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Abstract: Purpose: Research on obesity and the built environment has often featured logistic regression and the 

corresponding parameter, the odds ratio. Use of odds ratios for common outcomes such obesity may unnecessarily hinder 

the validity, interpretation, and communication of research findings. Methods: We identified three key issues raised by the 

use of odds ratios, illustrating them with data on walkability and body mass index from a study of 13,102 New York City 

residents. Results: First, dichotomization of continuous measures such as body mass index discards theoretically relevant 

information, reduces statistical power, and amplifies measurement error. Second, odds ratios are systematically higher 

(further from the null) than prevalence ratios; this inflation is trivial for rare outcomes, but substantial for common 

outcomes like obesity. Third, odds ratios can lead to incorrect conclusions during tests of interactions. The odds ratio in a 

particular subgroup might higher simply because the outcome is more common (and the odds ratio inflated) compared 

with other subgroups. Conclusion: Our recommendations are to take full advantage of continuous outcome data when 

feasible and to use prevalence ratios in place of odds ratios for common dichotomous outcomes. When odds ratios must 

be used, authors should document outcome prevalence across exposure groups. 
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INTRODUCTION 

 Research on environmental determinants of physical 
activity and obesity [1-4] has generated interest among urban 
planners and public health practitioners, and contributes to 
ongoing policy discussions [5, 6]. Yet one of the barriers to 
consistency and interpretability of results is the use of 
suboptimal data analysis strategies including logistic 
regression. 

 The Active Living Research online literature database which 
brings together much of the published work on environmental 
determinants of physical activity and obesity [7] reveals that 
44% of papers with quantitative results reported odds ratios 
(Fig. 1). Although common, reliance on odds ratios may hinder 
the validity and accurate communication of research. We 
identified key concerns with logistic regression in physical 
activity and obesity research (Table 1), issues which also apply 
to other research fields [8, 9]. 

DICHOTOMIZATION OF CONTINUOUS MEASURES 
DISCARDS INFORMATION 

 The use of logistic regression frequently involves 
dichotomizing continuous measures such as physical activity 
or body mass index (BMI) (Fig. 1). Although dichotomi-
zation may be the best choice for some questions and 
audiences [10], we have identified three key problems with 
dichotomizing continuous outcomes. 
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Fig. (1). Odds ratios commonly reported in active living research. 

Notes: Box plots indicate the interquartile range (the rectangle is 

bounded by the 75
th

 and 25
th

 percentiles) and the interdecile range 

(lines extend to the 90
th

 and 10
th

 percentiles); variation in the 

distribution is shown for the entire Active Living Research 

Literature Database [7], the subset for which authors had reviewed 

and confirmed the database entry, and for four commonly reported 

outcomes: meeting physical activity recommendations, inactivity, 

overweight, and obesity. 

 First, theories about how environments influence 
physical activity and body weight generally suggest that the 
relationships are continuous. Conceptual models or 
frameworks guide the selection and organization of measures 
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[11-14] which range from personal to societal, from distal to 
proximate, or along some other categorization scheme. Since 
numerous influences are proposed, each presumably has only 
a small effect on behavior or health. An exposure that is 
causally related to BMI will only occasionally cause an 
individual to cross a threshold value such as a BMI of 30. 
These exposures may nonetheless be important for their 
potential to generate incremental behavioral and health 
improvements for an entire population. 

 In addition, dichotomization is problematic because 
information is discarded [15-17]. A questionnaire, motion 
sensor, or anthropometry protocol captures a wide range of 
variation. Dichotomization ignores much of this variation 
and leads to a decrease in statistical power. Power loss 
depends on other study characteristics as well [18, 19], but a 
large increase in the sample size may be required to 
compensate for the dichotomization of an outcome variable 
[20]. As an example, consider a study of residential density 
and body mass index [21, 22]. This study, which had a large 
sample size (N = 13,102) reported a decrease of 0.4 BMI 
units for each 10,000 people/km

2
 increase in residential 

density [23]. We re-analyzed subsets of the data using linear 
models of BMI and logistic regression for the dichotomous 
outcome of obesity (BMI 30); methods and adjustments 
were otherwise identical. We were able to detect statistical 
significance for all continuous models with at least 783 
randomly selected participants, but statistical significance 
was not consistently reached for our logistic regression 
models until the sample size was at least 1,248. Thus, we 
found that the sample size would have to be almost doubled  

before a continuous association of interest was detected in 
logistic regression. Dichotomization of continuous measures 
may thus contribute to Type II error [17, 24]. 

 A final concern about dichotomization is that it 
exaggerates misclassification. Physical activity and adiposity 
are difficult to measure, and common approaches have 
limited reliability and validity [25-27]. Even unbiased 
measurement error (mean error=0) in a continuous measure 
will affect the proportion exceeding a threshold [28]. One 
can visualize this by considering the distribution of BMI 
from the population of 13,102 adults discussed earlier [21, 
22]. These data, based on heights and weights measured by 
trained staff, indicate that 28.8% of the study participants 
were obese. If we add random, unbiased error of up to 10 
BMI units in either direction, we would find that 37.8% of 
participants met our criteria for obesity (Fig. 2). The 
existence of nonrandom error such as social desirability bias 
may further complicate the picture by having differential 
effects across the BMI distribution or across other groups of 
interest. 

 Our recommendation is to use statistical approaches that 
take full advantage of continuous outcome data; useful 
strategies may include linear models, generalized linear 
models, zero inflated Poisson models, or proportional 
hazards models. In addition, studies should be designed to 
minimize measurement error, and should interpret with 
caution the proportion above a threshold in the presence of 
measurement error in the underlying continuous variable. 

Table 1. Problems Arising from Over-Use of Odds Ratios, Along with Recommended Strategies and their anticcipated Benefits 

 

Category Potential Problems Recommended Strategies Anticipated Benefits 

Dichotomization of 
continuous measures 

Theory implies continuous, subtle 
influence of environment rather than 

referencing a threshold 

Information is discarded, reducing 
statistical power 

Unbiased measurement error will 

increase extreme values, altering the 
proportion exceeding a threshold 

Use continuous measures to take 
full advantage of collected data 

Consider generalized linear 

models and elasticities 

Minimize measurement error and 
be cautious when discussing 

results derived from an imprecise, 
dichotomized measure 

Flexibility to examine the form of the 
association is preserved 

Smaller sample sizes are needed to detect a 

statistically significant effect 

Odds ratio interpretation 

Odds ratios are difficult to interpret and 
communicate except when they 
approximate prevalence ratios 

Odds ratios diverge from prevalence 

ratios as the outcome prevalence in the 
reference group increases 

The magnitude of association may be 

misunderstood, leading to unrealistic 
estimates of intervention benefits and 

subsequent disappointment 

Use prevalence ratios in place of, 
or to complement, odds ratios 

Provide outcome prevalence 
information to give context when 

odds ratios must be presented 

Research results can be stated clearly and 
accurately in terms of how much more 
likely the outcome was in the exposed 

group 

Informed readers can use prevalence 
information to estimate prevalence ratios 

from published odds ratios 

Interactions on an odds 
ratio scale 

Interactions of scientific interest may be 
missed on an odds ratio scale 

Interactions on the odds ratio scale may 
result from a difference in outcome 

prevalence across subgroups, even if 
the prevalence ratios are the same 

within each subgroup 

Consider using continuous 
outcome data to maximize 
statistical power to detect an 

interaction 

Conduct the interaction analysis 
that corresponds to the scientific 

question 

Provide outcome prevalence data 
for each subgroup if odds ratios 

are being compared across 
subgroups 

Interaction analyses are more likely to yield 
scientifically interesting results 

Hypotheses regarding effect modification 
will receive support or be dismissed on the 

basis of valid tests 



At Odds The Open Epidemiology Journal, 2012, Volume 5    15 

ODDS RATIOS MAY MISLEAD WHEN THE 
OUTCOME IS COMMON 

 For rare outcomes affecting <10% of the population [8, 
29], the odds ratio approximates the prevalence ratio (also 
referred to as the probability ratio, risk ratio, or relative risk). 
However, for common outcomes odds ratios are 
systematically more extreme (further from the null) than the 
corresponding prevalence ratios [29-31]. For the common 
magnitudes of association, odds ratios are markedly different 
from the underlying prevalence ratios, being 50% to 400% 
further from the null value of 1 (Fig. 3). In our study of 
obesity in New York City [21], participants living in low-
density neighborhoods (defined as the lowest quartile of 
population density) had a 30% higher odds of obesity 
(OR=1.3). But the corresponding prevalence ratio of 1.2 
indicates that the probability of obesity was only 20% higher 
in the lowest density quartile compared with the other three 
quartiles. For stronger associations or more common 
outcomes, the difference would be larger. 

Fig. (3). Odds ratios diverge from prevalence ratios as outcome 

prevalence in the reference group increases. 

 Odds ratios and prevalence ratios contain essentially 
similar information, but are numerically different. If 
described and interpreted correctly, the difference between 
these approaches and the parameters of interest need not 
present a problem. A problem often arises, however, when 
investigators try to explain the magnitude of odds ratios [8, 
9, 32]. The magnitude of association may become particul-
arly important when research is used to assess attributable 
risk, drive cost benefit analyses, or shape policy goals. It is 
very tempting to interpret an odds ratio of 3 in an obesity 
study as meaning that obesity is three-times as likely in the 
exposed group. However, an odds ratio of 3 may correspond 
to a prevalence ratio of only 2 (Fig. 3). 

 As above, we caution against dichotomizing continuous 
measures, preferring methods that use all of the theoretically 
relevant data. However, we recognize that there are 
circumstances that may encourage or compel an investigator 
to use a dichotomous version of a continuous measure [10]. 
For example, clinical and policy audiences may prefer a 
message framed in terms of reducing obesity risk, rather than 
decreasing body mass index. Relative risk regression [29, 33, 
34] can be used in place of logistic regression (Box 1). A 
simple formula is available for estimating prevalence ratios 
from published odds ratios [30], but requires that the 
outcome prevalence in the reference group be known. This 
formula offers only an approximation for adjusted models, in 
comparison to regression methods that directly estimate 
prevalence ratios with adjustment on the same scale. 

THE ODD MEANING OF INTERACTIONS ON AN 
ODDS RATIO SCALE 

 The loss of statistical power due to dichotomization of a 
continuous outcome may undermine one’s ability to detect 
effect modification. More importantly, apparent interactions 
may appear in analyses using odds ratios that would not be 
evident in analyses based on prevalence ratios; conversely an 
interaction on the prevalence ratio scale may be obscured by 
using odds ratios [35-37]. 

 A higher odds ratio in a particular subgroup might be 
observed simply because the outcome is more common in 
that group. As an example, consider fast food restaurant 

Fig. (2). Measurement error in a continuous variable affects the proportion exceeding a threshold. Notes: Histograms are shown for body 

mass index in (A) the 13,102 New York City residents in the years 2000-2002 [21], with 28.8% obesity based on the proportion of 

observations greater than or equal to 30 and (B) a hypothetical set of observations created by adding random error of up to 10 BMI units in 

either direction, with 37.8% obesity. 
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proximity and obesity prevalence among each of 4 age 
groups. Suppose obesity prevalence varies from 10 to 40 
percent among age groups. If the prevalence ratio in each age 
group was 2.0, odds ratios would be 2.25 in the low-
prevalence group and 6.0 in the high-prevalence group (see 
right side of Fig. 3). This odds ratio “interaction” is difficult 
to explain, potentially misleading, and not well aligned with 
a scientific interest the pattern of association between fast 
food restaurants and the probability of obesity. This 
interaction fallacy [35] not only affects interaction analyses 
within a single study, but also has potential to bias meta-
analyses that integrate effect estimates from multiple studies, 
particularly if thresholds used are not consistent across 
studies [19, 24, 31, 37]. 

 The proposed alternative of using prevalence ratios rather 
than odds ratios (Table 1, Box 1) should be given strong 
consideration when assessing interactions. When odds ratios 
are used to define an interaction, outcome prevalence should 
be shown by subgroup. 

CONCLUSIONS 

 For research on physical activity, obesity, or other 
common outcomes, odds ratios should be viewed critically 

because of the information lost through dichotomization of 
continuous measures and the mismatch between the odds 
ratio scale and the scientific questions of interest. 
Continuous outcomes should be used to take full advantage 
of the collected data, particularly in the context of small 
sample sizes or substantial measurement error. When a 
dichotomous outcome must be used, prevalence ratios are 
easier to understand and communicate. When odds ratios 
must be used, presentation of outcome prevalence can 
facilitate interpretation. 
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Box 1. Methods for calculating prevalence ratios 

 

 

APPROXIMATING A PREVALENCE RATIO FROM A PUBLISHED OR (FROM ZHANG ET AL. JAMA 1998): 
 

OR 
________________________________________________________________________________________________________________________________________________________________ 

(1-probability in reference group) + (probability in reference group x OR) 
 
This post hoc calculation can be an aid to interpretation, but is not entirely satisfactory in a multivariable 
analysis because the scale of adjustment does not correspond to the scale of the parameter of interest.
 
 
 
 
         

DIRECT CALCULATION OF A PREVALENCE RATIO 
 

Probability of outcome in exposed group 
__________________________________________________________________________________________________________ 

Probability of outcome in reference group 
          

1 

2 

3 ESTIMATING PREVALENCE RATIOS WITH ROBUST STANDARD ERRORS USING STATISTICAL SOFTWARE: 
 

Stata,  
       glm y x, link(log) family(binomial) eform (options to try: difficult, search) 
       glm y x, link(log) family(poisson) eform robust (if above doesn’t converge) 

 
R or S+:  
       glm y ~ x, family=binomial(log) (R only, S-plus reads log as logit) 
       glm y ~ x, family=poisson(log) 

 
SAS,  
       proc genmod; class id; model y = x /dist=bin link=log;  
       proc genmod data = poissonreg; class id; model y = x /dist=poisson; repeated subject=id/type=ind; 

 
SPSS,  
       genlin y with x /model x distribution = binomial link = log /criteria covb = robust 
       genlin y with x /model x distribution = poisson link = log /criteria covb = robust 
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