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Abstract: In this work we describe the chemical and physical changes of Sicilian extra virgin olive oil (EVOO) heated at 
90° in a conventional oven for one month. The effects of the thermal treatment along days on volatile compounds and vis-
cosity were monitored using electronic nose, gas chromatography and rheology. Data obtained by these techniques were 
combined in order to create a data matrix for the analysis, and the unsupervised method Principal Component Analysis 
(PCA) was used. A synergistic effect was obtained by combining all data, thus allowing discriminating oil samples ac-
cording to their oxidative status.  
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1. INTRODUCTION 

 The extra virgin olive oil (EVOO) compared to other 
edible vegetable oils has excellent sensorial and nutritional 
properties, thanks to a group of phenolic compounds, poly-
phenols and tocopherols, that contribute to its taste (bitter 
and pungency) [1, 2], and have beneficial effects on human 
health (anticancer, antioxidant and anti-inflammatory proper-
ties) [3-5]. Moreover, the EVOO presents a triacylglycerol 
composition very low in polyunsaturated fatty acids. These 
chemical characteristics prolong the EVOO shelf life by 
imparting a high oxidative stability that preserves its intrinsic 
qualities [6].  

 The good properties of EVOO decrease with time due to 
the presence of many factors (air, heat, light and metals) 
leading to oxidation [7]. One of the most applied methods for 
studying this process is to follow the chemical-physical 
properties changes of EVOO caused by the exposure at high 
temperatures. Indeed, heating effects have been studied by 
using a large variety of experimental techniques and proto-
cols [8-10].  

 Particular attention has been paid to the oxidation of 
olive oil with the aim of assessing benefits of its use with 
respect to that of other vegetable oils. One major concern is 
the healthiness of the olive oil for deep-frying purpose [11-
15], as related to a minor polymerization extent and lower  
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content of polar compounds after repeated frying cycles [16]. 
Another topic of interest regards the higher stability of the 
olive oil toward oxidation, due to a lower amount of unsatu-
rated fatty acids [11, 17] and a higher content of antioxidant 
agents such as biophenols, alfa-tocopherol [18-21]. In this 
case, a soft thermal treatment is used to conveniently speed 
up the oxidation process.  

 The quantification of the oxidation extent is usually ac-
complished by using different indicators since the process 
complexity and its dependence on many parameters make no 
feasible the use of a unique method for representing all re-
lated chemical physical changes [22, 23]. In fact, at the be-
ginning of oxidation, molecular oxygen reacts with double 
bonds of unsaturated fatty acids to produce hydroperoxides, 
whose amount is in general used for monitoring the initial 
oxidation stage together with measurements of oxygen con-
sumption and formation of conjugated dienes and trienes 
[22]. Hydroperoxides rapidly decompose in secondary oxida-
tion products such as hydrocarbons, alcohols, aldehydes, and 
ketones [18, 24, 25] whose increase can be determined by 
GC-MS. Differently from other vegetable oils, the extra 
virgin olive oil does not undergo chemical treatments during 
its processing, thus retaining some volatile compounds that 
contribute to give its unique and characteristic flavor [26]. 
The progressive advancement of oxidation results in the 
development of unpleasant volatile compounds, which are 
responsible for the so named “off-flavors” [27]. The detec-
tion of this type of defect in extra virgin olive oil has been 
officially prescribed [28] to be carried out through sensory 
panel test, but many efforts have been devoted to find meas-
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Table 1. MOS Sensor Array Configuration of the EOS835(Sacmi Imola, Italy) 

Id Code Sensing Layer Catalyst Operating Temperature  

1 CJ1316  SnO2 SiO2 450 °C 

2 SB0225 SnO2 Ag 400 °C 

3 SD0515 SnO2 Mo 400 °C 

4 SH0612 WO3 - 375 °C 

5 SJ0717 SnO2 - 450 °C 

6 WHT19 WO3 - 400 °C 

urable quantities that could be correlated to human sensorial 
responses [26, 29-31].  

 When advanced oxidation stages are reached in samples 
kept at high temperature, a viscosity increase is observed, as 
related to the increase of the amount of polar compounds 
[13, 15, 32] and the beginning of a polymerization process 
[33] due to the H-bound formation between polar com-
pounds [34]. No irreversible change in viscosity is instead 
observed in oil samples during a heating and cooling run 
from 10 to 80 0C temperature range [32].  

As each of the experimental methods and techniques used is 
able to get insights on some peculiar aspect or stage of oxi-
dation, the applying of statistical methods to the analysis of 
different types of data could be a convenient tool for dis-
criminating the oxidative stage. In this study, different Sicil-
ian extra virgin olive oil samples were thermally oxidized by 
heating at 90 0C. The exposure time was chosen long enough 
to observe oxidative phenomena similar to that observed at 
higher temperature, as previous reported by Navarra et al. 
[34].We applied a joint analysis of data obtained from three 
different experimental techniques: electronic nose, gas 
chromatography and rheology. The question that we wanted 
to answer was if these three techniques together would im-
prove the determination of the oxidative state of extra virgin 
olive oils through the use of multivariate methods generally 
applied for discriminating between different oils [24, 35, 36] 
and determining which parameters are the most relevant in 
defining the oxidative state [37, 38]. Furthermore, we tested 
the potential use of this methodology for improving the dis-
crimination between different oils according to their re-
sponse to the oxidative stress.  

2. MATERIALS AND METHODS  

2.1. Materials 

 Olive oil samples from different regions of Sicily, were 
supplied by Sicilian oil producers in the frame of a European 
project and subjected to the lawful analyses certifying their 
belongings to extra virgin oil category [39]. Samples will be 
referred as EVOO 1 (monocultivar ‘Giarraffa’), EVOO 2 
(blend to cultivar ‘Nocellara del Belice’ and ‘Biancolilla’), 
EVOO 3 (monocultivar ‘Nocellara del Belice’) and EVOO 4 
(monocultivar ‘Biancolilla’). Before the experiments, the oil 
samples were stored in the dark at 10 0C. 

 

2.2. Sample Conditioning 

 Two grams of each oil sample were placed into a 10 ml 
vial sealed with a pierceable silicone septum. One group of 
vials was used for the headspace analysis with the electronic 
nose, and the other group was used either for the headspace-
solid-phase-micro-extraction gas chromatography analysis 
and viscosity measurement. Several aliquots of each oil 
sample were placed in a laboratory oven at 90 ºC and with-
drawn in triplicate after a time interval of 7, 14 and 28 days. 
They will be referred in the text as 7D, 14D and 28D respec-
tively, whereas samples of fresh oil without thermal treat-
ment will be referred as NT. Measurements with the differ-
ent techniques were all performed at 40 ºC. 

2.3. Electronic Nose 

 The device used in this work was the Electronic Olfac-
tory SystemEOS835 manufactured by the Italian company 
SACMI Imola s.c.a.r.l. This device has already been de-
scribed by Falasconi et al. (2005) [40]. It comprised an array 
of 6 Metal Oxide Semiconductor (MOS) gas sensors, which 
were incorporated into a sample chamber (Table I). The 
sensors’ electrical resistance diminishes in presence of the 
volatile compounds. Each sensor has a different response 
because they are unspecific for the volatile compounds.  

 During the measurement each sensor was maintained at a 
temperature range of 350-450°C. Data acquisition was made 
with the software EOS. 

 After of the introduction into the tray each sample was 
placed into a closed oven that was incorporated in the elec-
tronic nose instrument. Samples were conditioned in the 
oven at 40 ºC for 10 minutes. After that, 4 ml were drawn 
from the headspace by using an autosampler (model 
HT200H) coupled with a syringe, and introduced into the gas 
sensors chamber. The analysis time of the samples was 1 
minute. Three vials for each sample were measured. 

 Before and after the inclusion of the volatile compounds 
into the gas sensor chamber, a flow (100cc) of chroma-
tographic air was used to clean the sensors and restore the 
base line. We used as a sensor feature the value Ri = Ri

0-
Ri, where Ri

0 is the resistance of sensor i, in presence of 
chromatographic air (base line) and Ri is the minimum resis-
tance in presence of the volatile sample. A set of six features 
{R1, …, R6} was obtained in each measurement.  
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 The whole set of sensors’ features is referred to a finger-
print. Results can be conveniently represented as a radar plot 
in which each vertex corresponds to the signal of each sen-
sor. Differences and similarities between different samples 
may be visually identified by comparing their radar plots.  

2.4. Gas Chromatography-Mass Spectrometry 

 Olive oils samples were analyzed with SPME and gas 
chromatography combined with mass spectrometry (GC/MS) 
in order to identify and quantify their main components.  

 Volatile compounds in the headspace were extracted and 
concentrated by using a SPME fiber assembly polydimethyl-
siloxane (PDMS) (1 cm long-100μm thickness) from Su-
pelco Ltd. Vials containing the samples were firstly condi-
tioned for 30 minutes at 40 ºC in a circulating water bath. 
After that, the fiber was exposed to the sample headspace 
during 30 min [31] and then desorbed for 1 min at 260 ºC in 
the splitless mode in the gas chromatograph injector. 

 A Shimadzu GCMS-QP2010 gas chromatograph with 
mass detection up to 1024 mass/charge range was used with 
an SLB-5ms column (30 m x 0.25 mm i.d. x 0.25μm film 
thickness) from Sigma-Aldrich. Helium was used as carrier 
gas at a linear velocity of 30 cm/s.  

 The temperature of the interface and ion surface was 280 
ºC and 175 ºC respectively. The oven temperature was held 
at 35 ºC for 10 minutes, increased to 170 ºC at 2 ºC/min and 
then held at 170 ºC for 5 minutes. Electron impact mass 
spectra were measured at 70 ev ionization energy. The mass 
range varied from 29 to 700 amu. Identification of the con-
stituents was based on computer matching against commer-
cial NIST library mass spectra and literature data. Measure-
ments were conducted in triplicate. 

2.5. Viscosity 

 The viscosity of each sample was measured using a con-
trolled stress AR 1000 (TA Instruments, UK) rheometer 
under low-amplitude oscillatory shear. A stainless still cone-
plate geometry (angle 1o, radius 20 mm, gap 31 μm) was 
used. The olive oil was loaded into the rheometer previously 
thermostated at 40 ºC. Temperature was controlled by a 
Peltier system. A shear stress ramp ranging from 0 to 80 Pa 
was applied and the corresponding values of shear strain rate 
were recorded. Viscosity was obtained as the slope of the 
shear stress-shear strain rate. Three measurements of each 
olive oil sample were performed, and viscosity average value 
with its standard deviation was used in data analysis. 

2.6. Data Analysis 

 Comparing the changes in the fingerprints provided by 
the sensors array and applying multivariate data analysis 
analyzed differences between samples. In the present work, 
we used the method of Principal component Analysis (PCA), 
an unsupervised statistic method that is useful for classifica-
tion and data discrimination. This feature extraction method 
consists of projecting the N-dimensional data set (N is the 
number of “sensors”) in a new base of the same dimension 
N, but now defined by the eigenvectors of the correlation 
matrix of the data set. The components of the original data 

vectors on this new base are the so-called principal compo-
nents, obtaining one set of principal components {PC1,…, 
PCN} for each data set {S1,…, SN}. The important point is 
that, when analyzing the new data set {PC1, PC2,…, PCN}, a 
large percentage of the total data variance is accumulated in 
a few of the principal components, representing a substantial 
reduction of the problem dimension and complexity. In those 
cases where an important percentage of the total data vari-
ance is contained in the first two or three principal compo-
nents, the data points can be qualitatively discriminated by 
observing how they group in a score plot. PCA was per-
formed for different cases, using different kind of sensors, 
that is: i) only gas sensors (data from the e-nose); ii) viscos-
ity of the sample and gas sensors signals; iii) viscosity and 
gas chromatographic measurements. As magnitudes of the 
data measured were different according to the sensor used, 
PCA was made with the correlation matrix using a commer-
cial software (S-PLUS 2000).  

3. RESULTS AND DISCUSSION 

3.1. E-nose 

 The radar plot of E-nose results for the sample EVOO 3 
at different stages of the thermal treatment is shown in  
Fig. (1). Similar results were obtained for the other samples. 
There is an important increase in the intensity of the finger-
print when comparing the non-treated sample with the sam-
ple stored for 7 days at 90 ºC. Besides, there is a change in 
the fingerprints pattern since not all the sensors increased 
their responses in the same proportion. This is due to the 
chemical changes that occur in the samples during the ther-
mal treatment Indeed, not only the number but also the type 
of volatile compounds change with the temperature as a 
consequence of oxidative processes.  

 

 

Fig. (1). Radar plots for sample EVOO 3 corresponding to the 4 
different conditions evaluated: NT 

 Each vertex of the radar 
plot is the magnitude R in Ohm for each sensor.  
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Table 2. Volatile Compounds Identified by Using SPME GC-MS in Olive Oil Samples Stored at 90° for Different Times 

Retention Time(min)   Volatile Compound  Peak Area (%) 

  NT 7 Days 14 Days 28 Days 

3.9  2-Butenal  -   0.3c  0.4a   0.4b 

4.5  1-Penten-3-ol  0.5c   1.5a  1.8b   2.0c 

4.9  Heptane  -   6.7d  9.3d   10.7a 

7.1  2-Pentenal  -   0.9a  0.8a   0.7a 

7.8  1-Pentanol  -   1.2e  1.4b   0.9a 

8.7  3-Methyl 2-Butenal -   2.5c  2.9b   2.3b 

9.0  1-Octene  -   0.6b  0.2c  0.5a 

9.7  Hexanal  1.1b   12.0d  14.5e   15.8b 

14.2  2-Hexenal  3.0e   2.2b  1.6b   1.4b 

14.5  3-Hexen-1-ol  5.8e   2.9b  1.3b   0.7b 

15.5  2-Hexen-1-ol  0.5b   0.2a   -   - 

16.0  1-Hexanol  1.0d   0.6a  0.3a   0.2a 

16.8  Ethanone  -   0.3c  0.3°  0.2a 

17.5  2-Heptanone  -   0.8a  0.9b   0.8a 

17.8  Pentanoic Acid  -   0.1b  0.4b   0.4b 

18.4  Heptanal  0.7b   2.0c  1.8b   1.2c 

19.5  2-Hexen-1-ol Acetate  -   0.3b  0.2c   0.2a 

21.5  3 Ethyl 1,5 Octadiene  1.0c   0.4a  0.2c   0.2a 

23.3  2-Heptenal  -   5.6d  5.3e   5.5b 

24.8  1-Heptanol  -   1.0b  0.9b   0.6a 

25.5  1-Octen-3-ol -   1.1b  1.1b   1.2a 

26.1  2-Pentyl Furano  -   1.7b  2.8d   4.7e 

26.5  Hexanoic Acid  -   1.0b  1.1d   0.8d 

27.4  Octanal  1.1b   2.5d  2.7d   2.2c 

27.7  4-Hexen-1-ol Acetate  0.5b   0.4a  0.3b   0.2d 

28.1  2,4 Heptadienal  -   1.4a  1.5d   1.8b 

30.4  3-Octen-2-one  -   0.5b  0.4b   0.3a 

31.3  5-Ethyl diidro 2(3H)Furanone  -   0.6b  0.5a   0.4a 

32.0  2-Octenal  -   2.2b  2.6b   2.7b 

32.9  3,5 Octadien 2-one  -   0.3a  0.3a   - 

33.2  1-Octanol  -   1.2b  1.0b   0.7a 

33.7  Heptanoic Acid  -   0.7b  0.5a   0.5a 

34.6  2-Nonanone  -   0.3a  0.5b   0.3a 

35.7  Nonanal  2.5e   8.3c  6.3c   5.0c 

39.9  2-Nonenal  0.4b   1.5a  1.9b   2.1b 
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Table 2. Contd….. 
 

Retention Time(min)   Volatile Compound  Peak Area (%) 

  NT 7 Days 14 Days 28 Days 

41.0  1-Nonanol  -   0.4a  0.2c   0.2a 

41.3  Octanoic Acid  -   0.7d  1.5d   1.0a 

43.4  Decanal  2.0e   0.9b  1.1c   0.9a 

44.0  2,4 Nonadienal  -   0.2a  0.3a   0.3a 

46.7  5 Butyl diidro 2(3H)Furanone  -   0.4b  0.5b   0.4b 

47.4  2-Decenal  1.0c   6.7e  8.9e   9.7d 

47.8  3,7 Dimethyl 2,6 Octadienal  -   0.8a  0.7b   0.6a 

48.2  Nonanoic Acid  -   1.4c  2.1b   1.4a 

51.2  2,4 Decadienal  -   6.2d  6.9e   7.1b 

53.9  5 Pentyl diidro 2(3H)Furanone  -   0.3b  0.4b   0.3b 

54.3  2-Undecenal  3.1e   5.5e  7.1e   7.2e 

54.9  Copaene  2.4e   1.8c   -   - 

57.2  Dodecanal  4.8c   0.3c   -   - 

59.6  6,10dimethyl 5,9Undecadien2-one 5.9e   0.7d  0.3a   0.4d  

61.4  1-Dodecanol  11.4e   1.2e  -   - 

62.7  Alpha-Murolene  5.1e   0.5b  0.3b   0.2a 

63.0  Pentadecane  11.0e   0.9d   -   0.1b 

63.2  Alpha-Farnesene  9.6e   1.2d  0.4b   0.2b 

68.9  Hexadecane  8.3e   1.7d  0.5b   0.8b 

74.6  Heptadecane  7.1e   1.1e  0.3a   0.7e 

80.0  Octadecane  7.9e   1.2d  0.4a   1.1e 

a RSD < 5%; b 5<RSD<15%; c 15<RSD<25%; d 25<RSD<50%; e RSD>50% 
 

3.2. GC-MS 

 The volatile compounds detected with GC-MS in the 
sample EVOO 3 at different stages of the thermal treatmen-
tare listed in Table 2 together with the relative retention time 
and percentage contribution to the total area of the chroma-
togram. The overall effect of the thermal treatment was the 
increase of the total number of compounds. For a more use-
ful data analysis [41] the compounds detected were grouped 
according to their functional groups: 1) aldehydes, 2) alco-
hols, 3) hydrocarbons, 4) ketones, 5) esters, 6) acids and 7) 
heterocyclic compounds. For each condition evaluated, the 
percentage contribution of each chemical family to the total 
chromatographic area was calculated and reported as a func-
tion of time, as shown in Fig. (2), for the case of sample 
EVOO 3. A large increase of the aldehydes was observed, as 
due to both the formation of new compounds and the in-
crease of those already present in the fresh oil. This increase, 
responsible for off-flavors, is probably due to the breakdown 
of linoleic and linolenic fatty acids [42]. A large decrease in 
the relative amount of hydrocarbons was observed despite 
the notable formation of heptane. Even the total percentages 

of alcohols, ketones and esters decreased. The increase of 
heterocyclic compounds and acids, not present in the fresh 
oil, was also observed. It is known that the production of 

 

Fig. (2). Percentual contribution of each chemical family of com-
pounds to the chromatographic area as a function of the time of 
storage at 90 0C. 
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aliphatic acid such as pentanoic, hexanoic, heptanoic, oc-
tanoic, or nonanoic acids indicative of thermal oxidation 
[27]. However, we noted that the main changes in composi-
tion were those between NT and 7D samples. Similar behav-
iors were observed for the other oils. 

3.3. Viscosity 

 Fig. (3) shows the increase of viscosity with the duration 
of thermal treatment. This result is in quantitative agreement 
with those obtained by Santos, Santos and Souza (2005) 
[32], who observed a similar viscosity increase in olive oil 
kept at higher temperature (190 0C) for shorter time (8 hr.). 
At difference with the linear time dependence of viscosity 
observed by these authors, we noted an exponential rise 
toward a plateau.  

3.4. Data Analysis 

 When analyzing all the samples within all the conditions 
tested, it was proved that the electronic nose was not suffi-
cient to differentiate the samples. In fact, the addition of the 
viscosity as an extra variable to perform multivariate analy-
sis improved the discrimination. But the best classification 
into groups according to the time of heat exposure was 
achieved when the relative amount of aldehydes, hydrocar-
bons and alcohols were also introduced as “sensors”. These 
families of compounds were chosen as extra sensors to per-
form the PCA because they gave the highest variability 
among all the groups.  

 The PCA score plot is illustrated in Fig. (4), where each 
point corresponds to one measurement. More than 96% of 
the total data variance was contained in the score plot de-
fined by PC1 and PC2, which yielded an effective dimension 
reduction in comparison with the total initial data set of ten 
variables. Two big groups were properly distinguished in the 
PC1 axis: the group of data with positive PC1 values, which 
corresponded to NT samples, and the group with negative 
PC1 values belonging to samples that were exposed to 90 ºC 
for a certain period of time. Therefore, PC1 was able to char-

acterize the samples on the basis of their exposure to the 
thermal treatment. When analyzing data with negative PC1 

values, three different groups were distinguished according 
to the duration of the thermal treatment. The first group, 
which presented positive values of PC2, belonged to samples 
treated for 7 days (triangles). The second group, which gave 
values of PC2 near zero, was assigned to samples that were 
treated for 14 days at 90 ºC (squares). The last group, which 
presented negative PC2values, was identified as composed 
by the samples treated for 28 days (rhomboids). Thus, the 
change along the second principal component was in agree-
ment with the storage time at 90 ºC. Cosio, Ballabio, 
Benedetti and Gigliotti (2007) [43] also related PC1 and PC2 
responses with the different treatments of extra virgin olive 
oil.  

 Our results were achieved by mixing the responses of 
“sensors” based on different techniques. The only sample 
that belonged to the group of 7D and appeared at the group 
14D was EVOO 4. When compared with the other samples, 
it also presented a distinctively higher viscosity, a more 
intensive fingerprint, and much larger content of oxidative 
compounds. This result confirms the idea that the increase of 
viscosity is correlated to the increase of intermolecular inter-
actions between polar compounds produced by the exposure 
to a thermal treatment. 

 Since samples were well described by the PCA score 
plot, the loading plot (Fig. 5) was analyzed in order to show 
which “sensors” influenced most in the group discrimination. 
It can be inferred that sensors 1 (SnO2-PT) and (In2O3+Ag) 
from the e-nose, viscosity and both the relative amount of 
alcohols and hydrocarbons were the best sensors. A curious 
result was the correlation obtained between five e-nose sen-
sors and the relative amount of aldehydes. The increase in 
the percentage of aldehydes in extra virgin olive oils with 
temperature occurred in a similar way for all the samples and 
the variability between them was not reflected by this vari-
able. Probably, these sensors are highly sensitive to this 

 

Fig. (4). PCA score plot for all the samples analyzed using e-nose 
sensors, viscosity and the relative amount of aldehydes, alcohols 
and hydrocarbons. Each sample corresponds to a measurement with 
this code: NT (circles), 7D (triangles), 14D (squares) and 28D 
(rhomboids). Color code: EVVO 1 = yellow; EVVO 2 = red; 
EVOO 3 = pink and EVVO 4 = blue. 

 

Fig. (3). Viscosity (mPa.s) as a function of the time of storage at 90 
0C for the different EVOOs. Error bars indicate the standard devia-
tion from 3 replicates. 
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Fig. (5). Loading plot associated to the PCA shown in Fig. (4). 

 

Fig. (6). PCA score plot for fresh oils samples (panel a) and after 7 
days of thermal treatment (panel b), analyzed using e-nose sensors, 
viscosity and the relative amount of aldehydes, alcohols and hydro-
carbons. 

family of compounds. This plot evidences the importance of 
mixing these three techniques in order to improve the analy-
sis. 

 Finally, Fig. (6) reports two different PCA score plots on 
data relative to fresh and 7 days treated samples, panels a) 
and b) respectively. Although relative to only four oils, the 
comparison shows that the thermal treatment causes a better 
discrimination between EVOO1 and EVOO4. This suggests 
that the joint use of a thermal treatment and a mixing of 
different techniques responses could be effective in discrimi-
nating between different oils.  

3.5 Concluding Remarks 

 Sicilian extra virgin olive oil samples were stored at 90 
0C and observed at different times. The thermal treatment 
produced a significant enhancement of e-nose fingerprints as 
well as an increase in the number and area of chroma-
tographic peaks. This was due to the raise in number and 
concentration of the volatile compounds, mainly the polar 
fraction, in the samples headspace. The establishing of in-
termolecular interactions between the new formed polar 
compounds in the liquid phase was reflected into the viscos-
ity increase.  

 Physical and chemical changes of samples caused by the 
thermal treatment were analyzed using Principal Component 
Analysis. All techniques’ responses were mixed together in 
order to create a data matrix for the analysis. A synergistic 
effect was obtained by mixing different data, achieving an 
improvement in the discrimination of the oxidative stage. 
The comparison between the four different extra virgin olive 
oils suggested that the methodology could be also of help in 
discriminating within them according to their response to a 
thermal treatment. 
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