Pe ’ are Biot and Paclet number 

respectively. Biot number accounts for temperature gradients 

in material elements and Paclet number accounts for axial 

conduction and dispersion in the bed. NTU can be estimated 

using the correlation for volumetric heat transfer coefficient 

reported by Löf & Hawley [6]. If Biot number is less than 

0.1, temperature gradients within the material elements can be 

neglected. By comparing predictions of packed bed behavior 

with experimental results, Jeffreson [5] reported that the 

modified NTU adequately accounts for these additional 

effects. NTUc can be used instead of NTU  in any of the 

equations presented in previous sections to include effects of 

temperature gradients in the material elements and axial 

conduction and dispersion in the bed. Many investigations 

have been reported in literature concerning conduction and 

dispersion in packed beds [7]-[19]. 

 Therefore, Eqs. (4) and (8) respectively can be 
transformed as given below; 
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 Eq. (20) has been obtained by including energy loss term 
in Eq. (4) in addition to replacement of NTU by NTUc. Eqs. 
(20) and (21) can be solved by finite difference method. This 
model can be used to estimate the long-term thermal 
performance of packed bed solar energy storage system. 

3.3. Single Phase Model 

 The repetitive solution of Schumann model, even in the 
form of Eq. (18) is considered to be time consuming for year 
long solar process calculations. This observation led Hughes 
et al. [3] to investigate an infinite NTUc model. 

 For infinite NTUc, Eqs. (4) and (8) can be combined into 
a single partial differential equation since solid and fluid 
temperatures in the bed are equal. Instead of two coupled 
partial differential equations as required by the Schumann 
model, the packed bed model for infinite NTUc has a single 
partial differential equation. As NTUc becomes infinitely 
large, solid and air temperature at any point in the bed 
become identical. It is reported that long-term performance 
of a solar air heating system with NTUc equal to 25 is 
virtually the same as that with NTUc equal to infinity. By 
including energy loss term, governing equation for this 
model can be written as; 
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where ‘T’ is an identical temperature for both air and solid 
temperature in the bed. 

 The above equation can be solved approximately by using 
finite difference method. The accuracy of this finite difference 
method depends upon the choice of ‘N’ i.e. the number of 
isothermal segments in the bed. As ‘N’ increases, accuracy of 
the solution method improves, but at the expense of additional 
calculation effort. Hughes et al. [3] reported that in order to 
determine a practical value of ‘N’ the results of simulations of 
many system designs for various values of ‘N’ have been 
compared with the results obtained using the Sachumann model 
with NTUc of 25. It has been found that the infinite NTUc model 
having ‘N’ value of 5 presents a reasonable compromise 
between accuracy and calculation effort. 

3.4. Equivalence of Two Phase and Single Phase Models 

 Two phase and single-phase models are equivalent to 
each other for transient response of packed bed having  
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NTUc  10. Single-phase model is simpler than two phase 
Sachumann model. Vortmeyer and Schaefer [20] demonstrated 
the equivalence of single phase and two-phase models. Riaz 
[21] mentioned that the close agreement between the 
transient responses of single and two phase models of a 
packed bed suggests that they are equivalent and therefore, 
can be effectively combined. 

3.5. Cautier and Farber Model 

 As discussed above that Sachumann model works under 
number of assumptions. Therefore, Cautier and Farber [22] 
stated that Schumann model can not be applied, when 
dealing with solar applications, because actual conditions are 
too restrictive for Schumann’s mathematical treatment. 
Authors presented a two-phase model, which includes effect 
of thermal losses, air capacitance and conduction between 
material elements. Two-phase model is presented as; 
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 Dimensionless coefficients K1,K2 ,K3  respectively 

correspond to the terms accounting for heat loss to 

surroundings, conduction effect and air capacitance. These 

can be neglected due to their small values for normal 

conditions encountered in solar applications. This is why 

many authors neglected them and worked on the simple set 

of equations. 

3.6. Sagara and Nakahara Model 

 Power spent to propel air through the bed reduces overall 
benefit of solar energy utilization system. Energy 
consumption by fan depends upon pressure drop in the bed. 
Packing of small size elements of storage material causes 
large pressure drop in the bed. Sagara and Nakahara [23] 
reported that packing of large size elements of storage 
material could reduce pressure drop in the bed. Since 
temperature gradients exist in large size material elements, 
uniform temperature distribution in large size elements of 
storage material can not be assumed. Sagara and Nakahara 
modified Schumann model to take into account the effect of 
temperature gradients on thermal performance of the bed. It 
is assumed that temperature within the material elements is 
distributed quadratically and symmetrically about their 
center. Following are two phase model equations for air and 
solid presented by Sagara and Nakahara [23]; 
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 L  expressed in Eq. (30) is identical to modified NTU or 

NTUc. 

  

L = NTU
c
=

3 L

B + 3

         (35) 

where 

  

L = NTU =
h

v
V

mC
p( )

a

        (36) 

and 

  

B =
h

v
R

2

3 k
s

1( )
         (37) 

 Eqs. (27) and (30) are same as Schumann model, except 

that  L  (NTU) is replaced with  L  (NTUc), which is 

introduced to account for finite thermal conductivity of the 

solid. If thermal conductivity of solid material is infinite 

 
k

s
( ) , Eqs. (27) and (30) become completely identical 

to Schumann model. Sagara and Nakahara presented heat 

transfer coefficient correlations for different shapes of 

material elements at different void fractions in order to solve 

Eqs. (27) and (30). Based on an extensive experimental 

investigation, Singh et al. [24]
 

presented the following 

correlation for Nusselt number to calculate heat transfer 

coefficient for a bed at different void fractions and packed 

with large size material elements of different shapes. 
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Nu = 0.437 Re( )0.75 ( )3.35 ( ) 1.62

exp 29.03 log( )2{ }    (38) 

3.7. Mumma and Marvin Model 

 Mumma and Marvin proposed a straightforward 
simulation method for the thermal behavior of a packed bed 
storage systems as has been reported by Howell et al. [2]. 
The simulation is based on one-dimensional transient 
analysis of energy exchange between air stream and material 
elements, using a finite difference method. Energy balance 
of air over length x (= L/N) of bed element ‘m’ (shown in 
Fig. 3) is given by; 

   

mC
p( )

a
dT

a
= mC

p( )
a

T
a ,m

T
a ,m+1( )

= h
v

A x T
a ,m

T
b ,m( )

       (39) 

 The above equation can be integrated to find temperature 
of air ‘Ta, m+1’ at exit of each element. 
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 An energy balance on the storage material in element ‘m’ 
for time increment ‘dt’ can be written as; 

 Rate of change in internal energy of storage material = 
(Rate of energy gain from air) – (Rate of energy loss to 
surroundings) 

 It can be represented mathematically as; 
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 Eq. (41) can be written in finite difference form as; 
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 Eqs. (42) and (44) can be used to calculate the system 

behavior once 
21

, , and 
3

 are specified along with initial 

conditions of bed temperature. It is mentioned by the authors 

that the above numerical analysis provides stable predictions 

of bed temperatures that compare well with analytical 

solutions if time increment and bed element size are related 

as: 

t  { 2 [1 – exp (- 1)]}
- 1

          (46) 

 

4. CONCLUSION 

 In order to design packed bed energy storage system for 
the given system and operating parameters, it is required to 
predict performance of such type of a system. In the present 
paper an attempt has been made to review the mathematical 
models reported in the literature for predicting thermal 
performance of packed bed energy storage system for solar 
air heaters. The designer can be benefited from the 
consolidated information reported in the present paper. 

NOMENCLATURE 

 A  = Cross sectional area of packed bed, m
2
 

 A  = External surface area of bed element ‘m’, m
2
 

 Bi  = Biot number, dimensionless 

 
C

p  = Specific heat, J kg
-1 

K
-1

 

 
D

e  = Equivalent diameter of material particle, m 

 G  = Mass velocity of air, kg s
-1

m
-2

 

 
h

v  = Volumetric heat transfer coefficient, Wm
-3 

K
-1

 

 
k

s  = Thermal conductivity of solid material, Wm
-1

K
-1 

  
L , l

x  = Length or height of the bed, m 

 
l

p  = Perimeter, m 

  m  = Mass flow rate, kg s
-1

 

 N  = Number of bed elements, dimensionless 

 Nu  = Nusselt number, dimensionless 

 NTU  = Number of Transfer Units, dimensionless 

 
NTU

c  = Corrected or modified Number of Transfer  

   Units, dimensionless 

 Pe  = Paclet number, dimensionless 

 R  = Distance from surface to center of material  

   element, m 

 Re  = Reynolds number, dimensionless 

 
T

a  = Average temperature of air in the bed, 
o
C (K) 

 
T

ai  = Temperature of air at inlet to the bed, 
o
C (K) 

  
T

a ,m  = Temperature of air at inlet to the bed element  

   ‘m’, 
o
C (K) 

  
T

a ,m+1  = Temperature of air at outlet of bed element  

   ‘m’, 
o
C (K) 

 
T

amb  = Ambient temperature, 
o
C (K) 

 
T

b  = Mean temperature of bed, 
o
C (K) 
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T

bi  = Initial temperature of bed, 
o
C (K) 

  
T

b ,m  = Mean temperature of bed element ‘m’, 
o
C  

   (K) 

 t  = Time, s 

 t  = Time interval/increment, s (min) 

 U  = Overall heat loss coefficient, Wm
-2 o

C
-1

  

   (Wm
-2 

K
-1

) 

 V  = Volume of packed bed, m
3
 

 x  = Distance along the bed, m 

 x  = Height or thickness of bed element ‘m’, m 

 = Density, kg m
-3

 

 = Void fraction, dimensionless 

 = Sphericity, dimensionless 

Suffix 

a = Air 

s = Solid 
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