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Abstract: The dog is the most common domestic animal in human environments and in many situations a dog may be a 
victim, a perpetrator or a link between a suspect and a crime scene. Therefore, biological material derived from dogs may 
constitute evidence in forensic caseworks and it may be necessary or helpful to obtain genetic profiles that would aid indi-
vidual identification. Currently, the assessment of the genetic diversity of breeds, population structure, inbreeding, and the 
development of methodologies for population assignment are important areas of research in dogs and related species such 
as the grey wolf. Therefore, canine short tandem repeat (STR)-based genotyping is used by a significant number of popu-
lation geneticists; however, for reasons we present here, it is utilized by a relatively small number of forensic practitio-
ners. An extensive bibliographic search revealed a highly fragmented canine genotyping community working under less 
than well defined standards. In this work, we discuss the present developments and limitations of STR-based canine geno-
typing. Furthermore, we recommend that a collaborative strategy for the implementation of standardization and harmoni-
zation is crucial to the development of forensic canine genotyping. 
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BRIEF HISTORY  

 The dog (Canis lupus familiaris) is widely recognized as 
the most common pet in North American and European 
households. Despite the constant presence of dogs in human 
environments, canine derived evidence is not frequently ana-
lyzed in forensic caseworks and, consequently, is seldom 
reported in the literature [1-9]. Numerous situations may 
occur in which canine genetic identification constitutes an 
important or even the only source of evidence. Animals can 
be victims of cruelty and theft; therefore the identification of 
the remains of a lost or a stolen dog may have to be per-
formed. Also, animals can be perpetrators of a crime, and it 
may be necessary to identify an animal involved in an attack 
on a person or other animal. Furthermore, an unrestrained 
animal may cause an accident or be responsible for property 
damage. Moreover, animals can also be regarded as “silent 
witnesses”: the analysis of animal DNA transferred as hair, 
saliva, blood, urine, or feces may provide a link between a 
suspect to a crime scene or to a victim. Requests of individ-
ual profiles, identification for dog paternity investigation and 
breed registries are growing in demand, as shown by the 
increasing number of commercial laboratories worldwide 
that now offer those services. 

 The development of polymerase chain reaction (PCR)  
in the late 1980’s facilitated the analysis of polymorphic 
sequences ubiquitously distributed throughout genomes; 
particularly, tandem repeated units of one to five bp known  
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as short tandem repeats (STR) or microsatellites were able to 
be analyzed. STR are highly utilized in forensics, population 
genetics, molecular ecology and related areas because of 
their relatively straightforward analysis, especially due to  
the widespread use of capillary electrophoresis. Human 
populations have been extensively surveyed via STR-based 
methodologies over the last 15 years, particularly after the 
establishment of validated STR panels and databases such as 
the CODIS (Combined DNA Index System, www.fbi.gov). 
Isolation and description of canine STRs began in the early 
1990’s [10, 11] and the physical and linkage mapping of the 
dog genome have become a major source of mapped loci (e. g. 
[12-18]). Francisco and colleagues pioneered the mapping of 
a set of highly polymorphic tetranucleotide loci in 1996; 
however, other studies mostly reported the mapping of 
dinucleotide loci. In 1994 Zajc and colleagues [19] first pro-
posed a method of paternity testing in dogs based on micro-
satellite sequences, followed by similar works in subsequent 
years (e. g. [20-25]). These early studies attempted to obtain 
insights into population genetics and phylogenetic relation-
ships between extant and extinct canine populations using 
STRs originally isolated from the dog genome. The list of 
investigated species included the Ethiopian wolf [26], the red 
wolf [27], the red fox [28], the Arctic fox [29] and the grey 
wolf [30]. 

 Canine genotyping has been particularly performed in 
non-forensic fields in order to characterize the genetic struc-
ture and the diversity within and among dog breeds and wolf 
populations (e. g. [31-43]). The majority of these studies 
were motivated by conservation concerns and tried to assess 
population structure, genetic diversity and inbreeding in en-
dangered populations or small breeds (e. g. [30, 44-58]). As 
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natural populations become increasingly threatened by spe-
cies introduction and the relative abundance of sympatric 
species, several authors have also discussed the potential 
hybridization among closely related species, such as the grey 
wolf, the red wolf, the coyote, and the dog [59-67]. Popula-
tion assignment based on individual genotypes is becoming 
an interesting challenge, with a number of researchers using 
their data to estimate the probability of an individual belong-
ing to a given reference breed or group (e. g. [42, 53, 56, 58, 
63, 68-74]). In the literature, two other interesting examples 
of canine genotyping were mentioned: the establishment of 
the clonal origin and evolution of a canine transmissible ve-
nereal cancer [75, 76], and the analysis of a putative dog 
clone as an independent test to determine the validity of 
cloned cell lines [77]. 

 DNA quantification is an important step in STR-based 
analysis prior to conducting PCR, especially in less than 
pristine sample. This issue was addressed by Evans and col-
leagues [78], who proposed a real-time PCR assay targeting 
the canine-specific coding region of the Melanocortin-1  
receptor (MC1R) gene. They report the successful incorpo-
rated of this method into routine analysis of canine biologi-
cal material. 

A DIFFICULT COMING OF AGE  

 As presented in the previous section, canine STR-based 
genotyping has been performed in a wide range of studies for 

at least 15 years. In order to assess the use of STR markers, 
we surveyed the literature reporting canine genotyping data 
between 1996 and 2009 (72 publications) regardless of the 
objectives of the work (e.g. forensic and non-forensic), from 
which references to a total of 345 loci were compiled.  

 A highly dispersed use of STR markers was strikingly 
evident, as the majority (56%) were used in a single study, 
36% in 2 to 6 studies, and only 8% (29 loci) were used in 7 
to 27 studies (Fig. 1). Furthermore, a high proportion (35%) 
of the most commonly used 29 markers (Table 1) consisted 
of dimeric loci. This type of marker is known to have sig-
nificant germinal and somatic instability, and generates a 
high amount of stuttering products that are difficult to inter-
pret [79]. For these reasons, dimeric STRs are absent from 
the international panels for human identification [80], 
whereas tetrameric loci that have negligible slippage and 
easy resolution of consecutive alleles are the repeat type of 
election.  

 Moreover, it was observed in the literature that genotyp-
ing results are generally published in a non-standardized 
manner due to the lack of a repeat-based nomenclature of 
alleles (and sometimes even a consistent nomenclature of 
loci). Recently, a small number of studies [6, 81-84] have 
discussed this issue and fully characterized some markers as 
a pre-requisite for routine applications. These studies repre-
sent individual in-house efforts to produce suitable panels of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Number of canine STR markers referenced in published studies. The distribution is based on a total of 345 loci referred in a total of 
72 publications. 
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markers for identity and kinship analysis, and have proposed 
repeat-based nomenclatures for a total of 29 loci (Table 2). 
In the majority of cases, these descriptions were accompa-
nied by estimates of forensic parameters for identification 
and parentage testing based on population data. Neverthe-

less, data comparison remains generally difficult, if not im-
possible, because most publications are prior to the studies 
that presented a standardized repeat-based nomenclature of 
alleles.  

Table 1. List of Commonly Used Markers Referred in 7 to 28 Studies Compiled from a Bibliographic Survey Including 72  

Publications. Repeat Type, and Availability in at Least One Study of Allele Frequencies and Estimates of Forensic  

Parameters 

Marker Type of Repeat Allele Frequencies Forensic Parameters References 

C09.250 Dimeric YES NO [34, 36, 37, 49, 52, 58, 60, 61] 

CPH02 Dimeric YES NO [23, 34, 36, 37, 49, 51, 52, 60, 61, 71] 

CPH03  Dimeric YES NO [34-37, 52, 60, 61, 63, 71] 

CPH04  Dimeric YES NO [49, 51, 52, 59-61, 63, 71] 

CPH07 Dimeric YES NO [49, 52, 59-61, 63, 71] 

CPH08 Dimeric YES NO [23, 34-37, 49, 51, 52, 60, 61] 

CXX.109/u109 Dimeric YES NO [30, 40, 43, 48, 51, 58, 66, 72] 

CXX.213/u213 Dimeric YES NO [30, 49, 51, 52, 60-62, 66] 

CXX.225/u225 Dimeric YES NO [30, 40, 43, 45, 48, 51, 58, 64, 66, 72] 

u250 Dimeric YES NO [30, 40, 48, 51, 62, 66, 70, 72] 

FH2001 Tetrameric YES YES [22, 34-37, 43, 46, 51, 54, 57, 58, 62, 67, 68, 70, 71, 73] 

FH2004* Tetrameric YES  YES [22, 23, 33, 34, 36, 37, 46, 48, 57, 63, 67, 68, 73, 74, 81] 

FH2010* Tetrameric YES  YES 
[3, 4, 6, 7, 9, 23-25, 43, 48, 50, 52, 57, 58, 60-62, 67, 70, 

71, 73, 74, 81, 83, 84] 

FH2017 Tetrameric YES YES [40, 43, 48, 62, 63, 70, 73] 

FH2054* Tetrameric YES YES 
[3, 4, 6, 7, 9, 22-25, 33-37, 41-43, 46, 48, 50, 51, 57, 58, 62, 

64, 67, 68, 70, 71, 83, 84] 

FH2079* Tetrameric YES YES [3, 6, 7, 9, 24, 25, 34, 48-50, 60-62, 67, 83, 84] 

FH2088 Tetrameric YES YES [22, 33, 43, 46, 48, 49, 51, 52, 54, 57, 60-62, 67, 68, 70, 73] 

FH2096 Tetrameric YES NO [43, 48, 49, 51, 52, 54, 60-62, 67, 70, 72] 

FH2132* Tetrameric YES YES [9, 22, 35, 46, 68, 71, 83, 84] 

FH2137 Tetrameric YES YES [22, 34, 35, 46, 57, 68, 71] 

PEZ01/CATA1 Tetrameric YES YES [3, 4, 6, 7, 24, 25, 43, 48, 50, 51, 62, 70] 

PEZ03* Tetrameric YES YES [3, 6, 7, 24, 25, 34, 38, 43, 48, 51, 62, 72, 82] 

PEZ05 Tetrameric YES YES [3, 4, 6, 7, 24, 25, 34, 40, 43, 48, 50, 51, 57, 62, 70, 72, 73] 

PEZ06* Tetrameric YES YES [3, 6, 7, 9, 24, 25, 48, 50, 62, 83, 84] 

PEZ08* Tetrameric YES YES [3, 6, 7, 24, 25, 34, 36, 37, 43, 50, 57, 58, 62, 70, 82] 

PEZ12* Tetrameric YES YES [3, 6, 7, 9, 24, 25, 34, 38, 40, 43, 48, 50, 57, 62, 83, 84] 

PEZ15* Tetrameric YES YES [7, 9, 24, 25, 50, 57, 83, 84] 

PEZ20* Tetrameric YES YES [3, 4, 6, 7, 24, 25, 48, 50, 62] 

VWF.X* Hexameric YES YES [9, 30, 43, 48, 51, 52, 60-62, 70, 72, 73, 83, 84] 

*Markers characterized with respect to sequence structure (see also Table 2). 
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Table 2. List of Canine STR Loci Characterized at Sequence Level with a Published Repeat-Based Allele Nomenclature. Type of 

Repeat, Availability of Allele Frequencies and Estimation of Forensic Parameters, and Works where these Markers were 

used are also Indicated 

Marker 

Type of  

Repeat 

Marker  

Characterization 

Reference 

Allele  

Frequencies 

Forensic  

Parameters 

Other Publications Referring the  

Characterized Marker 

C38 Tetrameric [81] YES YES [74]* 

FH2004 Tetrameric [81] YES YES [22, 23, 33, 34, 36, 37, 46, 57, 63, 68 73, 74]* 

FH2010 Tetrameric [81, 84] YES YES [3, 6, 23-25, 48, 50, 52, 57, 58, 43, 60-62, 70, 71, 73, 74]*  

FH2054 Tetrameric [84] YES YES [3, 6, 22-25, 33-37, 46, 48, 50, 51, 57, 58, 62, 64, 68, 70 42, 43, 71, 83] 

FH2079 Tetrameric [84] YES YES [3, 6, 24, 25, 34, 48-50, 52, 62 43, 60, 61, 63, 70, 83] 

FH2087Ua Tetrameric [84] YES YES [83]* 

FH2087Ub Tetrameric [84] YES YES [83]* 

FH2132 Tetrameric [84] YES YES [22, 35, 46, 68, 71 83]* 

FH2161  Tetrameric [82] NO NO [34, 63, 71] 

FH2328  Tetrameric [82] NO NO [34, 73] 

FH2361  Tetrameric [81] YES YES [34, 73, 74]* 

FH2611 Tetrameric [84] YES YES [57, 58 83]* 

FH2658 Tetrameric [81] YES YES [57, 74]* 

FH3210 Tetrameric [81] YES YES [74]* 

FH3241 Tetrameric [81] YES YES [74]* 

FH4012 Tetrameric [81] YES YES [74]* 

PEZ02 Tetrameric [84] YES YES [34, 36, 37, 73 83]* 

PEZ03 Tetrameric [82] NO NO [3, 6, 24, 25, 34, 38, 43, 48, 51, 62, 72] 

PEZ06 Tetrameric [82, 84] YES YES [3, 6, 24, 25, 48, 50, 57, 62, 83]* 

PEZ08 Tetrameric [82] NO NO [3, 6, 24, 25, 34, 36, 37, 43, 50, 57, 58, 62, 70] 

PEZ10 Tetrameric [82] NO NO [24, 25, 34, 50] 

PEZ12 Tetrameric [84] YES YES [3, 6, 24, 25, 34, 38, 40, 48, 50, 57 62, 83*43] 

PEZ15 Tetrameric [84] YES YES [24, 25, 50, 57 83]* 

PEZ20 Tetrameric [6] YES YES [3, 24, 25, 48, 50, 62] 

REN214L11 Tetrameric [81] YES YES [74]* 

VWF.X Hexameric [84] YES YES [30, 40, 48, 51, 52, 60-62, 70, 72, 73, 83*43] 

Wilms-T Tetrameric [84] YES YES [34, 83]* 

ZUBECA4 Tetrameric [84] YES YES [83]* 

ZUBECA6 Tetrameric [84] YES YES [83]* 

*Studies that reported genotyping results according to the loci’s proposed nomenclature. 
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 The extremely low number of fully characterized loci in 
common use (FH2004, FH2010, FH2054, FH2079, FH2132, 
PEZ03, PEZ06, PEZ08, PEZ12, PEZ15, PEZ20 and VWF.X) 
may be explained by the fact that most researchers perform-
ing canine genotyping are not forensic practitioners. There-
fore, these researchers are not under pressure to comply with 
forensic standards or to contribute to universal databases that 
allow for inter-laboratory comparisons. Also, and in contrast 
with the commercial availability of validated human geno-
typing systems, commercial canine genotyping systems are, 
at present, inexistent. Despite the value that an STR multi-
plex kit would bring to the canine genotyping community 
(forensic and non-forensic), a single commercial kit (Stock-
marks® for Dogs Canine Genotyping Kit, Applied Biosys-
tems, Foster City, CA) that was briefly available was subse-
quently discontinued in 2005. This kit did not include an 
allelic ladder nor was a nomenclature of the included mark-
ers ever published; therefore it is not surprising that the 
commercial success of the product was greatly compromised 
from the very beginning. A more convenient product has not 
become commercially available, further promoting the pro-
duction of internal laboratory solutions. Although this activ-
ity is healthy by principle and has originated useful tools, we 
have most likely reached a point where greater benefits can 
only be achieved through broader collaborations. 

FUTURE PROSPECTS 

 At present, the use of canine STRs is highly fragmented 
among laboratories, and lacks standardization and harmoni-
zation. This is probably the most important reason for the 
limited use of STR analysis derived from canine evidence in 
forensic caseworks. Regrettably, we must agree that the fo-
rensic laboratories that are used to perform high standard 
identification and kinship analysis in humans have justifiable 
reasons to be reluctant. Forensic laboratories rely on vali-
dated STR panels, great amounts of comparable population 
data and well-defined statistical aids to interpret of the re-
sults of human analysis, and are therefore generally unwill-
ing to venture onto shakier grounds. 

 Recently, Kanthaswamy and colleagues [73] selected 18 
markers from existing panels in order to assemble a stan-
dardized and validated [85] canine forensics panel that will 
be commercialized in the future by Finnzymes Oy (Espo, 
Finland) under the designation Canine 2.1 STR Multiplex 
Reagent Kit. They also have established a database of canine 
STR genotypes in an updatable format to allow for the inclu-
sion of new data submitted by laboratories that will use this 
panel. If it proves to be adequate, this kit may constitute an 
practical tool for the laboratories that wish to implement 
canine STR analysis. 

 Regardless of the species under examination, STRs con-
stitute a powerful tool that can be used for identity and kin-
ship testing. The biological principles and the theories, 
methodologies and technologies are well established for hu-
man testing and may only require slight adaptations for non-
human testing. Basically, a proficient forensic practitioner is 
equally competent to analyze either human or animal bio-
logical evidence. Potentially motivated by the asymmetry of 
the standards for human genotyping when compared to non-
human genotyping, Budowle and colleagues, in 2005 [86], 
proposed the first set of guidelines to inspire quality prac-

tices that withstand legal scrutiny for animal genetic identity 
testing was proposed by in a condensed yet detailed report 
that is well worth consulting. 

 Two decades of collective experience in human STR-
based genotyping has enabled us to identify the primary is-
sues for the efficient development of non-human genotyping 
systems. Specifically, it is essential to determine which 
markers should be used and how to apply them. For the sake 
of simplicity, the main criteria to consider when selecting 
suitable STR markers for forensic genotyping may be sum-
marized in the following points: absence of genetic linkage, 
tetrameric loci (preferably in perfect repeat structures), high 
level of informativeness, low occurrence of mutations and 
null alleles, specificity and absence of stutter peaks, and bal-
anced PCR amplification in multiplex reactions. The follow-
ing points summarize actions necessary for the development 
of forensic canine genotyping: selection of core STR loci for 
canine identity testing and establishment of multiplexed pan-
els, development of an internationally recognized allele no-
menclature based on the number of repeats determined by 
sequencing of frequent alleles [87], implementation of se-
quenced allelic ladders, validation of STR panels for forensic 
analysis, establishment of publicly available databases, col-
laborative efforts for the collection of population data, and 
proficiency and quality control testing (e. g. [88]). 

 In conclusion, the literature showed a relatively intense 
use of canine STR markers in the conservation, ecology, 
phylogeny and forensic fields in the last 15 years; however, 
inter-laboratory variability was considerable, in contrast with 
the high level of harmonization and standardization attained 
in a comparable period of human STR analysis. An inte-
grated community where forensic and non-forensic research-
ers may converge needs to be established in order to further 
develop methodologies. In this perspective, it would be 
highly advantageous that major international societies such 
as the International Society of Animal Genetics (www. 
isag.org.uk) and the International Society of Forensic Genet-
ics (www.isfg.org) collaborate in the development of guide-
lines for animal genotyping and specifically canine genotyp-
ing. These actions would certainly contribute to the emer-
gence of a forensic community performing non-human 
analysis and the discussion of the particular challenges of a 
pioneering area.  
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