
98 The Open Information Systems Journal, 2009, 3, 98-107

 1874-1339/09 2009 Bentham Open

Open Access

Designing and Querying a Compact Redundancy Free XML Storage

Radha Senthilkumar*, Priyaa Varshinee and A. Kannan

Department of Information Technology, MIT Campus of Anna University, Chennai, India

Abstract: XML, the universal data format for data exchange has seen phenomenal increase in database size necessitating

the need for its compact storage coupled with simple accessibility. In previous works, all XML databases are implemented

as a tree based structure which leads to increased space complexity. The proposed structure called RFX (Redundancy Free

XML storage structure), addresses this issue by using a non tree based structure. This unique blend of hierarchical and re-

lational databases in a single structure is largely effective in saving storage space thus achieving an increased compaction.

Further RFX conceptualizes the separation of the information in the entire database as the topology layer, the tag layer

and the data layer. The RFX structure has been designed to accommodate multiple document types i.e. Containment, Intra

and Inter types of XML documents. Moreover in this proposal, it is ensured that the relationships among documents are

never disturbed and are seamless with respect to their original counterparts. The document is parsed and stored in a differ-

ent form to permit simple accessibility which is largely effective while querying and maintaining documents involving

one-to-many relationships. Thus RFX paves way to effectively query and maintain the XML databases along with sub-

stantial compaction. This approach shows that the proposed RFX structure is space efficient, redundant free, and time ef-

ficient to update and to query Single, Intra and Inter structured XML document. The effectiveness of the approach makes

it suitable for memory limited devices such as PDA. Performance evaluation over variety of XML documents and the user

queries conform to the same.

INTRODUCTION

 XML is fast becoming the standard format to store, ex-
change and publish over the web and is getting embedded in
applications. The advantages of XML include that it can be
used as an instrument to share data and application models in
wide networks like internet and are platform independent.
However the two main challenges in handling XML are its
size and the complexity of search which involves path and
content searches on labeled tree structures. The XML docu-
ments are highly verbose which attributes to their huge size.
The verbosity also attributes to the redundancy in XML
document.

 This paper concentrates in overcoming these issues by
eliminating the redundancies which results in reduced stor-
age space while improving on query and update perform-
ance. The XML files are first analyzed for their relationships
in the database (i.e) Containment, Intra or Inter document
relationships. Subsequently, the XML files are stored con-
forming to the structural norms of the proposed RFX system.
Following this, the XML file stored in RFX can be navigated
and queried in near constant time. Additionally, non-tree
based layered structure augments the capability of our sys-
tem with respect to performance. Blending of layered ap-
proach with non tree based structure and complete removal
of redundancy makes RFX structure edge over the others
proposed so far [1-4]. RFX has thus achieved compaction
coupled with effective querying and maintenance within a
single system.

*Address correspondence to this author at the Department of Information

Technology, MIT Campus of Anna University, Chennai, India;

E-mail: radhasenthil@annauniv.edu

 In particular we address the problems of how to compress
XML data, how to provide efficient access to its contents,
how to navigate and how to support efficient update.

MOTIVATION

 ‘Compact Storage’ in its traditional sense involves the
technique of space reduction of XML documents with no
insight to the existing relationships in the database. Many
works on compact storage have been proposed [3, 4] yet
with no specific citations to one-to-many relationships.
Changes that are consequences of these relationships have
been disregarded. However in the present real world systems
of distributed and very large databases, a centralized file
without any one-to-many relationship is an impossible sce-
nario.

 ‘Query Optimizations’ in XML documents involving
one-to-many relationships are being worked on. Researches
on ‘Storage’ of the database involving such relationships
have been left unexplored. Storage systems like ISX [5],
XMill [1], XGrind [4] have concentrated on effective storage
of XML files but never speak about the adaptability of their
structure to suit existing relationships in XML documents.
However, our proposed compact structure can be used for
XML documents having one-to-many relationships too.

OUR CONTRIBUTIONS

 This paper proposes a Redundancy Free XML Storage, to
store XML documents. Also it discusses about the one-to-
many relationships that exist between XML documents and
the importance to preserve those relationships. Experimental
results conform that the RFX structure makes efficient usage
of available space and stores XML documents efficiently,
while preserving the relationship between the elements in the
document and also the relationship between the XML docu-

Designing and Querying A Compact Redundancy Free Xml Storage The Open Information Systems Journal, 2009, Volume 3 99

ments. This paper also details the query and update effi-
ciency achieved in RFX Compact Storage.

 The proposed structure is extensively advantageous when
existent relationships in XML documents should be left un-
disturbed. Although Query Optimization techniques [6] have
been proposed in this area, research on storage schemes for
documents with one-to-many relationships is yet at a nascent
stage.

PRELIMINARIES

 Representing arbitrary relationships between data items
is a critical part of the data model. A standard mechanism for
such representations is “modeling one-to-many relation-
ships” in XML documents. RFX structure is designed to suit
such relationships.

CONTAINMENT RELATIONSHIPS

 In a Containment Relationship, a structure is defined
where one element is contained within another. In the
strongest form of this relationship, the "contained" element
ceases to exist when the "container" element is removed. As
given in the Fig. (1) the element “EDITOR” ceases to exist if
the “TITLE” element is removed.

Fig. (1). Containment Relationships.

INTRA DOCUMENT RELATIONSHIPS

 A dependency relationship between two entities within a
single document represents an Intra document relationship.
In a case where we have one element with many other re-
lated elements, rather than a first element containing second
element, each second element will have a relationship to the
first element. A first element “KEY” is used as a reference to
the second element(KEYREF). For e.g rather than the author
element being contained in the book element, book element
is referenced by author element via “KEYREF” attribute as
given in Fig. (2). This is very similar to a foreign key in a
relational database.

INTER DOCUMENT RELATIONSHIPS

 The Inter-document relationship is much like the Intra-
document relationship. It uses the Id and IdRef attributes to
assign an attribute to a parent attribute. The difference is that
in Inter-document relationship, the information spans over
multiple XML documents and the documents are related by
HREF or KEYREF attributes as given in the Fig. (3).

Fig. (3). Inter Document Relationship.

RFX ARCHITECTURE

 The RFX storage is the compact storage which is used
for storing the XML documents in a space efficient way.
This is a multilayered architecture where the element and
data are stored as separate layers and this facilitates the navi-
gation and retrieval of data easily. The first layer is called as
the topology layer, the second is the tag layer and the third
one is the data layer. The overall design of the RFX system
is given in the Fig. (4).

Fig. (4). RFX Architecture.

Topology Layer

 This layer stores the order information of the XML
Document using a novel approach. XML document since has

Fig. (2). Intra Document Relationship.

100 The Open Information Systems Journal, 2009, Volume 3 Senthilkumar et al.

different levels of nesting can be modeled as a k-ary tree. We
tend to store the order information of this k ary tree in theo-
retic minimum of 2n bits. Zhang [7] provided a succinct ap-
proach using balanced parenthesis encoding to store blocks
of data. Similar to balanced parenthesis encoding, we use a
novel approach to encode the order of the XML document
rather than nesting information. This is called as order en-
coding. We discuss the advantages of doing so (encoding the
order rather than nesting information) in coming sections.
The nesting information of XML document is stored in layer
2 (RFX Tag Layer).

 RFX topology layer uses an order array to encode the
order of occurrence of elements, attributes and text data in
the XML document. The order of occurrence is encoded us-
ing two bits. Hence to encode the order, we require only 2n
bits, which indicates the encoding can be kept in main mem-
ory itself, thereby improving both query and update per-
formance.The information encoded in the two bits are pre-
dicted as follows

00: Element Node

01: Attribute Node

10: Text Node of an Element

11: Text Node of an attribute.

Sample XML document:

<biblio>

<book id=1>

 <author>J.Austin</author>

 <title>Emma</title>

</book>

<book id=2>

 <author> C.B ronte</author>

 <title> Jane Eyre </title>

</book>

</books>

Order Array:
00 00 01 11 00 10 00 10 00 01 11 00 10 11 10

Hence the order of the XML document is encoded with only
2n bits which is the theoretic minimum.

TAG Layer

 The TAG layer is partitioned into two sub layers, and
also contains the element structure mapping, which connects
the topology layer and the tag layer.

Element Structure Mapping

 After the order has been encoded in the topology layer,
the bit pairs in the order array have to be linked to the actual
elements, attributes or text data in lower layers. Using a
pointer based approach for this will increase the space usage
from 2n bits to less desirable to (nlogn).

 To identify the actual nodes pointed by bit pairs of the
order array, we make the element structure mapping an exact
mirror copy of order array. Each bit of order array is repre-
sented by 4 bits in element structure mapping. Hence each
node can be addressed by 2*4 = 8 bits. To find a node
pointed by bit pairs in the order array, we’ve to search the

element structure mapping in corresponding position for the
node identifier. Actual labels of the node can be found from
lower layers using the node identifier. Node identifier is used
to map node labels of varying size into domain of fixed size.

 Since RFX is intended to store schema less documents
too, there is no way to calculate total number of unique ele-
ments and attributes prior to parsing of the document. Hence
there is no way to pre identify the minimum cell size of Ele-
ment Structure mapping which is log E, where E is the num-
ber of unique elements in the document. Hence we fix the
cell size of element structure mapping to optimal 4 bits,
which we found enough for existing XML documents as
number of unique internal nodes in a XML document is very
less. However, the cell size can be increased to satisfy future
needs.

 Fixing the cell size of element structure mapping as 4 bits
limits the number of identifiers for text data to 256 (Two
consecutive cells address a single node corresponding to a
bit pair address a single node), in case of [5] n log E which
we found as a severe drawback. To overcome this drawback,
we use the approach used in [8]. We use multiple levels of
indirection to increase the number of available identifiers to
1183907.We describe this approach in the following para-
graph.

 As in [8] we use blocks to provide various multiple levels
of indirection however the number of blocks is 8. Note that
these 8 blocks can be addressed by 3 bits. Each block is of
size 32 bytes. Every cell of the element structure mapping
that which corresponds to text data, points to one of the 8
blocks and also specifies the offset inside the block. The
three higher order bits of the cell specifies the block address
while the lower order five bits specifies the byte offset
within the block.

 Among the eight blocks, blocks 0,1 and 2 are direct
blocks, 3 and 4 are single indirect blocks, 5 and 6 are double
indirect blocks and 7 being triple indirect block. A single
direct block contains 32 direct text label identifiers. Each
single indirect block contains 32 direct blocks. Each double
indirect block contains 32 single indirect block and so on.
This approach can be extended to generate more ids by vary-
ing the block size and the number of indirect blocks.

 Hence, the number of identifiers in each block is as fol-
lows

3 direct blocks = 2*32 = 96 identifiers (0 – 95)

2 single indirect blocks = 2*32*32= 2048 identifiers (96 -
2143)

2 double indirect blocks = 2 * 32 *32 *32 = 65536 identifiers
(2144 – 67679)

1 triple indirect block = 1 * 32 * 32 * 32 * 32 = 1048576
identifiers (67680 - 1183906).

 Note that all these blocks (672 bytes in total) too can be
stored in main memory which results in fast resolution of the
referenced text node.

Sub Layers

 The first sub layer contain the element table to store in-
formation about the elements and the second part contains

Designing and Querying A Compact Redundancy Free Xml Storage The Open Information Systems Journal, 2009, Volume 3 101

the attribute table to store information about the attrib-
utes.Each row in the element table corresponds to an element
of the XML document. Every row entry consists of five
parts. The serial ID of the element and the name of the ele-
ment are first and fifth parts respectively. The nesting infor-
mation of every node in the XML document is stored as
Level ID in the second part. If the nesting information is
stored in topology layer then it results in wastage of O(log E)
bits in element structure mapping for element or attribute
present. This is evident in [5]. Hence we move the nesting
information to layer 2.

 For Inter relational documents, information is stored
across the XML documents i.e., in more than one XML file.
In such cases, one XML document refers to one or more
XML documents. To keep track of such references, we in-
troduce a column called file ID in element table.

 For Containment and Intra relational documents, differ-
ent elements with same name may be present at the same
level. For e.g. In a university database, the name of the de-
partment as well as the name of the employees may occur at
the same level, and they need not necessarily have the same
parent element. In such cases, an XPath query to retrieve the
name of the departments will also retrieve the name of the
employees and vice versa. To resolve this ambiguity, we add
a column named ‘parent ID’ in the element table. This re-
solves the 'same name-same level' problem as we use ID of
the parent element to identify the correct child element
needed.

Fig. (5). Element Information Table.

 Information about an attribute consists of three parts
which are stored as a single row in the attribute table. The
third part is the name of the attribute. The second part is the
ID of the attribute and the first part specifies to which ele-
ment the attribute belongs to, using the element ID.

Fig. (6). Attribute Information Table.

Data Layer

 The Data layer is formed with three data tables. The data
tables store text data. Leaf nodes of XML tree are stored in
the data layer.

 Fig. (7) shows the element as well as the attribute data
tables containing three attributes. The first is the serial ID of
the element or attribute to which the data belongs to and the
second is the serial ID of the data value and the third value is
the text data itself.

 In the storage of Inter relational document, each XML
document which is referenced from another XML document,
is given a unique file ID. The file ID and the name of the

referenced XML document are stored in the file table (as
given in Fig. 8) of the referencing document. The file ID
column acts as a map to the file table. Use of the file table to
store the file name, reduces the complexity of querying the
Inter relational document, else there would be no direct way
to find the referenced document in the database, as the name
of the XML document itself serves as the key to find the
document in the database.

Fig. (8). File Table.

 Thus the internal nodes of the XML tree are stored non-
redundantly in the Tag Layer.

RFX IMPLEMENTATION

 The implementation of RFX structure for maintenance of
XML Database is described in Fig. (9). The major modules
designed for the system implementation are parsing the
XML document, separating the one to many relationships,
separating the given document as tag, attribute and data,
separating the data further into tag data and the attribute data
and searching the tags, attributes and the data to eliminate
redundancy and finally writing into the respective layers.

Fig. (9). RFX Implementation Flow Chart.

Fig. (7). Element/Attribute data table.

102 The Open Information Systems Journal, 2009, Volume 3 Senthilkumar et al.

QUERYING METHODS

 Querying is basically performed by searching the struc-
ture and searching the value. Searching the structure is done
by using the order encoding. This finds the ancestor-
descendant relationship in O(1) as the information is stored
directly as level ID in the Element Information table. Simi-
larly the parent child relationship can be found in O(1). Also
the other frequently used step axes for an XML document
such as next-sibling, previous-sibling, next-following and
next-preceding can be determined easily from the order en-
coding and element structure mapping.

Basic Node Navigation Operations

 This section gives algorithms for basic node navigation
operations. Given an arbitrary node x in a large XML docu-
ment, the basic node navigation operators described below in
Figs. (10-13) enables the user to traverse back and forth the
XML document efficiently.

Fig. (10). Algorithm to find parent node.

Fig. (11). Algorithm to find first child of a node.

Fig. (12). Algorithm to find next sibling of a node.

Queries Identified

 Any XPATH query can be categorized according to tree
structure given in Fig. (14).

Fig. (13). Algorithm to find previous sibling of a node.

Fig. (14). Querying types.

 Conditional queries are the queries that traverse the tree
structure of XML documents checking for the condition
given by the user and returning the values of those nodes that
satisfy the specified conditions. These types of queries are
executed by the method of search by value. The query execu-
tion path is guided by certain values retrieved according to
the condition.

 In unconditional queries, the user does not specify any
condition(s). These types of queries follow the mechanism of
search by reference.

eg. /employees/employee/department/Name

 Conditional queries with reference are queries that refer
to nodes of other scope (intra relational documents) or those
which refer to nodes in another document (inter relational
documents).

eg.//Department[@id = current()/@DepartmentRef]

 Conditional Queries without reference does not navigate
to the nodes of other documents. The XPATH query returns
results from the same XML document. Such type of queries
are the conditional queries of containment documents

eg./departments/department[Name=”Enterprise Develop-

ment”]

eg. /employees/employee/department

Search by Reference (Unconditional Query):

 For unconditional queries, for each node in XPATH
query, the ancestor-descendant relationship is checked with

PARENT(node)

1. if node exists

a. return parent_id(node)
2. return error

FIRSTCHILD(node)
1. if node exists

a. Find position(next_element_node) in
order array

b. Find serial_id(node) at same position in
Element structure mapping

c. Find child node from Element informa-
tion table using serial_id

d. If (level_difference(node, child)==1)
i. Return child

e. Return error
2. return error

NEXTSIBLING (node)

1. if node exists
a. while(1)
i. find position(next_element_node) in order

array
ii. find serial_id(node) at the same position in

 element structure mapping
iii. find sibling node from element information

 table using serial_id
iv. if(level_difference(node, sib-

ling_found)==0)
1. return sibling

2. return error

PREVIOUSIBLING(node)

1. if node exists
a. while(1)

i. find position (previous_element_
node) in order array

ii. find serial_id(node) at the same
position in Element structure map-
ping

iii. find sibling node from Element In-
formation table using the serial_id

iv. if(level_difference(node,sibling_fo
und)==0)
1. return sibling

2. return error

Designing and Querying A Compact Redundancy Free Xml Storage The Open Information Systems Journal, 2009, Volume 3 103

previous node. And the values needed are retrieved at the
end of the query. This is known as search by reference.

Search by Value (Conditional Query)

 For conditional queries, values are retrieved according to
the given condition. After a condition is encountered in the
query, further values are retrieved only according to the con-
ditions. This is known as search by value.

/* General Querying method for Intra documents in RFX
Compact Storage */

 For intra relational documents, we retrieve parent ID of
each element. In addition of checking ancestor descendant
relationships between consecutive nodes of the query, we
check if elements are in same scope by comparing the parent
IDs.

/* General Querying method for Inter documents in RFX
Compact Storage */

 For inter relational documents, to navigate to nodes of
another XML document, we use file ID of that element.
When an element present in current document refers to an

other document, then file ID of referenced document is got
from Element table and the corresponding file name is got
from file table.

UPDATE MAINTENANCE

 Insertion and deletion of nodes in XML document re-
quires the modification of topology layer as well as the Tag
Layer or the text data layer as necessary. In static representa-
tion of a tree , if we insert or delete a node, we must build
the sequence from the scratch. Instead to allow efficient
modification of the XML tree in the topology layer, we in-
crementally divide the XML tree into disjoint blocks as in
previous approaches [5, 9-12].

 Lemma 1: There exists a dynamic representation for a
dynamic sequence of 2n balanced parenthesis using 2n+o(n)
bits of space and supporting operations select, insert , and
delete in O(log n) worst-case time.

 The order array is divided into blocks with each block
representing N nodes of the XML tree, where Nmin N Nmax

. Nmin and Nmax are minimum and maximum block sizes re-
spectively. The blocks are connected by inter block pointers.
Since inter block pointers should require only o(n) bits over-
all, the minimum block size is (log

2
 n) [12]. Nmax is fixed

as | | bits. is selected such that when we insert a node to a
block of maximal size , we can split the block into two
blocks , each of size atleast Nmin. Hence | | is multiple of

(log
2
 n) , hence (klog

2
 n).

SEARCH BY REFERENCE

1. While (there are more nodes in XPath Query)

a. Get Current node

b. Retrieve the Current node’s row from

 Element /Attribute table (tag layer)

c. Validate ancestor descendant relationship

d. if (ancestor descendant relationship not

preserve)

i. Invalid query, exit

e. else

i. if(!last node of the query)

1. continue

ii. Find the position of retrieved ID in the element

 Structure mapping

2. Filter the selected positions using order encoding
3. Print nodes that are descendent of filtered IDs

4. Exit

SEARCH BY VALUE

1. While (there are more nodes in XPath Query)

a. Get Current node

b. Retrieve the Current node’s row from

 Element/Attribute table (Tag layer)

c. Validate ancestor descendant relationship

d. if(ancestor descendant relationship not pre-

served)

i. Invalid query, exit

e. if (condition encountered)

i. Retrieve data ID satisfying the condition

(Data Layer)

f. Retrieve the positions of the selected ID in the

 element structure Mapping

g. Filter the positions using order encoding

h. if (condition encountered previously)

i. Filter the selected positions with position

 retrieved by previous condition

i. if (last node of the query)

i. Print the nodes that are descendants of nodes

in selected positions (Element structure map-

ping)

2. Exit

INTRA DOCUMENT QUERYING

1. For each node in the XPATH query

a. Retrieve parent ID, level ID and element/attribute

 ID(s)(Tag layer)

b. Check for parent-child/ancestor-descendant

 relationships

c. if (ancestor-descendant relationship not preserved)

i. Invalid query , exit

d. else

i. Select the correct element ID by using parent

 ID(Tag layer)

ii. if(attribute)

1. Check if element ID of previous element and

element ID of the attribute in Attribute table

are same (Data layer)

2. Use search by value/search by reference to return results.
3. Exit

INTER DOCUMENT QUERYING

1. for each node in XPATH query
a. Retrieve file ID, level ID and element ID(s), parent

ID(Tag layer)
b. if(file ID not null)

i. Get file name of referenced file from file table
using file ID(Tag layer)

2. Use search by value/search by reference technique
 to retrieve data values from the referenced file
 (Data layer)

3. Exit

104 The Open Information Systems Journal, 2009, Volume 3 Senthilkumar et al.

 When we insert a new node x in block p, the bits (note
that each node is represented by two bits in the encoding) at
the position of insertion and the bits at the right of the posi-
tion are shifted two places towards right uniformly. The node
is inserted in the resulting empty space. Element Structure
mapping and the tables in lower layers are modified accord-
ingly. A new id is generated and the data is inserted into the
Element Table if the node is an element or into the attribute
table if the node is an attribute or into the appropriate text
data tables if its leaf node.

PERFORMANCE ANALYSIS AND RESULTS

 The performance analysis for this paper can be done in
two ways:

 One based on the storage space required for storing an
XML document. Another based on the query performance.
Yet the space requirement will have the upper hand since
this paper focuses mainly on the compact storage of the
given XML document in RFX structure.

STORAGE SPACE

 The graph in Fig. (15) shows the impact of lesser storage
space of the documents with respect to increase in document
size as given Table 1.

Table 1. Storage Size of RFX, ISX, XMill and Xgrind

Benchmark

Database

Source

Data (MB)

RFX

(MB)

ISX

(MB)

XMill

(MB)

XGrind

(MB)

Mondial 1.7 1 1 0.3 0.6

Orders 5.1 3 3 0.5 1.3

Shakespeare 7.5 5.1 5.3 0.9 2.1

EXI- Telecom 10.2 7.8 8 1.2 3.8

Lineitem 30.8 15.8 21 3.7 8.6

DBLP 127.2 73.4 87 14.9 35.8

Fig. (15). Storage Space Comparisons.

 Thus, we observe that the Space Complexity of XML
document has dramatically reduced in RFX Compact Stor-
age.

Execution Time

 The query has been executed on system with 1.6 GHz
Intel Pentium® processor, 512 MB RAM and 80 GB hard
disk.

Query Performance

 We have carefully chosen conditional queries and uncon-
ditional queries of various complexities. The table below
gives specifies the queries selected in comparison with in-
creasing storage space. The objective of gradual increase in
execution time with increase in storage space is achieved
here.

Table 2. Queries

Query XPATH EXPRESSION

Q1 Mondial/country/name

Q2 Mondial/country[@id=”f0_149”]/name

Q3 /student[id=/exam[grade<’B’/id or semester>5]/name

Q4 /student[id=/exam[grade<’B’/id and semester>5]/name

 Q1 and Q2 are Containment relationship queries, Q3 and
Q4 are Intra and Inter document relationships queries respec-
tively.

 Tables 3,4,5 and 6 give the execution times of queries
1,2,3 and 4 in ISX , NoK and RFX compact storage.

Table 3. Performance Results for Query 1

 1MB 16MB 64MB 128MB

ISX 0.001 0.021 0.13 0.85

NOK 0.005 0.015 0.76 1.25

RFX 0.001 0.013 0.087 0.21

Fig. (16). Execution time comparison for query 1.

Table 4. Performance Results for Query 2

 1MB 16MB 64MB 128MB

ISX 0.02 0.5 3.52 7.54

NOK 0.015 1.03 5.02 10.36

RFX 0.01 0.235 2.003 5.47

Designing and Querying A Compact Redundancy Free Xml Storage The Open Information Systems Journal, 2009, Volume 3 105

Fig. (17). Execution time comparison for query 2.

Table 5. Performance Results for Query 3

 1MB 16MB 64MB 128MB

ISX NA NA NA NA

NOK NA NA NA NA

RFX 0.023 0.35 2.74 6.63

Fig. (18). Execution time comparison for query 3.

 As ISX and NoK does not support intra and inter docu-
ment relationships, such queries do not apply to both the
storage schemes. Hence, the graphs for both query 3 and
query 4 show query execution line of RFX compact storage
only.

Table 6. Performance Results for Query 4

 1MB 16MB 64MB 128MB

ISX NA NA NA NA

NOK NA NA NA NA

RFX 0.026 0.41 3.38 6.86

 The proposed storage technique is proved to be efficient.
This is corroborated well by experimental results.

RELATED WORK

 In this section, we briefly review some related work and
compare our approach with those as reported in the litera-
ture.

Fig. (19). Execution time comparison for query 4.

 In recent years, many storage schemas for XML data
have been proposed i.e. mapping XML data to relational data
[13] or object relational models [14]. A key issue that faces
every XML data management system is the efficient use of
storage space and optimization of XML queries.

 Although Artem Chebotko et al. [15] aimed in construct-
ing trees for XML documents for native XML databases,
they did not address the reconstruction problem

 Previous work on XML publishing [4, 16-18] focuses on
publishing existing relational data as XML documents. We
are interested in efficient storage and compression of XML
documents combining the best practices of both hierarchical
and relational storage systems.

 XML compressors can be classified into main groups –
Queriable and Non-Queriable. Notable among the non-
queriable compressors are Xmill [1], XMLPPM [19], Millau
[20] and SCA [21]. Xmill is the first proposed XML con-
scious compression architecture which was proposed by Lie-
fke and Suciu [1]. XMill achieves good compression ratio
and does not require DTD to compress the XML document.
But its main drawback of requiring decompression of the
whole document before querying hinders its wide usage.
XMLPPM [19] achieves better compression ratio than
XMill(default mode) but takes longer time to compress the
document (since PPM is relatively slow compression tech-
nology). Millau [20] is a system that uses a set of compres-
sion and encoding techniques that are dedicated for XML
compression. But it’s a DTD aware compressor and also
consumes large memory when compressing large XML
documents.SCA also suffers from the same problem as Mil-
lau.

 Xgrind [4], Xpress [22], XMLZip [23], XML Skeleton
Compression [24], XQuec [25], XQZip [26], XCQ [27] are
some of the queriable XML Compressors. Xgrind [4], the
first of its type, though has lower compression ratio than that
of XMill and longer compression time, it supports certain
types of queries and retains the document structure. Both
Xgrind [4] and Xpress [22] requires two scans over the origi-
nal XML document. This attributes to low compression
speed. Also both the techniques does not support set based
query evaluation such as join queries. XMLZip [23] com-
presses XML documents that are represented as DOM trees.
However, the node level grouping strategy in XMLZip does
not improve compression efficiency. The advantage of
XMLZip is that it allows limited random access to partially

106 The Open Information Systems Journal, 2009, Volume 3 Senthilkumar et al.

decompressed XML documents. XML Skeleton Compres-
sion [24] extracts and compresses the document structure
using a technique based on the idea of sharing common sub-
trees. It supports efficient querying as most of the query op-
erations take place in main memory. But, node navigation
time for XML Skeleton Compression is linear.

 Like Xpress and XGrind, XQuec compresses individual
data items. However in contrast to these two, it seperates
XML structure from XML data itmes. Although XQuec sup-
ports large subsets of queries, it makes insufficient use of
commonality of XML data and also the auxiliary data struc-
tures used incur huge space overhead. Though XQZip over-
comes the drawbacks of XQuec, it does not support evalua-
tion of complex queries such as joins and order based predi-
cates. XCQ is a schema aware XML compressor which can
process only valid XML documents and requires longer
compression and decompression times.

 [30] and [31]Shows efficient labeling schemes using pre-
order post-order labeling and sector based labeling respec-
tively for efficient XPath axes access. However they do not
address any issues related to compression and updating of
XML documents

 Succinct representation of dynamic binary trees has been
studied by Munro et al. [10] and Raman [11]. [11] shows
that such dynamic binary trees can be represented in 2n+
o(n) bits . Transforming dynamic k-ary trees to binary form
yielded poor results. Hence Munro [10] posed this as an
open problem to represent dynamic k ary trees succinctly.
Chan et al. [28] and Raman [11] provided succinct represen-
tations for dynamic k-ary trees. Raymond et al. proposed [5]
a new compact XML storage engine, called ISX, to store
XML in a more concise structure. Theoretically, ISX uses an
amount of space near the information theoretic minimum on
random trees. But to the best of our knowledge ISX stores
only the valid XML document, which means that it is a
schema aware storage system. The succinct approach pro-
posed by Zhang et al. [7] used balanced parenthesis encod-
ing for each block of data. The major difference between our
proposal and the above works is that we try to minimize
space usage by eliminating redundancy while allowing effi-
cient access, query and update of the database.

 Ferragina et al. [29] first shreds the XML tree into a table
of two columns, then sort and compress the columns
individually. It does not offer immediate capability of
navigating or searching XML data unless an extra index is
built. However, the extra index will degrade the overall
storage size (i.e., the compression ratio). RFX Compact
Storage facilitates the capability of navigating and searching
the data without the aid of any extra index.

Comparison of Features with other Storage Systems

 The following table illustrates a thorough comparison
between various storage systems for XML Databases with
RFX Structure.

 This paper mainly concentrates on the design of the stor-
age scheme for XML Databases that involve one-to-many
relationships. However this work can be extended and en-
hanced on the grounds of security and access rights for the
concerned database. Further, compression techniques can

also be analyzed to be incorporated in RFX. These enhance-
ments can play a vital role in molding RFX as a fully-
fledged storage scheme for XML databases.

CONCLUSIONS

 A compact and efficient XML repository is critical for a
wide range of applications including applications in memory
limited mobile devices. Even in heavily loaded system, the
topology layer and element structure mapping of tag layer
could be stored entirely in main memory and hence substan-
tially improve the overall performance. Besides having a
compact storage, the need of the hour is the redundancy re-
moval for which we have provided two layers the tag layer
and data layer that removes the redundancy of tags and data
from the original XML document. The database is scalable
storing multiple documents having one to many relation-
ships. The proposal designed here is effective and overshad-
ows the advantages of all the previously proposed works.

REFERENCES

[1] H. Liefke and D. Suciu, “XMill: an efficient compressor for XML

data,” in ACM SIGMOD international conference on management
of data pages, 2000, pp. 153-24.

[2] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay,
H. Pirahesh and B. Reinwald, “Efficiently publishing relational

data as XML Documents,” in Proc. of the VLDB Conference, 2000.
[3] J. Katajainen and E. Makinen. Tree compression and optimization

with applications. International Journal of Foundations of Com-
puter Science (FOCS) IEEE Computer Society, 1990, Vol. 1, pp.

425-447.
[4] P. Tolani and J. Haritsa, “XGRIND: A query-friendly XML com-

pressor,” in 18th International Conference on Data Engineering
(ICDE) IEEE Computer Society, 2002, pp. 225-234.

[5] R. Wong, F. Lam and W. Shui, “Querying and maintaining a com-
pact XML storage,” in 16thinternational conference on World Wide

Web, Banff, Alberta, Canada, 2007.
[6] R. Senthilkumar, A. Kannan, V. Prasanna and P. Hindumathi,

“Query Optimization for Intra Document Relationships in XML
Structured Document,” presented at the 1st international conference

on Advances in Computing, Maharashtra, India, 2008.
[7] N. Zhang, V. Kacholia, and M. Ozsu, “A Succinct Physical Storage

Scheme for Efficient Evaluation of Path Queries in XML,” in 20th
International Conference on Data Engineering (ICDE) IEEE Com-

puter Society, 2004, pp. 54-65.
[8] M.J. Bach, The Design of Unix Operating System, India, Prentice

Hall of India: Private Limited, 15th printing, 2007, pp. 67-72.
[9] D. Arroyuelo and G. Navarro, “Space-efficient construction of LZ-

index,” in Proceedings ISAAC, LNCS 3827, 2005, pp. 1143-1152.
[10] J. Munro, V. Raman and A. Storm, “Representing dynamic binary

trees succinctly,” in Proceedings of SODA, 2001, pp. 529-536.
[11] R. Raman and S. Rao, “Succinct dynamic dictionaries and trees,” in

Proceedings of ICALP. LNCS 2719, 2003, pp. 357-368.
[12] D. Arroyuelo, “An Improved Succinct Representation for Dynamic

K-ary Trees,” CPM, Pisa Italy. pp. 277-289, 2008.
[13] D. Florescu, D. Kossmann, “Storing and querying XML data using

an RDBMS,” IEEE Data Engineering Bulletin, Vol. 22, No. 3, pp.
27-34, 1999.

Designing and Querying A Compact Redundancy Free Xml Storage The Open Information Systems Journal, 2009, Volume 3 107

[14] T. Shimura, M. Yoshikawa and S. Uemura, “Storage and Retrieval

of XML Documents using Object-Relational Databases,” in Proc.
Of the 10th International Conference on Database and Expert Sys-

tems Applications (DEXA'99), Springer-Verlag, Lecture Notes in
Computer Science, 1999, Vol. 1677, pp.206-217,

[15] A. Chebotko, M. Atay, S. Lu and F. Fotouhi, “XML sub tree recon-
struction from relational storage of XML documents,” Data &

Knowledge Enginreeing, Vol. 62, No. 2, pp. 199-218, 2007.
[16] M. Fernandez, A. Morishima and D. Suciu, “Efficient Evaluation

of XML Middle-ware Queries,” presented at the ACM SIGMOD
Conference on the Management of Data, Santa Barbara, California,

2001.
[17] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan and J. Fun-

derburk, “Querying XML Views of relational data,” in Proc. of the
VLDB Conference, 2001, pp. 204-215.

[18] M. Fernandez, A. Morishima and W. Tan, “SilkRoute: Trading
Between relations and XML,” presented at the 9th World Wide Web

Conference, Amsterdam, 2000.
[19] J. Cheney, “Compressing XML with multiplexed hierarchical PPM

models,” in Proceedings of the IEEE Data Compression Confer-
ence, 2000, pp. 163-172.

[20] M. Girardot and N. Sundaresan, “Millau: An encoding format for
efficient representation and exchange of XML over the Web,” in

Proceedings of the 9th International WWW Conference, 2000, pp.
747– 765.

[21] M. Levene and P. Wood, “XML structure compression,” in Pro-
ceedings of the Second International Workshop on Web Dynamics,

2002.
[22] J. Min, M. Park and C. Chung, “XPRESS: A queriable compres-

sion for XML data,” in Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, San Diego, California,

2003.

[23] XMLSolutions Releases XMLZip - Leading XML File

Compression Tool. http://www.w3.org/2003/08/binary-
interchange-workshop/31-oracle-BinaryXML_pos.htm [Accessed:

29th Jan. 2009].
[24] B. Grohe and C. Koch, “Path queries on compressed XML,” in

Proceedings of the 29th International Conference on Very Large
Data Bases (VLDB’03), Berlin, Germany, 2003.

[25] A. Arion, A. Bonifati, G. Costa, S. D'Aguanno, I. Manolescu, and
A. Pugliese, “XQueC: Pushing queries to compressed XML data,”

in Proceedings of the 29th International Conference on Very Large
Data Bases (VLDB’03), 2003.

[26] J. Cheng and W. Ng, “XQzip: Querying compressed XML using
structural indexing,” EDBT, 2004, pp. 219-236.

[27] W. Y. Lam, W. Ng, P. T. Wood, and M. Levene, “XCQ: XML
Compression and querying system,” in Poster Proceedings, 12th

International World-Wide Web Conference, 2003.
[28] H.L. Chan, W.K. Hon, T.W. Lam and K. Sadakane, “Compressed

indexes for dynamic text collections.” ACM TALG, vol. 3(2), arti-
cle 21, 2007.

[29] P. Ferragina, F. Luccio, G. Manzini and S. Muthukrishnan, “Com-
pressing and searching XML data via two zips,” In Proceedings of

the 15th international conference on World Wide Web, 2006, pp.
751–760.

[30] I. Tatarinov, “Storing and Querying Ordered XML Using a Rela-
tional Database System,” presented at ACM SIGMOD,’2002, Madi-

son, Wisconsin, USA, 2002.
[31] R. Thoangi, “A Concise Labeling Scheme for XML Data,” pre-

sented at the International Conference on Management of Data,
COMAD, Delhi, India, 2006.

Received: February 15, 2009 Revised: May 25, 2009 Accepted: June 03, 2009

© Senthilkumar et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the

work is properly cited.

