
 The Open Information Systems Journal, 2009, 3, 69-80 69

 1874-1339/09 2009 Bentham Open

Open Access

Efficient Discovery of Spatial Co-Location Patterns Using the iCPI-tree

Lizhen Wang*
,a
, Yuzhen Bao

a
 and Zhongyu Lu

b

a
Department of Computer Science and Engineering, School of Information, Yunnan University, Kunming, 650091, P. R.

China

b
Department of Informatics, School of Computing and Engineering, University of Huddersfield, Huddersfield, UK, HD1

3DH

Abstract: With the rapid growth and extensive applications of the spatial dataset, it’s getting more important to solve how

to find spatial knowledge automatically from spatial datasets. Spatial co-location patterns represent the subsets of features

whose instances are frequently located together in geographic space. It’s difficult to discovery co-location patterns be-

cause of the huge amount of data brought by the instances of spatial features. A large fraction of the computation time is

devoted to identifying the table instances of co-location patterns. The essence of co-location patterns discovery and four

co-location patterns mining algorithms proposed in recent years are analyzed, and a new join-less approach for co-location

patterns mining, which based on a data structure----iCPI-tree (Improved Co-location Pattern Instance Tree), is proposed.

The iCPI-tree is an improved version of the CPI-tree which materializes spatial neighbor relationships in order to acceler-

ate the process of identifying co-location instances. This paper proves the correctness and completeness of the new ap-

proach. Finally, an experimental evaluations using synthetic and real world datasets show that the algorithm is computa-

tionally more efficient.

Keywords: Spatial data mining, co-location rules, table instances (or co-location instances), the iCPI-tree.

1. INTRODUCTION

 Spatial data mining is the process to discover interesting
and previous unknown, but potential useful patterns from
spatial datasets [1-3]. Extracting interesting patterns from
spatial datasets is more difficult than extracting the corre-
sponding patterns from transaction datasets due to the com-
plexity of spatial data types, spatial relationships and spatial
autocorrelation [4]. A spatial co-location pattern represents a
subset of spatial features whose instances are frequently lo-
cated in a spatial neighborhood. For example, botanists have
found that there are orchids in 80% of the area where the
middle-wetness green-broad-leaf forest grows. Spatial co-
location patterns may yield important insights for many ap-
plications. For example, a mobile service provider may be
interested in mobile service patterns frequently requested by
geographical neighboring users. The locations which are
gotten together by people can be used for providing attrac-
tive location-sensitive advertisements, etc. Other application
domains include Earth science, public health, biology, trans-
portation, etc.

 Co-location pattern discovery presents challenges due to
the following reasons: First, it is difficult to find co-location
patterns with traditional association rule mining algorithms
since there is no concept of traditional “transaction” in most
of spatial datasets [1,5,6]. Second, the instances of a spatial
feature distribute in spatial framework and share complex
spatial neigh borhood relationships with other spatial in-
stances. So a large fraction of the computation time of min

*Address correspondence to this author at the Department of Computer

Science and Engineering, School of Information, Yunnan University,

Kunming, 650091, P. R. China; E-mail: lzhwang@ynu.edu.cn

ing co-location patterns is devoted to generating the table
instances of co-location pattern.

 In this paper, a novel approach for mining co-location
patterns is proposed. This method keeps the Apriori-like
approach to generate size-k prevalence co-locations after
size-(k-1) prevalence co-locations. Considering efficient
generating co-location instances, an improved co-location
pattern instance tree (called iCPI-tree) is defined. Then an
iCPI-tree based co-location pattern mining algorithm is de-
signed. The time and space complexity of the algorithm are
analyzed. The experimental evaluations using synthetic and
real world datasets show the iCPI-tree algorithm outperforms
the other algorithms which will be mentioned in this paper
and is scalable in dense spatial datasets.

 The reminder of the paper is organized as follows. Sec-
tion 2 gives an overview of the basic concepts of co-location
pattern mining and the problem definition, and then dis-
cusses related works and motivation. The iCPI-tree approach
is introduced in Section 3. Section 4 presents the proofs of
completeness and correctness of the new algorithm, and
gives computational efficiency analysis of the algorithm. The
experimental results are presented in Section 5. Section 6
summarizes our study and points out some future research
issues.

2. CO-LOCATION PATTERN MINING

2.1. Basic Concepts

 Given a set of spatial features F, a set of their instances S,
and a spatial neighbor relationship R over S. R could be topo-
logical relationships (e.g. linked, intersection), distance rela-
tionships (e.g. Euclidean distance metric) and mixed rela-
tionships (e.g. the shortest distance of two points on a map).

70 The Open Information Systems Journal, 2009, Volume 3 Wang et al.

As shown in Fig. (1), there are 4 spatial features A, B, C and
D and their instances. A.1 stands for the first instance of fea-
ture A. If R is defined as a Euclidean distance metric and its
threshold value is d, two spatial objects are neighbors if they
satisfy the neighbor relationship:

() ()()ddistanceR 1.B,1.A1.B,1.A

 Given a subset of spatial instances { }
m

iiiI ,...,,
21

= ,

SI . is called as an R-neighbor if I forms a clique un-

der the neighbor relation R.

Fig. (1). An example of spatial feature instances.

 A co-location c is a subset of spatial features, i.e.,

Fc . An R-neighbor I is a row instance of a co-location c

if I contains instances of all the features in c and no proper

subset of it does so. The table instance of a co-location c is

the collection of all row instances of c. The size of a co-

location c is the number of spatial features in co-location c, it

is denoted as () ccsize = .

 The interest degree of a co-location differs from the de-

gree of support in traditional association rules mining. A new

prevalence measure concept called the participation index

is introduced by Huang, Shekhar and Xiong in [7]. Participa-

tion ratio will be presented before giving the concept of par-

ticipation index.

 The participation ratio ()ifcPR , for feature type
if in

a size-k co-location c={ }kff ...
1

 is the fraction of instances of

feature
if which participate in any row instance of co-

location c. The participation ratio can be computed as

()ifcPR , =

| fi
table_ instance(c)()|

table_instance fi()
, where is the rela-

tional projection operation with duplication elimination.

 The participation index of a co-location c={ }kff ...
1

 is

the minimum in all ()ifcPR , of co-location c:

()cPI = (){ }i

k

i fcPR ,min 1=
.

 Example 1 Take Fig. (1) as an example. A has 4 in-

stances, B has 5 instances, and C has 3 instances. Suppose

co-location c= A,B,C{ } , the table instance of co-location c

has {{A.2,B.4,C.2}, {A.3,B.3,C.1}, {A.3,B.3,C.2}}.

()A,cPR =2/4 since there are only A.2 and A.3 in the table

instance. Similarly, ()B,cPR =2/5, ()C,cPR =2/3.

()CPI = () () ()() 5/2C,,B,,A,min =cPRcPRcPR .

 Given a minimum prevalence threshold min_prev, a co-

location c is a prevalent co-location if ()cPI min_prev

holds.

 Lemma 1 The participation ratio and the participation

index are monotonically non-increasing with the size of the

co-location increasing.

 Proof Suppose a spatial instance is included in the table

instances of co-location c. For co-location cc' , the spatial

instance e must be included in the table instances of 'c . The

opposite is not true. Therefore, the participation ratio is

monotonically non-increasing.

 Suppose },,{ 1 k
eec = ,

PI(c ek+1) =

i=1

k+1

min{PR(c ek+1,ei)}

)},({min 1
1

ik

k

i

eecPR
+

=

)()},({min
1

cPIecPR
i

k

i

=
=

 Therefore, the participation index of co-location is also

monotonically non-increasing.

 Lemma 1 ensures that the participation index can be used

to effectively prune the search space of co-location pattern

mining.

2.2. Problem Definition

 The co-location mining problem is formalized as follows.

We focus on finding a correct and complete set of co-

location rules with reducing the computation cost.

Given:

1) A spatial framework

2) A set of spatial features { }nffF ,...,
1

= and a set of

their instances
n

SSSS ...
21

= , where

()niS
i

<<1 is the set of instances of the feature if

and each instance is a vector <feature type, instance

id, location>, where locatio .

3) A spatial neighbor relation R over S.

4) A minimum prevalence threshold min_prev and a

minimum conditional probability threshold

min_cond_prob.

Find:

A set of co-location rules with participation index

min_prev and conditional probability min_cond_prob.

Objective:

1) Find a correct and complete set of co-location rules.

2) Reduce the computation cost.

Efficient Discovery of Spatial Co-Location Patterns Using the iCPI-tree The Open Information Systems Journal, 2009, Volume 3 71

Constraints:

1) R is a distance metric based neighbor relationship and

has symmetric property.

2) The spatial dataset is a point dataset.

2.3. Related Work

 In previous work on mining co-location patterns, Mori-

moto [4] defined distance-based patterns called k-

neighboring class sets. In his work, the number of instances

for each pattern is used as the prevalence measure, which

does not possess an anti-monotone property by nature. How-

ever, Morimoto used a non overlapping instance constraint

to get the anti-monotone property for this measure. In con-

trast, Shekhar & Huang [8] developed a feature centric

model, which does away with the non-overlapping instance

constraint. The related works in the approach proposed by

Shekhar & Huang can be classified into three kinds for iden-

tifying co-location table instances: the full-join approach [7],

the partial-join approach [9] and the join-less approach

[10,11].

 The full-join approach is mainly based on the computa-

tion of the join operation between table instances for identi-

fying co-location instances. This approach is similar to Apri-

ori method and it could generate correct and complete preva-

lent co-location sets. However, scaling the algorithm to sub-

stantially large dense spatial datasets is challenging due to

the increasing number of co-locations and their table in-

stances.

 The partial-join approach is to build a set of disjoint

clique in spatial instances to identify the intraX instances of

co-location (belonging to a common clique) and interX in-

stances of co-location (all instances have at least one cut

neighbor relation), and merge the intraX instances and interX

instances to calculate the value of the PI. This approach re-

duces the number of expensive join operations dramatically

in finding table instances. However, the performance de-

pends on the distribution of the spatial dataset, exactly the

number of cut neighbor relations.

 The join-less approach puts the spatial neighbor relation-

ships between instances into a compressed star neighbor-

hood. All the possible table instances for every co-location

pattern were generated by scanning the star neighborhood,

and by 3-time filtering operation. The join-less co-location

mining algorithm is efficient since it uses an instance-lookup

scheme instead of an expensive spatial or instance join op-

eration for identifying co-location table instances. So the

idea of the join-less is great. However, the star neighborhood

structure is not an ideal structure for generating table in-

stances, for the table instances generating from this structure

have to be filtered. Therefore, the computation time of gen-

erating co-location table instances will increase with the

growing of length of co-location patterns.

 The CPI-tree algorithm proposed by Wang et al. in [11]

is a new join-less algorithm. In this method, a new structure

called CPI-tree (Co-location Pattern Instance Tree) is intro-

duced. It could materialize the neighbor relationships of a

spatial data set, and find all the table instances recursively

from it. Different from the star neighborhood structure in the

join-less approach of the paper [10], all information of the

neighbor relationships in a spatial dataset is organized to-

gether by the CPI-tree. So, the third phase filter in the join-

less algorithm, which might be an expensive step, need not

be performed. However, this method gives up the Apriori-

like model, i.e., to generate size-k prevalence co-locations

after size-(k-1) prevalence co-locations. In many cases the

Apriori candidate generate-test method reduces the number

of candidate sets significantly and leads to performance gain.

 Besides the above representative co-location mining al-

gorithms, Huang, Pei and Xiong address the problem of min-

ing co-location patterns with rare spatial events [12]. In this

paper, a new measure called the maximal participation ratio

(maxPR) was introduced and a week monotonicity property

of the maxPR measure was identified. Verhein and AI-

Naymat considered mining complex spatial co-location pat-

terns from spatial dataset [13]. They introduced the idea of

maximal clique and applied the GLIMIT [14] (it is a very

fast and efficient itemset mining algorithm that has been

shown to outperform Apriori and FP-Growth) itemset min-

ing algorithm to their task. Celik et al. studied zonal co-

location patterns discovery problem [15].

2.4. Motivation

 Let us see the spatial instances in Fig. (1). If a pair of

spatial instances satisfy neighbor relationship R, connect

them with a solid line (as shown in Fig. 1), then a graph G

can be obtained. Each co-location instance is a complete sub-

graph (clique) in G. Mining co-location patterns is equal to

the process of mining all cliques in G and calculating the PI

value of each co-location pattern. However, such process has

been proved as a NP-Hard problem

[16]. In fact, in the proc-

ess of finding cliques, according to the definition of co-

location pattern, the same spatial features cannot appear in a

clique, and according to the anti-monotonic property of PI

value (Lemma 1), not all the cliques should be calculated.

The most existed co-location pattern mining algorithms

adopt an Apriori-like approach.

 Can the cliques be calculated efficiently by simply scan-

ning G? Can a structure which contains the information of

table instances be built? In this paper, a new structure called

iCPI-tree (improved Co-location Pattern Instance Tree),

which is an improved version of the CPI-tree [11], will be

introduced. The join-less idea used in the join-less approach

[10] and CPI-tree approach [11] is efficient since it uses an

instance-lookup scheme instead of an expensive spatial or

instance join operation for identifying co-location table in-

stances, but their efficiency depends on the distribution of

the datasets. Because for join-less approach, the third phase

filter might be an expensive step when there are many non-

co-location instances in the star instances of candidate co-

locations. For CPI-tree approach, though the table instances

generating is efficient, the storing and searching of whole

CPI-tree will be a problem with input datasets become big-

ger. In addition, no candidate pruning by Lemma 1 will

bring on mining algorithms require time-consuming in the

72 The Open Information Systems Journal, 2009, Volume 3 Wang et al.

dense datasets. Therefore, remaining the Apriori candidate

generate-test model of the join-less approach and the tree

structure advantage of the CPI-tree approach, a new iCPI-

tree method is proposed in this paper. The new method is

expected to reduce the computation cost of co-location pat-

tern mining in any kinds of datasets.

3. AN ICPI-TREE BASED APPROACH FOR CO-

LOCATION PATTERN MINING

 In this section, an iCPI-tree based approach for mining

co-location patterns is discussed. First, an iCPI-tree data

structure is defined, and then the iCPI-tree based co-location

mining algorithm is presented.

3.1. iCPI-tree

 Although the CPI-tree approach [11] materializes the

neighbor relationships of a spatial dataset for efficient co-

location instance identifying, the storages of the CPI-tree and

co-location instances are expensive. In addition, the number

of recursions in the CPI-tree algorithm is also enormous with

the size of datasets become huge. In other words, the per-

formance of the CPI-tree algorithm should be improved. An

improved CPI-tree is proposed for more efficient co-location

instance identifying.

 Definition 1 Given a subset of spatial instances

{ }
vl
iiI ,...,= , },,2,1{, mvl , If

ji
ii (the spatial fea-

tures in alphabetic order, and then the different instance of

the same spatial feature in numerical order) holds for any

vjil , the I is called as an ordered instance set. If I

is a table instance, it is called as an ordered table instance.

If the feature-name of
i
i is not the same as the feature-name

of
l
i and),(

il
iiR (represents il and ii is neighbor) holds for

any vil < , The I is called as ordered neighbor relation-

ship set of the instance
l
i . The set of ordered neighbor rela-

tionship sets of all instances of a spatial feature x is denoted

as
x
.

 Example 1 Take Fig. (1) as an example. Spatial feature A

has 4 instances, B has 5 instances, and C has 3 instances.

Two instances are connected if they are neighbors in Fig. (1).

Therefore, I={A.3,B.3,C.1} is an ordered instance set, it is

also an ordered table instance. The ordered neighbor rela-

tionship set of the instance A.3 is {A.3,B.3,C.1,C.2,C.3}. The

set of ordered neighbor relationship sets of all instances of

the feature A is denoted as
A

={{A.1,B.1,C.1},

{A.2,B.4,C.2}, {A.3,B.3,C.1,C.2,C.3}, {A.4,B.3}}.

 The concept of iCPI-tree can be defined based on the

following observations:

(1). Since spatial neighbor relationships between in-

stances make certain all table instances, it is neces-

sary to perform one scan of spatial datasets to identify

the set of spatial neighbor relationships.

(2). If the set of neighbor relationships can be stored in an

ideal data structure, it may be possible to avoid re-

peatedly scanning the set of neighbor relationships.

Furthermore, it may be cost-efficient to generate table

instances using a pile-instance-lookup scheme instead

of instance join operation.

(3). The recursive and hierarchical properties of tree struc-

ture ensure the clarity and simplicity of the algo-

rithms’ description. If all spatial instances are sorted

in ascending order (the spatial features in alphabetic

order, and then the different instance of the same spa-

tial feature in numerical order), a graph G represent-

ing spatial neighbor relationships may correspond to a

unique tree structure.

 With the above observations, a tree structure (called

iCPI-tree (Improved Co-location Pattern Instance Tree), for

all table instances can be generated in batch from it) can be

defined as follows.

 Definition 2 (iCPI-tree). Given a set of spatial features

{ }nffF ,...,
1

= and a set of ordered instance neighbor rela-

tionship of spatial features
nfff ...

21

= ,

()ni
if

<<1 is the set of ordered neighbor relationship sets

of all instances of the feature
if , a tree designed as below is

called as an improved co-location pattern instances tree

(iCPI-tree, for short).

1). It consists of one root labeled as “null”, a set of the

spatial feature sub-trees as the children of the root.

2). The spatial feature fi sub-tree consists of the root fi

and each subset of
if
as a branch of the root. Each

branch records an ordered neighbor relationship set of

corresponding instance and relevant feature-name.

 Example 2 Fig. (2) is the iCPI-tree of the example in

Fig. (1). The feature ‘A’ sub-tree consists of the root ‘A’ and

branches A.1, A.2, A.3, and A.4. The branch A.1 records the

content of ordered neighbor relationship set of the instance

A.1 and relevant feature-name, i.e., there are)1.,1.(BAR

and)1.,1.(CAR .

Fig. (2). The iCPI-tree of the example in Fig. (1).

 The iCPI-tree of a spatial dataset constructed based on

definition 2 will be unique. The iCPI-tree materializes the

neighbor relationships of a spatial dataset with no duplica-

tion of the neighbor relationships and no loss of co-location

instances, and the more important thing is that it is conven-

ient and efficient to generate the co-location instances from

it.

Efficient Discovery of Spatial Co-Location Patterns Using the iCPI-tree The Open Information Systems Journal, 2009, Volume 3 73

3.2. iCPI-tree Based Co-Location Mining Algorithm

 The iCPI-tree based co-location mining algorithm has

two phases. The first phase converts an input spatial dataset

into an iCPI-tree for efficient co-location instance identify-

ing. The second phase recursively generates prevalent co-

locations and co-location rules based on the iCPI-tree. In this

phase, Size-k table instances are expanded from the size-(k-

1) table instances whose object feature types are the same as

the first (k-1) features of the candidate co-locations. Fig. (3)

illustrates an iCPI-tree based algorithm trace. Algorithm 1

shows the pseudo code.

 Algorithm 1 iCPI-tree based co-location mining algo-

rithm.

Input

{ }nffF ,...,
1

= : a set of spatial feature types;

S: a set of spatial instances and each instance is a vector

<feature type, instance id, location>;

R: the spatial neighbor relationship (e.g. Euclidean distance);

min_prev: prevalence value threshold;

min_cond_prob: conditional probability threshold;

Output

 A set of all prevalent co-location rules with participant

index greater than min_prev and conditional probability

greater than min_cond_prob;

Variables

K: co-location size;

: A set of spatial ordered neighbor relationships between

instances;

Ck: a set of size-k candidate co-locations;

Pk: a set of size-k prevalent co-locations;

Ik: a set of table instances of co-locations in Ck;

Method

1) = gen_neighborhood (F, S, R);

2) iCPI-tree= gen_iCPI-tree (, F);

3) P1=F K=2;

4) While (not empty Pk-1) Do

5) Ck=gen_candidate_colocations(Pk-1);

6) Ik=gen_instances(Ik-1,ICPI-tree,Ck);

7) Pk=gen_prev_co-location (Ck,Ik,min_prev);

8) Rk=gen_co-location_rule (Pk,Ik,min_conf);

9) K=K+1

10) Enddo

11) Return U(
2

R ,…,
k

R)

 Convert a Spatial Dataset to a Set of Spatial Ordered
Neighbor Relationships Between Instances (Step 1): Given
an input dataset and a neighbor relationship, first find all
neighboring object pairs using a geometric method such as
plane sweep [17], or a spatial query method using quaternary
tree or R-tree [18]. The set of ordered neighbor relationships
are generated by grouping the neighborhoods sorted by the
feature type in lexical order. The set of spatial ordered

Fig. (3). iCPI-tree algorithm trace.

74 The Open Information Systems Journal, 2009, Volume 3 Wang et al.

neighbor relationships between instances is denoted as .
Fig. (3) shows the ordered neighborhoods sorted by the fea-
ture type.

 Generate the iCPI-tree of the Set of Spatial Ordered

Neighbor Relationships (Step 2): From the set of ordered

spatial neighbor relationships between spatial instances

and a set of spatial features { }nffF ,...,
1

= , the iCPI-tree

can be built by iteratively creating n-1 spatial features

branches of the iCPI-tree. Each branch is created by scan-

ning a sub-set of the set . For example, in Fig. (3), scan-

ning the subset A={{A1,B1,C1}, {A2,B4,C2},

{A3,B3,C1,C2, C3}, {A4,B3}}, the branch A of the iCPI-tree

is built. This step is specified as follows.

Procedure Gen_iCPT-tree (, F)

Input

F: A set of spatial features.

 = f1
= { f1

l1 ,... f1

lk1 }, f2
= { f2

l1 ,... f2

lk 2 }... fn
= { fm

l1 ,... fm

lk m }{ } :

A set of spatial ordered neighbor relationships between in-

stances, where ()ni
if
1 is the set of the set i

i

l

f
 of or-

dered neighbor instances (they are “bigger” than the in-

stance
i

l) of instances
i
l of feature

if , whose order is sorted

in ascending order.

Output

iCPI-tree: An improved co-location pattern instance tree.

Method

1) Create a root “Null” for iCPI-tree;

2) i=1;

3) While i<n Do;

4) { Create a sub-tree
if of the root “Null”;

5) Create a branch 1

i
f

l
for sub-tree

if ;

6) For each il

i
f

()
i

ki<1 of
i

f
 in

7) create a child-node of the branch 1

i
f

l
;

8) i=i+1;

9) }

10) Return the root ‘Null’

 Assign Starting Values to Various Data Structures Used
in the Algorithm (Step 3): First, all features to size-1 preva-
lent co-locations by the definition of the participation index
measure. The number of instances per feature can be known
during the scan of the input spatial dataset for computing the
set of ordered neighbor relationships.

 Iteratively Mining Co-Location Rules (Step 4-10): Step
4) to Step 10) of algorithm iteratively perform four basic
tasks, namely, generation of candidate co-locations, genera-
tion of table instances of candidate co-locations, pruning,
and generation of co-location rules. These tasks are carried
out a loop iterating over the size of the co-locations. Itera-
tions start with size-2 since the definition of prevalence
measure allows no pruning for co-locations of size-1.

3.2.1. Generation of Candidate Co-Locations

 Size-k (k>1) candidate co-locations are generated from

prevalent size-(k-1) co-locations. Here, we have a feature

level pruning of candidate co-locations. If any subset of a

candidate co-location is not prevalent, the candidate co-

location is pruned.

Fig. (4). The process of generating table instances based on the iCPI-tree.

Efficient Discovery of Spatial Co-Location Patterns Using the iCPI-tree The Open Information Systems Journal, 2009, Volume 3 75

3.2.2. Generation of Table Instances of Candidate Co-

Locations

 Size-k table instances are expanded from the size-(k-1)

table instances whose object feature types are the same as the

first (k-1) features of the candidate co-locations. The opera-

tion of expanding is performed based on the iCPI-tree. For

example, the table instances of candidate co-location

{A,B,C} are expanded from the table instances of co-location

{A,B}. The expanded process has three steps. The first step

takes count of instances of expanded features based on the

iCPI-tree. The second step adds the instance whose count is

equal to (k-1) into an expanded list. The third step combines

size-(k-1) table instance with the instances of the expanded

list to generate size-k table instances. Fig. (4) shows the

process of generating table instances of candidate co-location

{A,B,C} from table instance {A.3,B.3} of size-2 co-location

{A,B}. As shown in Fig. (4), In the iCPI-tree, instances of

feature “C” can be expanded from instance “A.3” are “C.1”,

“C.2” and “C.3”, while child of “B.3”, whose feature is “C”,

is “C.1” and “C.2”. They are counted in the first step. Then

instance “C.1” and “C.2” are added into expanded list since

its count is 2 (i.e., k-1). Finally, the table instance {A.3, B.3}

is combined with “C.1” and “C.2” of expanded list to gener-

ate two table instances {A.3,B.3,C.1} and {A.3,B.3,C.2} of

candidate co-location {A,B,C}.

3.2.3. Pruning

 Candidate co-locations can be pruned using the given

threshold min_prev on prevalence measure. In addition,

iCPI-tree pruning can be used for more efficient identifying

table instances from the iCPI-tree.

Prevalence-Based Pruning

 The prevalence-based pruning of co-locations is done by

the participation index values calculated from the set of co-

location instances Ik. Bitmaps data structure can be used for

efficient computation the participation index of a candidate

co-location [7]. Prevalent co-locations satisfying the thresh-

old min-prev are selected. For each selecting prevalent co-

location c after prevalence-based pruning, a counter to spec-

ify the cardinality of the table instance of c. The relevant

(since the generation of the table instances of candidate co-

location {A,B,C} uses only the table instances of co-location

{A,B} based on iCPI-tree) table instances of the prevalent

co-locations in this iteration will be kept for generation of

the prevalent co-locations of size-(k+1) and discarded after

the next iteration.

iCPI-tree-Based Pruning

 Although generating co-location instances from a iCPI-

tree will be No loss of co-location instances and no duplica-

tion of co-location instances, the following pruning strategies

can be used to improve efficiency of generating co-location

instances from CPI-tree.

Pruning 1

 A node, which is the child of the branch “fi” ()

and has no child, can be pruned.

 Proof. If a node is the child of the branch “fi” ()

and it has not a child node, it must be the spatial instance

without neighborhood. So it can be pruned.

 Example 3 In Fig. (2), the nodes B.2 and B.5 can be

pruned from the iCPI-tree with Pruning 1.

Pruning 2

 By using Pruning 1, If the number of the pruned in-

stances of a feature fi is greater than min_prev*|fi|, then all

the instance nodes of the feature fi and, the relevant edges

and the child nodes in the iCPI-tree can be pruned.

 Proof. If the number of the pruned spatial instances of a

feature fi with Pruning 1 is greater than min_prev*| fi|, the

number of the remaining instances of the feature is less than

the min_prev*| fi|. Therefore, all instances of this spatial fea-

ture might be pruned due to the co-location containing the

feature might not be prevalent.

 Example 4 Suppose that three instances of spatial feature

B was pruned with Pruning 1, and there are five instances in

feature B and the min_prev is 50%, then all the instances of

B and, the relevant edges and child nodes can be pruned with

Pruning 2.

3.2.4 Generating Co-Location Rules

 The gen_co-location_rule function generates all the co-

location rules satisfying the user defined threshold

min_cond_prob from the set of prevalent co-locations and

their table instances. Bitmaps or other data structures can be

used for efficient computation using the same strategies for

prevalence-based pruning.

4. ANALYSIS OF THE ICPI-TREE ALGORITHM

 Here, the iCPI-tree based co-location mining algorithm

for completeness, correctness and computational complexity

is analyzed.

4.1. Completeness and Correctness

 Completeness means the iCPI-tree algorithm finds all co-

location rules whose participation index and conditional

probability satisfy a user specified minimum prevalence

threshold min_prev and conditional probability threshold

min_cond_prob. Correctness means that all co-location rules

generated by the iCPI-tree algorithm have a participation

index and a conditional probability above the min_prev and

min_cond_prob. First related lemmas are provided.

 Lemma 2 The iCPI-tree model does not miss any neigh-

bor relationships of an input spatial data.

 Proof: according to Definition 2, all the spatial instances

are scanned and their neighbor relationships are recorded in

an iCPI-tree. Therefore, none of the spatial instance neighbor

relationships is missed in CPI-tree.

 Lemma 3 The iCPI-tree materializes the neighbor rela-

tionships of an input spatial data with no duplication of the

spatial neighbor relationships.

76 The Open Information Systems Journal, 2009, Volume 3 Wang et al.

 Proof: according to Definition 1, there are not duplica-

tion spatial neighbor relationships in the set of ordered

neighbor relationships. So, it is obvious because each branch

of an iCPI-tree records an ordered neighbor relationship set

of corresponding instance.

 Lemma 4 Given a size-(k-1) table instance Ik-1={o1,…,ok-

1} of a co-location Ck-1={f1,…,fk-1}. If any spatial instance ok

of a spatial feature fk (fk is not belong to Ck-1) is a child-node

of each instance oi (), the co-location instance

Ik={o1,…ok-1,ok} is a table instance of co-location Ck={f1,…,fk-

1,fk}.

 Proof: First the size-(k-1) table instance Ik-1={o1,…,ok-1}

means each instance oi () has neighbor relation-

ships to all other instances in Ik-1. Second if the instance ok of

a spatial feature fk (fk is not belong to Ck-1) is a child-node of

the nodes o1,…,ok-1, the instance ok has neighbor relationship

to the instance oi (). Thus each instance oi

() has neighbor relationships to all other instances in

Ik since the neighbor relationship is symmetric. The co-

location instance Ik={o1,…,ok} is a table instance of co-

location Ck={f1,…,fk}.

 Theorem 1 The iCPI-tree based co-location mining algo-

rithm is complete.

 Proof: The completeness of the iCPI-tree algorithm can

be shown by the following two parts. The first is that the

method to materialize the neighbor relationships of an input

spatial data based on the iCPI-tree (step 1 and step 2) is cor-

rect. The iCPI-tree does not miss and duplicate any neighbor

relationship of an input spatial data by Lemma 2 and

Lemma 3. The method to generate co-location instances

from iCPI-tree is correct by Lemma 4. Next, it is shown that

no table instance can be generated out of the method. Sup-

pose a size-k table instance can be generated out of the

method. If this is a size-2 table instance, and then there is not

a parent-child-link between the two instances in iCPI-tree.

According to lemma 2, there is not a spatial neighbor rela-

tionship between the two instances, this reduces to absurdity.

For size-k table instances Ik={o1,…ok-1,ok} (k>2), the in-

stance-node ok is at least not a child-node of a instance-node

oi (1 i k-1) in the iCPI-tree. According to lemma 2, there

is not a spatial neighbor relationship between the two in-

stances. This also reduces to absurdity.

 Theorem 2 The iCPI-tree co-location mining algorithm

is correct.

 Proof: The correctness of the iCPI-tree algorithm can be

guaranteed by step 7 and 8. Step 7 selects only co-locations

whose participation index satisfies a user specific prevalence

threshold min_prev. The generated co-location rules by step

8 also satisfy a user specific conditional probability

min_cond_prob.

4.2. Computational Complexity Analysis

 This section analyzes the time and space complexity of

the new method and then, compares the computational cost

of the iCPI-tree algorithm with the join-based algorithm, the

join-less algorithm and the CPI-tree algorithm.

 Time complexity: The time complexity of the algorithm

includes Gen_neighborhood, gen_iCPI-tree, and the loop

step 4-10. Suppose m is the total number of instances of all

features. In the worse case, the computational complexity of

the procedure Gen_neighborhood will be)log(2

2
mmO .

For procedure gen_iCPI-tree, if Nins is the number of spatial

neighbor relationships, the cost is)()(2
mONO

ins
.

 For the loop k of Step 4 in Algorithm 1, the bulk cost is

to generate co-location instances Ik of the set of candidate co-

locations Ck. This cost depends on the number of spatial in-

stances, the number of features, the number of spatial neigh-

bor relationships between instances, the number and the size

of candidate co-locations, and the number of table instances

in co-locations. But by sorting spatial instances and co-

locations, and using expanding method based on the iCPI-

tree to generate table instances, which dramatically reduces

the cost of algorithms. The real performance of the algorithm

is discussed in Section 5.

 Computational cost comparison: Let Ticpi, Tcpi, Tjb and

Tjl represent the costs of the iCPI-tree algorithm, the CPI-tree

algorithm, the join-based algorithm and the join-less algo-

rithm respectively.

++=)()(___ treeiCPIgenneibgeniCPI TdatasetTT

),()((1_1_ treeiCPIITPT kinstgen

k

kcandigen +

))(kprune CT+

k

kinstgen treeiCPIIT),(1_
 (1)

++=)()(___ treeCPIgenneibgencpi TdatasetTT

))()(1_ kprunekinstgen CTInsT +

)(_ treeCPIT instgen
 (2)

++=

k

kcandigencolsizegenjb PTdatasetTT)(()(1__2_

)()(_ CTtreeCPIT pruneinstgen +

k

kinstgen InsT)(1_
 (3)

++=

k

kcandigenneibstargenjl PTdatasetTT)(()(1__

+),(__ neibstarCT kinststargen

))(),(__ kprunekinststarfilter CTneibstarCT +

+

k

kinststargen neibstarCT),((__

)),(__ neibstarCT kinstcliquefilter
 (4)

 In the above Equation (1),)(__ datasetT neibgen
 repre-

sents the cost of generating ordered neighbor relationship set

Efficient Discovery of Spatial Co-Location Patterns Using the iCPI-tree The Open Information Systems Journal, 2009, Volume 3 77

 with the dataset.)(_ treeiCPIgenT represents the cost of

building the iCPI-tree.

k

kcandigen PT)(1_
 is the cost of gen-

erating all candidate co-locations.

k

kinstgen treeiCPIIT),(1_
 represents the cost of identify-

ing table instances of all candidate co-locations based on the

iCPI-tree and relevant size-(k-1) co-location instances.

+

k

kprune CT)(1
 is the cost for pruning non-prevalent size k

co-locations. The bulk of time is consumed in identifying

table instances of all candidate co-locations.

 In equation (2), Tgen _ neib _ (dataset) represents the cost

of generating ordered neighbor relationship set with the

dataset.)(_ treeCPIgenT is the cost of building the CPI-tree

based the .)(_ treeCPIT instgen
 represents the cost of

generating all co-location instances from CPI-tree.

)(CTprune
is the cost for pruning non-prevalent co-locations.

The bulk of time is consumed in generating all co-location

instances from CPI-tree.

 In equation (3),)(_2_ datasetT colsizegen
 represents the

cost of generating size-2 co-locations and their table in-

stances with the dataset.

))()()((1_1_ kprunekinstgen

k

kcandigen CTInsTPT ++ represents

the all cost of generating all prevalence co-locations, where

)(1_ kcandigen PT is the cost of generating size k candidate co-

location with the prevalent size k-1 co-locations,

)(1_ kinstgen InsT represents the cost of generating table in-

stances of size k candidate co-locations with size k-1 table

instances,)(kprune CT is the cost for pruning size k co-

locations. The bulk of time is consumed in generating table

instances of all candidate co-locations.

 In equation (4),)(_ datasetT neibstargen
 represents the cost

of converting a spatial dataset to a disjoint star neighbor-

hood.

k

kcandigen PT)(1_
 is the cost of generating all candi-

date co-locations. +

k

kinststargen neibstarCT),((__

)),(__ neibstarCT kinstcliquefilter
 is the cost of generating

the star instances and filtering co-location instances of all

candidate co-locations with the star neighborhoods.

)(kprune CT is the cost for pruning non-prevalent size k+1 co-

locations. The bulk of time is consumed in generating the

star instances and filtering co-location instances of size k

candidate co-locations with the star neighborhoods.

 The difference of the three algorithms’ computational

cost is affected by the number of table instances, the number

of candidate co-locations and the distribution of spatial fea-

tures and spatial instances. When the number of table in-

stances and candidate co-locations increase, the cost of the

join-based algorithm, the join-less algorithm and the CPI-

tree algorithm are greater than the cost of the iCPI-tree algo-

rithm. This happens because the pile-instance-lookup

scheme (as shown in Fig. 4) based on the iCPI-tree improves

the running performance of identifying table instances in the

iCPI-tree algorithm. In our experiments, as described in the

next section, we use the data density, the prevalence thresh-

old Min_prev and the neighbor distance d as key parameters

to evaluate the algorithms. We can expect that the iCPI-tree

approach is likely more efficient than the join-based method,

the join-less method and the CPI-tree when the spatial

dataset is dense (containing many table instances).

Space Complexity

 The store space of the tree iCPI-tree is the most costly in

the algorithm, if it is always in the main memory, the space

cost of the algorithm is)()(2
mONO

ins
. But a method

which partial sub-trees of the iCPI-tree are remained to re-

duce the need of the space can be adopted, because in one

iterative of generating a candidate co-location c, the in-

stances of features related to the c only need to be in the

main memory.

5. EXPERIMENTAL RESULTS

 In this section, the performance of the algorithms is

evaluated with the join-based approach, the join-less ap-

proach and the CPI-tree approach using both synthetic and

real datasets. All the experiments were performed on a 3-

GHz Pentium PC machine with 2G megabytes main mem-

ory, running on Microsoft Windows/XP. All programs are

written in Java.

 Synthetic datasets are generated using a methodology

similar to the methodology used in paper [7], which has 20

spatial features and 11292 spatial instances in an area

100 The synthetic data generator allows us to bet-

ter control the study of the algorithms and the effects of in-

teresting parameters.

 To test the practicability of the iCPI-tree method, a real

dataset, the plant distribution dataset of the “Three Parallel

Rivers of Yunnan Protected Areas” area, is used. It contains

the number of plant species (feature types) is 16. The total

number of plant instances is 3908. When Min_prev and dis-

tance d are set to 0.1 and 1900 respectively, the maximum

size of co-location is 4 and the total number of size 2 co-

location patterns is 42. There are a huge number of spatial

neighbor relationships between instances due to the plants’

particularity of growing in group.

5.1. Evaluation with the Neighbor Distance Threshold d

 The experiments are implemented in the synthetic

datasets. The runtime of iCPI-tree, CPI-tree, Join-based and

Join-less on the synthetic datasets, when the prevalence

threshold min_prev is set as 0.3, as the neighbor distance

threshold d increases from 18 to 28 is shown in Fig. (5). The

iCPI-tree algorithm and the CPI-tree algorithm show less

increase in the execution time with the increase of distance

threshold d. The join-based algorithm and the join-less algo-

78 The Open Information Systems Journal, 2009, Volume 3 Wang et al.

rithm show a rapid increase since the neighbor distance in-

crease makes the neighbor areas larger and increase the

number of co-location instances.

Fig. (5). Evaluation with the distance d over the synthetic dataset.

5.2. Evaluation with the Prevalence Threshold Min_prev

 Fig. (6) presents the execution time of the four algo-

rithms as a function of the prevalence threshold Min_prev

over the synthetic dataset, while the comparison between the

costs of the iCPI-tree algorithm and the CPI-tree algorithm is

shown in Fig. (7). The neighbor distance threshold d is set as

25 in the experiments. The iCPI-tree shows much better per-

formance at the lower threshold values. The reason is that

the decrease of the Min_prev causes the number and the size

of prevalent co-locations to be increased, which in turn may

lead to an increase in the number of co-location instances.

As shown in Fig. (7), the CPI-tree algorithm is not affected

by the threshold since the CPI-tree didn’t use the threshold

Min_prev to prune.

Fig. (6). Evaluation with the Min_prev on the synthetic dataset.

5.3. A Comparison of Generating Co-Locations Over the

Size

 Fig. (8) shows the execution times for generating the

three size co-locations with the prevalence threshold

Min_prev set to 0.3 and the neighbor distance threshold d set

to 25 in the synthetic dataset. In the figure, the first column

reports the execution time needed to discover co-locations of

size 2. As can be seen, the iCPI-tree method is much faster

than the join-based method and the join-less method for gen-

erating size 3 and size 4 co-locations. Thus, the iCPI-tree

algorithm is expected to achieve the best performance when

the size of co-locations becomes larger.

Fig. (8). Comparison of generating size 2, size 3 and size 4 preva-
lent co-locations on the synthetic dataset.

5.4. Experiment on a Real Dataset

 The mining result over a real dataset, a plant distribution

dataset of the “Three Parallel Rivers of Yunnan Protected

Areas” area, is shown in Fig. (9), while the comparison be-

tween the costs of the iCPI-tree algorithm and the CPI-tree

algorithm is shown in Fig. (10). In this experiment, the

neighbor distance threshold d set to 1500, and the prevalence

threshold Min_prev set from 0.5 to 0.2. From the figure, one

can see that iCPI-tree method is scalable even when there are

many table instances. Fig. (11) presents the distribution of

the plant data in the real dataset.

Fig. (9). A comparison using a plant distribution dataset.

Fig. (7). Comparison of the CPI-tree and the iCPI-tree with the
Min_prev on the synthetic dataset.

Efficient Discovery of Spatial Co-Location Patterns Using the iCPI-tree The Open Information Systems Journal, 2009, Volume 3 79

Fig. (10). A comparison of iCPI-tree and CPI-tree algorithm using a
plant distribution dataset.

Fig. (11). An example of the distribution of plant data.

5.5. Effect of Data Density

 To test the performance of the iCPI-tree algorithm

against the data density, the synthetic datasets are used with

the Min-Prev is set to 0.3, the neighbor distance threshold d

is 20, and the number of instances ranges from 3K to 20K.

The result is shown in Fig. (12), which shows that the iCPI-

tree algorithm has better performance to large dense datasets.

Fig. (12). Effect of data density.

6. CONCLUSION AND FUTURE WORK

 In this paper, a new join-less co-location mining algo-

rithm, which can rapidly generate spatial co-location table

instances based on the iCPI-Tree construction materialized

neighborhood relationship between spatial instances, was

proposed. The algorithm is efficient since it does not require

expensive spatial joins or instance join for identifying co-

location table instances. The experimental results show the

new method outperforms the join-based method, the join-less

method and the CPI-tree method in the synthetic and the real

datasets. As future work, the applications studying of co-

location patterns mining is an important work. And treat with

the redundant co-location rules and maximal co-location

patterns mining will be significant works in the future work

as well.

ACKNOWLEDGEMENTS

 This research is supported by the National Natural Sci-
ence Foundation of China (No. 60463004).

REFERENCES

[1] R. Agarwal and R. Srikant, “Fast algorithms for Mining association

rules,” In Proceeding of Int’l Conference on Very Large Databases

(VLDB), 1994, pp. 487-499.

[2] J. Han and M. Kamber, Data Mining: Concepts and Techniques,

2nd ed., Beijing, China: China Machine Press, 2006, pp. 600-607.

[3] S. Shekhar, P. Zhang, Y. Huang and R. Vatsavai, “Trends in Spa-

tial Data Mining,” in Data Mining: Next Generation Challenges

and Future Directions, H. Kargupta, A. Joshi, K. Sivakumar and Y.

Yesha, Eds., Menlo Park, CA: AAAI/MIT Press, 2004.

[4] Y. Morimoto. “Mining Frequent Neighboring Class Sets in Spatial

Databases,” In Proceeding of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2001, pp.

353-358.

[5] K. Koperski and J. Han, “Discovery of Spatial Association Rules in

Geographic Information Databases,” In Proc. of Int’l Symposium

on Large Spatial Data bases, 1995, pp. 47-66.

[6] L. Wang, K. Xie, T. Chen and X. Ma, “Efficient discovery of mul-

tilevel spatial association rule using partition,” Information and

Software Technology (IST), vol. 47, no. 13, pp. 829-840, 2005.

[7] Y. Huang, S. Shekhar and H. Xiong, “Discovering colocation pat-

terns from spatial data sets: a general approach,” IEEE Transac-

tions on Knowledge and Data Engineering, vol. 16, pp. 1472-1485,

2004.

[8] S. Shekhar and Y. Huang, “Co-location Rules Mining: A Summary

of Results,” In Proceeding of International Symposium on Spatio

and Temporal Database (SSTD), 2001, pp. 236-240.

[9] J. S. Yoo and S. Shekhar, “A partial Join Approach for Mining Co-

location Patterns,” In Proceeding of the 12th Annual ACM Interna-

tional Workshop on Geographic Information Systems, 2004, pp.

241-249.

[10] J. S. Yoo, S. Shekhar, and M. Celik, “A Join-Less Approach for

Co-Location Pattern Mining: A Summary of Results,” ICDM, Hou-

ton, Texas, 2005, pp. 813-816.

[11] L. Wang, Y. Bao, J. Lu, J. Yip, “A New Join-less Approach for Co-

location Pattern Mining, In Proceeding of the IEEE 8
th Interna-

tional Conference on Computer and Information Technology

(CIT2008), 2008, pp. 197-202.

[12] Y. Huang, J. Pei, and H. Xiong, “Mining co-location patterns with

rare events from spatial data sets,” GeoInformatica, vol. 10, pp.

239-260, 2006.

[13] F. Verhein, G. Al-Naymat, “Fast Mining of Complex Spatial Co-

location Patterns using GLIMIT,” In Proceeding of the 2007 Inter-

national Workshop on Spatial and Spatio-temporal Data Mining

(SSTDM'07) in cooperation with The 2007 IEEE International

Conference on Data Mining (ICDM'07), 2007, pp. 679-984.

[14] F. Verhein and S. Chawla, “Geometrically inspired itemset min-

ing,” In Proceeding of the 6
th IEEE International Conference on

Data Mining (ICDM 2006), 2006, pp. 655-666.

80 The Open Information Systems Journal, 2009, Volume 3 Wang et al.

[15] M. Celik, J. M. Kang and S. Shekhar, “Zonal Co-location Pattern

Discovery with Dynamic Parameters,” In Proceeding of the 7th

IEEE International Conference on Data Mining (ICDM '07), 2007,

pp. 433-438.

[16] M. H. Alsuwaiyel, Algorithms Design Techniques and Analysis,

Beijing, China: Publishing House of Electronics Industry, 2004, pp.

364-395.

[17] M. Berg, M. Kreveld, O. M and O. Schwarzkopf, Computational

Geometry. US: Springer, 2000, pp. 302-350.

[18] S. Shekhar and S. Chawla, Spatial Databases: A Tour. NJ: Prentice

Hall, 2003.

Received: February 15, 2009 Revised: May 25, 2009 Accepted: June 03, 2009

© Wang et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the

work is properly cited.

