
 The Open Information Systems Journal, 2010, 4, 1-11 1

 1874-1339/10 2010 Bentham Open

Open Access

An Intelligent Web Service Workflow: A Petri Net Based Approach

E. Hossny, S. AbdElrahman and A. Badr*

Department of Computer Science, Faculty of Computers and Information, Cairo University, Egypt

Abstract: Fuzzy Petri Net for Web Service Composition (FPN4WSC) aims to compose the individual web services into
more complex one. It is a workflow model which is hybridization between Petri net, SHOP2, and fuzzy logic. Petri net al-
lows user to specify his request as a workflow. SHOP2 is used as an Artificial Intelligence (AI) planning system to get a
plan for the user request. However, SHOP2 fails to capture the uncertainty. So, the fuzzy logic is used as a refinement en-
gine to get the best solution based on the user preferences. Therefore, FPN4WSC presents simple graphical, intelligent,
and automatic web service composition model. FPN4WSC model is scalable to any workflow-based domains. As a case
study, it is applied on the travel reservation domain where the user should specify his preferences and the fuzzy engine
tries to get the best solution depending on his preferences.

Keywords: Web Services, Fuzzy Petri Net, SHOP2, Web Service Composition.

INTRODUCTION

 Nowadays, the internet has become a service oriented
model instead of a repository of information, where many
companies are putting their core business on the web as a
collection of web services [1-3]. Web service [1, 4] is con-
sidered as self-contained, self-describing, modular applica-
tion that can be described, advertised, discovered, and exe-
cuted through the web. It can be identified by URL, whose
interfaces and bindings are described by using XML.
 The emergency of web services has led to more interest
for composing individual web services into more complex
one. The ability to efficiently and effectively assemble the
autonomous and heterogeneous web services on the internet
at runtime is a critical step towards the development of web
service applications. Actually, if there is no web service that
can fulfill the user request, there should have a possibility to
integrate set of existing web services together to satisfy the
functionality required by the user [5]. Thus, web service
composition has been an active area of research in the past
few years. The study of workflow model is one of the most
important parts of web service composition. Several ap-
proaches are proposed to investigate and model the process
of web service composition. However, these approaches did
not provide formal framework for modeling the automated
and complex service composition process. Also, the current
technologies, such as Universal Description, Discovery, and
Integration (UDDI) [6], Web Service Description Language
(WSDL) [7], and Simple Object Access Protocol (SOAP)
[8], do not realize complex web service integrations. So, they
give limited supported in web service composition [1]. The
proposed system is a fuzzy Petri net based model for com-
posing web services. This model is called Fuzzy Petri net for
Web Service Composition (FPN4WSC). The web services
are modeled as Petri nets by assigning transitions to services

*Address correspondence to this author at the Department of Computer
Science, Faculty of Computers and Information, Cairo University, Egypt;
E-mail: s.abdelrahman@fci-cu.edu.eg

and places to states. The model uses SHOP2 as an AI plan-
ner to get a plan for the user request. Since SHOP2 can not
capture the uncertainty, the fuzzy logic is used as a refine-
ment engine to get the best solution based on the user prefer-
ences.

BACKGROUND

Petri Net

 A Petri Net (PN) [9] is a directed, connected and bipartite
graph. It was invented in 1962 by Carl Adam Petri. A Petri
net has four components, namely place nodes, transition
nodes, directed arcs connecting places with transitions, and
tokens occupy places. Petri nets have a well defined mathe-
matical foundations and an easy-to-understand graphical
feature. The graphical nature of Petri nets makes them self-
documenting and a powerful design tool which facilitate the
visual communication between the members who are en-
gaged in the design [10].

Definition 1 (Petri Net)

 A Petri net is an algebraic structure (P, T, F, M0):

1. P is a finite set of places, T is a finite set of transi-
tions and P T =

2. F)()(TxPPxT is a set of directed arcs from P
to T and from T to P

3. M0 is the initial marking.

SHOP2

 SHOP2 [11] is a domain-independent Hierarchical Task
Network (HTN) planning system. HTN planning is an AI
planning methodology that creates plan by task decomposi-
tion. The task decomposition is a process in which the plan-
ning system decomposes tasks into smaller and smaller sub-
tasks, until primitive tasks are found that can be performed
directly. This makes HTN planning system a good candidate
for automatic Web services composition task.

2 The Open Information Systems Journal, 2010, Volume 4 Hossny et al.

 One difference between SHOP2 and other HTN planning
systems is that SHOP2 plans for tasks in the same order that
they will later be executed. Planning for tasks in the order
that those tasks will be performed makes it possible to know
the current state of the world at each step in the planning
process. While SHOP2 allows for tasks to be sequentially
ordered, there is no mechanism to handle the control con-
structs related to concurrency, namely parallel split, syn-
chronization, and exclusive choice. The proposed model
overcame this problem by adding a new keyword
(:concurrent) to handle the concurrency problem.
 In order to do planning in a given domain, SHOP2 needs
to be given knowledge about that domain. The knowledge
based of SHOP2 contains set of operators and methods. Each
operator is a description of what needs to be done to execute
some primitive task. Each method tells how to decompose
some compound task into partially ordered subtasks.
 There exists a java implementation for SHOP2 called
JSHOP2 [12] which is an open source. The inputs to
JSHOP2 are a planning domain and a planning problem. The
planning domain is composed of operators and methods. The
planning problem is composed of an initial state and list f
tasks to be performed. The planning domain and problem are
written by the lisp language [13].

RELATED RESEARCH

 Several approaches investigated the process of web serv-
ice composition. However, none of these approaches offers
formal framework for modeling the automated and complex
service composition process. The proposed model addresses
a particular subset of this problem with FPN4WSC, which is
a fuzzy Petri-net-based workflow model for web service
composition. In this section, the approaches that are closely
related to our work are briefly described.
 Web service composition requires more complex func-
tionalities such as transactions, workflow, negotiation, man-
agement, security. Those functionalities are not provided by
the current technologies based on WSDL, SOAP, and UDDI.
There are several efforts that aim at providing such function-
alities, for example, the Business Process Execution
Language for Web Services (BPEL4WS) [14] is positioned
to become the basis of a standard for web service composi-
tion. But this language is complex procedural language and
very hard to implement and deploy [2]. Its XML representa-
tion is very verbose and it has many constructs. Also, it fa-
cilitates orchestration only, i.e. allows execution of a manu-
ally constructed composition. There are also some proposals
such as OWL-S [15] that aims at realizing the semantic web
concept. However OWL-S is a complex procedural language
for web service composition.
 In the workflow community, a lot of attention has been
paid to allow the systems to be adaptive and to separate be-
tween the interface and implementation of a process. eFlow
[16] is one of the recent emerging workflow projects focus
on loosely coupled processes. It supports adaptive and dy-
namic service composition. However, it lacks a formal
model to specify and verify the web service composition [2].
 Petri nets have been widely used as a tool for workflow
modeling and analysis since their introduction by C.A. Petri

in 1962 . Hamadi [2] proposed a Petri-net-based algebra to
model control flows, as a necessary constituent of reliable
web service composition process. The model can capture the
semantics of complex web service composition and enable
declarative composition of web services. Also it aims to pro-
vide support for correct web services by insuring the absence
of deadlocks and live locks. However, it lacks a management
of time and resources. Service/Resource Net (SRN) [1] is an
extended Petri-net-based model for web service composition
with some new elements such as time, resource taxonomy,
and condition. It proposed Web Service Semigroup (WSSG)
and meta-service based on group theory as a theoretical sys-
tem of SRN service taxonomy. This model is more closely
related to the model of Hamadi [2]. Bing and Huaping [10]
proposed a Petri-net-based algebra to capture the semantics
of complex web service composition. In this model the web
services are represented as Petri nets where transitions are
assigned to methods and places are assigned to states. The
model uses the Petri net to test a set of non-functional prop-
erties such as reachability, safety and existence of deadlocks.
However, it did not provide a formal framework for model-
ing the automated and complex web service composition.
Evren et al. [11] integrated the SHOP2 planning system with
DAML-S web services descriptions to automatically com-
pose the web services. The authors used the DAML-S for
semantic markup of web services and gave a detailed de-
scription of how to translate DAML-S process definitions
into a SHOP2 domain. Also, they implemented a converter
to convert a SHOP2 plan to DAML-S format which can be
executed directly by a DAML-S executor. However, that
approach can not handle the control constructs related to
concurrency.
 Fu et al. [17] proposed an optimized web service
composition algorithm based on fuzzy Petri net and semantic
web. In this algorithm the web services are described by
fuzzy Horn clause and the Quality of Service (QoS)-oriented
web service composition model is built by fuzzy Petri Net.

FPN4WSC MODEL

 The process of web service composition can be regarded
as workflow. Workflow model is the precondition of
workflow. The Petri net can be used as a practical method
and tool to model the workflows. The basic definition and
concept of Petri net can be found in [9]. The relation be-
tween Petri net and workflow net is defined as the following
[1]:

Definition 2

 A Petri net is a workflow net iff:

1. has two specific places , source place (i) and sink
place (o) =•=• oi ,

2. if a new transition (t) is added to connect place o and
place i, i.e. }{},{ itot =•=• , PN is strong con-
nected Petri net

 To describe the workflow of web service composition, a
new model is proposed as hybridization between Petri net,
SHOP2, and fuzzy logic. Petri net helps the user to draw his
request as a workflow. SHOP2 is used as an AI planning
system to get a plan for the user request. Since SHOP2 fails

An Intelligent Web Service Workflow The Open Information Systems Journal, 2010, Volume 4 3

to capture the uncertainty, the fuzzy logic is used as a re-
finement engine to get the best solution based on the user
preferences. This model is called Fuzzy Petri net for Web
Service Composition (FPN4WSC).
 Most precisely, the process of automatic service compo-
sition includes the following phases [5].

Presentation of Service

 The service providers publish their atomic services at a
global service registry, such as, UDDI. The essential attrib-
utes to describe a web service include the service's inputs,
outputs and exceptions. In the proposed model, the services
are represented using WSDL.

Translation of the Languages

 Most service composition systems distinguish between
the external and internal service specification languages. The
external languages are used by the service requesters to al-
low them to express what they want in a relatively easy
manner. They are usually different from the internal ones
that are used by the composition process generator, because
the process generator requires more formal and precise lan-
guages, for example, the logical programming languages and
SHOP2 [18].

Generation of Composition Process Model

 The service requester can also express the requirement in
a service specification language. Then, a process generator
tries to solve the requirement by composing the atomic serv-
ices which are advertised by the service providers. The proc-
ess generator usually takes the functionalities of services as
input, and outputs a plan that describes the composite serv-
ice.

Evaluation of Composite Service

 It is quite common that many services have the same or
similar functionalities. So, the planner might generate more
than one composite service fulfilling the requirement. In that
case, the composite services are evaluated by their overall

utilities using the information provided from the non-
functional attributes. The most commonly used method is
utility functions. The requester should specify weights to
each non-functionality attributes and the best composite
service is the one who is ranked on top.

Process Execution Engine

 After a unique composite process is selected, the com-
posite service is ready to be executed. Execution of a com-
posite web service can be thought as a sequence of message
passing according to the plan. The dataflow of the composite
service is defined as the actions that the output data of a for-
mer executed service transfers to the input of a later executed
atomic service.

RESEARCH CONTRIBUTION

 A hybrid system is innovated to achieve simple graphi-
cal, intelligent, and automatic web service composition that
provides the following main contributions:
- The user preferences are satisfied using uncertainty

values for each preference through automatic genera-
tion of suitable plans.

- The proposed system is scalable to any workflows-
based domains. This means the user can get the
WSDL description for a set of web services and add
them to the system without any problem.

- The difficulties of each individual component are
solved. For example, Petri net can only generate
workflows and SHOP2 can only generate plans.
These two components are combined with the fuzzy
to generate an intelligent graphical automatic web
service composition model.

SYSTEM DESIGN

 FPN4WSC can be modeled as a client server model,
where the client asks the server to execute a set of web serv-
ices represented as a Petri net workflow and the server tries
to satisfy his request and provide him with the best solution.

Fig. (1). Fuzzy Petri net model for web service composition.

4 The Open Information Systems Journal, 2010, Volume 4 Hossny et al.

The architecture of the proposed model is depicted in Fig.
(1). The composition system of the proposed model has two
types of participants, namely service provider and service
requester. The service providers publish their services for
use. The service requesters use the services offered by the
service providers. The composition system also contains the
following components: WoPeD (Workflow Petri net De-
signer), translator, JSHOP2, plan generator, service reposi-
tory, discovery engine, evaluator (fuzzy engine), and execu-
tion engine. A full description of each component is illus-
trated in the following subsections. Algorithm 1 specifies
how all these components integrated with each other.

Algorithm 1 System Components Integration

1. The service requester should specify his request (i.e. a
set of web services to be composed) using WoPeD.

2. WoPeD generates a Petri net workflow that is repre-
sented the user request.

3. The translator component (Algorithm 2) is built to
parse the output from WoPeD (i.e. a Petri net
workflow) into lisp problem which is entered as an
input to SHOP2.

4. SHOP2 executes the lisp problem and generates a
plan that is represented as a java code.

5. The plan generator component (Algorithm 3) is built
to execute the java code of the plan and generate a
plan which is a list of tasks (web services) to be exe-
cuted.

6. An input form is displayed to the service requester to
ask about set of required data and the user prefer-
ences.

7. The discovery component (Algorithm 4) is built to
detect if the required web services and their inputs are
available.

8. If the discovery component fails in the previous step,
then a message is displayed to the user to tell him that
the required services are not available.

9. Otherwise, the discovery component sends the user
preferences to the fuzzy engine.

10. The fuzzy engine is used as a refinement engine to get
the best solution based on set of non-functional at-
tributes such as uncertainty constraints. The non-
functional attributes are represented through the user
preferences.

11. WSDL2OWLS [19] converter is used to convert
WSDL description of web service into its equivalent
OWL-S.

12. Finally, the process execution engine (Algorithm 5)
executes the OWL-S of the required web services ac-
cording to the plan.

 A full description of the proposed system components is
illustrated in the following subsections.

WoPeD (Workflow Petri Net Designer)

 WoPeD [20] is an open source java code for designing
Petri net workflows. It can be used by the user to enhance
accessibility of the users in the sense that the users can ex-
press what they want in a relatively easy manner using the
drag/drop of the elements in the Graphical User Interface
(GUI) of WoPeD. It has a friendly user interface which can
be used by the end user in an easy manner. The user can use
this open source to specify his request as a set of places and
transitions. The places are used to represent the states (i.e.
jump from a web service into another). The transitions are
used to represent the web services. For example, use WoPeD
to draw two concurrently web services, namely SearchFlight
and SearchHotel, and one sequential service called Reserve-
Hotel. The Petri net for this example is shown in Fig. (2).

JSHOP2

 As it is mentioned above, JSHOP2 [12] is an open source
java code which plan for the tasks to be ordered sequentially
and there is no mechanism to handle the control constructs
related to concurrency, so the proposed model overcame this
problem by adding a new keyword (:concurrent) to JSHOP2
in order to handle the concurrency problem and allow tasks
to be executed concurrently. The inputs to JSHOP2 are plan-
ning domain and problem files. Those files must be written
by lisp language.

Fig. (2). Petri net example is designed by WoPeD.

An Intelligent Web Service Workflow The Open Information Systems Journal, 2010, Volume 4 5

 A sample of the planning domain whose Petri net is clari-
fied in Fig. (2), is depicted as the following:

Lisp code for the planning domain:

(defdomain webservices
 ((:operator (!searchFlight)
 ((from ?x)(to ?y)) ()
 ((flight ?x ?y))
)
 (:method (SearchFlight)
 ((from ?x)(to ?y))
 ((!searchFlight))
)
 (:operator (!reserveflight)
 ((from ?x)(to ?y)) ()
 ((flight ?x ?y reserved))
)
 (:method (ReserveFlight)
 ((from ?x)(to ?y))
 ((!reserveflight))
)
 (:operator (!searchHotel)
 ((destination ?x)) ()
 ((hotel ?x))
)
 (:method (SearchHotel)
 ((destination ?x))
 ((!searchHotel))
)
))

Translation of the Languages

 The language used by the JSHOP2 is different from the
language used to represent Petri net in the WoPeD. WoPeD
generates a Petri net workflow. The JSHOP2 needs the prob-
lem to be represented by the lisp language. Thus the transla-
tion component between the WoPeD language and the inter-
nal language (i.e. lisp) is developed. Algorithm 2 specifies
the functionalities of the translator component.

Algorithm 2 Translator Component

1. Travers the paths of the Petri net network and save
them as a vector, where each element in the vector
contains a path and its type (sequential or concurrent).

2. Translate the paths vector into lisp code according to
the syntax of the lisp language, such that the sequen-
tial task is written as it is between () and the concur-
rent tasks are preceded by the keyword :concurrent.

For example, the generated lisp code for the Petri net
in Fig. (2) is clarified in Fig. (3).

3. Finally, the generated lisp code represents the prob-
lem and enters as an input to SHOP2.

Generation of Composition Process Model

The JSHOP2 outputs the java code which represents the
problem and domain. This java code is entered as an input to
the plan generator component to generate suitable plans for
the composed web services. Algorithm 3 clarifies the func-
tionalities of the plan generator component.

Algorithm 3 Plan generator Component

1. Compiles the java code of the problem and domain.
This compilation generates executable code for the
problem.

2. Run the executable code of the problem and save the
plan into a text file.

3. Parse the plan text file and determine the concurrent
and the sequential tasks.

4. Finally, save the parsed data as a vector, where each
element in the vector represents a web service name.

Discovery

There exists a database which stores the available web serv-
ices in the current domain. The discovery component is de-
veloped to detect if the required web services and their in-
puts are available. Algorithm 4 depicts how the discovery
component works.

Algorithm 4 Discovery Component

1. Create SQL statement to search in the database about
each web service with the given data.

2. If the previous step fails, then a message is displayed
to the user to tell him that the required services are
not available.

3. Otherwise, the discovery component sends the user
preferences to the fuzzy engine to get the best solu-
tion for this user.

Evaluation of Composite Service

 This can be satisfied using fuzzy engine. The fuzzy en-
gine contains set of fuzzy rules and linguistic variables. In
the proposed model the fuzzy rules are static and must be
defined based on the given domain.

Fig. (3). Lisp code sample that is generated from the translator component.

6 The Open Information Systems Journal, 2010, Volume 4 Hossny et al.

 All fuzzy evaluations are based on the rules in the sym-
bolic representation. The following is the format for sym-
bolic representation of fuzzy rule [21]:
if LV1 is MF1 <and/or> LV2 is MF2 …
then LVN is MFN
 This format can be used to define the static fuzzy rules
and then load them to the fuzzy engine. The user provides
the system with a set of his preferences and the fuzzy engine
runs the fuzzy rules to get the best solution depending on the
user preferences. Since there is a set of uncertainty values in
a web service, the user should specify at least two prefer-
ences and specify the status of each preference, rigid or soft.
After the preferences are specified, the fuzzy engine runs and
tries to satisfy the first preference. Then runs again to satisfy
the second preference and finally makes a filtration based on
status of the first and the second preferences and get the best
solution. Where, if there is contradiction between the first
and the second preferences, then the fuzzy engine tries to
execute the rigid one. For example, first preference: weight
is large and status is rigid, second preference: budget is large
and status is soft. Since the weight is large, this means the
user can not travel by plan. Since the budget is large, the user
can take the first class of a vehicle. Thus the final output
from the fuzzy engine is "You can take bus and the class of
service is first"

Process Execution Engine

 The plan of composed services runs by the process exe-
cution engine. The required services must be described by
OWL-S and enters as inputs to the process execution engine.
Algorithm 5 specifies how the process execution engine
works.

Algorithm 5 Process Execution Engine

1. Travers the plan vector and get the web service name
in each element in the vector.

2. Load the OWL-S description of the current web serv-
ice name, such that each concurrent web service runs
in a separate thread and the sequential web services
run sequentially in the same thread.

IMPLEMENTATION

 Actually, the proposed model is mainly implemented
using the java language and Eclipse Integrated Development
Environment (IDE). Since the java language is a platform
independent, the proposed system can be used in any plat-
form. The end user can run the proposed system in two
ways, standalone java application or java applet. But in both
cases he must specify his request as a Petri net workflow
using the simple graphical user interface of WoPeD.
 The main three components which are used in the pro-
posed system, namely WoPeD, fuzzy engine, and JSHOP2,
are open sources java code and some of modifications are
added to enhance each one of them. They can be downloaded
from [20-22]. Below are the modifications which are added
to those open sources:

JSHOP2

 Since JSHOP2 has no mechanism to handle the control
constructs related to concurrency, the proposed model over-

came this problem by adding a new keyword (:concurrent) to
JSHOP2 in order to handle the concurrency problem and
allow tasks to be executed concurrently.

Fuzzy engine

 Depending on the domain which the model is applied on,
a new class is added to define the required linguistic vari-
ables and the fuzzy rules. In the proposed model, the fuzzy
rules are static and depending on the domain. In the case
study, the proposed model is applied on the travel reserva-
tion system and a set of the web services required in this
domain are implemented. Below is a set of fuzzy rules which
are added to the system for travel reservation domain:
"if maxWeight is small then flight is firstclass",
"if maxWeight is medium then bus is firstclass",
"if maxWeight is large then surface is firstclass",
"if classOfService is first then budget is firstclass",
"if classOfService is business then budget is secondclass",
"if classOfService is economy then budget is thirdclass",
"if tripSpeed is fast then budget is firstclass",
"if tripSpeed is medium then budget is secondclass",
"if tripSpeed is slow then budget is thirdclass",
"if budget is firstclass then flight is firstclass",
"if budget is secondclass then flight is businessclass and bus
is firstclass",
"if budget is thirdclass then flight is economyclass and bus is
businessclass and surface is firstclass",
"if hotelCOS is standard then pricePerDay is same",
"if hotelCOS is superior then pricePerDay is increased",
"if roomType is singleRoom then pricePerDay is same",
"if roomType is doubleRoom then pricePerDay is in-
creased",

WoPeD

 WoPeD is a tool for designing Petri net workflows and
the user uses it to draw his workflow. Some code is added to
WoPeD to parse the user workflow and get the concurrent
and the sequential paths which exist in the workflow. Note
that the JSHOP2 and the fuzzy engine are used inside the
WoPeD. Therefore, WoPeD becomes the main controller
which runs the overall system. Also, another three compo-
nents are built, namely translator, plan generator, and dis-
covery engine, inside the WoPeD. The translator component
is used to translate the workflow designed by WoPeD into
lisp code. This lisp code enters to JSHOP2 as an input and
then JSHOP2 outputs a java code. The plan generator com-
ponent uses this java code as an input and generates plans for
the user request. The discovery engine detects if the required
request can be satisfied based on the available web services.

COMPARATIVE STUDY

 Discovering and composing individual web services into
more complex yet new and receive much attention. There-
fore, as shown from the survey in the related research sec-

An Intelligent Web Service Workflow The Open Information Systems Journal, 2010, Volume 4 7

tion, a huge number of approaches have been proposed to
tackle the problem of web service composition. Most of
them are based on either workflow or AI planning tech-
niques. However, the proposed model combines both tech-
niques, workflow and AI planning. Despite all these efforts,
establishing web service composition has largely been an ad-
hoc, time consuming process, and beyond the human capa-
bility to deal with the whole process manually because the
web service environment is highly complex and it is not fea-
sible to generate every thing in an automatic way [5]. Table
1 summarizes a comparison between the proposed model and
some of the current web service composition approaches.
Some features, which have great importance for developing
composite services, are identified for the analysis of the
composition frameworks [4, 23]. Service connectivity: all
composition approaches specify how to connect to the serv-
ice and reason about its inputs and outputs. Execution moni-

tor: to monitor and trace service execution. QOS modeling:
most approaches neglect specification of non-functional QoS
properties such as security, dependability, performance, or
user's preferences. Service definition: specifies which lan-
guage is used to define a service.
 It should be noted that the time that is consumed by the
different system components proportional to the execution of
web services. Therefore the performance of the proposed
model is depended totally on the selected web service execu-
tion. Further more, since the main system actors are its web
services, the system can apply many number of requests
based on these actors.

CASE STUDY

 FPN4WSC is a formal model for description and evalua-
tion of web service composition process. FPN4WSC is ap-
plied on the travel reservation system as a case study.

Fig. (4). Registration form.

8 The Open Information Systems Journal, 2010, Volume 4 Hossny et al.

Table 1. Comparison Between FPN4WSC and the Available Web Service Composition (WSC) Frameworks

Framework Service

Connectivity

Composition

Strategy

Execution

Monitor

QoS Modeling Service Definition Graph Support

BPEL4WS workflow composition WSDL

E-flow workflow composi-
tion

 WSDL

Petri net based alge-
bra for WSC

workflow composition Not defined

SRN workflow composition WSDL

Automatic WSC
using SHOP2

 AI composition DAML-S

WSC based on
Fuzzy Petri net and

Semantic Web

 workflow composition
Fuzzy Petri net

fuzzy Horn clause

FPN4WSC workflow and
AI composition

Fuzzy engine

WSDL/OWL-S

Fig. (5). An empty input form.

An Intelligent Web Service Workflow The Open Information Systems Journal, 2010, Volume 4 9

Although many alternatives are available for travel reserva-
tion, the FPN4WSC is the most suitable one because it pro-
vides with two main added values. First one, it provides the
service requester with set of suitable plans for doing the re-
quired composition. Second one, it provides the user with
uncertainty values for each web service. Further more, it has
a very easy GUI.
 Below are set of the snapshots which are implemented
for testing the model.
 Firstly, the user needs to register before using the system
functionality. Fig. (4) clarifies the registration form. Since
the proposed model is applied on the travel reservation, some
of the questions depending on this domain exist in the regis-
tration form. Also, there is a set of information about the
user's health such as if he has any medical conditions, any

allergies, or if he is smoking. This information helps the pro-
posed model to get to the user the most suitable trip accord-
ing to his health.
 After the user registers in the system, he can use the sys-
tem's functionality and run the model to compose his web
services. To allow the user to compose set of web services,
then he needs to specify a Petri net diagram for the required
web services. For example, the diagram in Fig. (2) specifies
three web services, namely SearchFlight, SearchHotel, and
ReserveHotel, to be composed as a new web service such
that the first two web services run concurrently and after
they end the execution, the final web service starts its execu-
tion.
 Now the user is ready to physically start executing the
composition process by running the FPN4WSC model. The

Fig. (6). The input form is filled.

10 The Open Information Systems Journal, 2010, Volume 4 Hossny et al.

model tries to parse the given Petri net diagram and generate
a vector of concurrent and sequential web services. Then it
uses this vector to formulate a lisp problem to be planned
later by JSHOP2. Depending on the required web services,
the system generates a new web form for the required data of
each web service. This web form is displayed to be filled by
the user. The snapshots in Figs. (5) and (6) depict an input
form (before and after filling the required data) based on the
web services which are specified in the Fig. (2). For each
web service, the model asks the user about set of data, for
example, in the SearchFlight web service, the model asks
him about class of service, trip type, trip speed, and the
budget. Also it asks him to select the first and the second
preferences and which of them is rigid or soft. All these info
is used later by the fuzzy engine to get the most suitable trip
for the user. In the ReserveHotel web service, the model asks
him about the class of service and the room type and by this
information the fuzzy engine tries to specify the price of the
requested hotel.
 After the user fills the input form, he can click on the Ok
button to complete the execution of the composition process.
In this part, the model tries to use the vector of web services
to create a lisp problem and then send it to JSHOP2 to gen-
erate a plan for this problem. After JSHOP2 generates a plan
for the given problem, the model runs the discovery engine
to discover if the required web services are available. If the
discovery component succeeds, the fuzzy engine runs to get

the best solution for the required web services. Finally, the
process execution engine executes the generated plan by
running the OWL-S file of each web service and the results
of the composed web services are displayed in Fig. (7).

CONCLUSION AND FUTURE WORK

 Web service composition provides new services for web-
based cooperation and it becomes more interested. To de-
scribe and model the process of web service composition, a
new Petri-net-based model for web service composition is
proposed with two new components (SHOP2 and fuzzy en-
gine), i.e. FPN4WSC. The proposed model uses static fuzzy
rules which depend on the domain and in the future work the
fuzzy rules will be managed in a dynamic way. This problem
can be dealt with using the genetic algorithm to generate the
fuzzy rules dynamically.

REFERENCES

[1] Y. Tang, L. Chen, K.-T. He, and N. Jing, "SRN: An Extended
Petri-Net-Based Workflow Model for Web Service Composition,"
in IEEE International Conference on Web Services, 2004, p. 591.

[2] R. Hamadi, and B. Benatallah, "A Petri-Net-Based Model for Web
Service Composition," in Proceedings of the Fourteenth Australa-
sian Database Conference, Adelaide, Australia, 2003, pp. 191-
200.

[3] M. Champion, C. Ferris, E. Newcomer, and D. Orchard, "Web
Services Architecture," w3.org, Nov. 14, 2002. [Online]. Available:
http://www.w3.org/TR/2002/WD-ws-arch-20021114/ [Accessed:
Sept. 7, 2009].

[4] S. Dustdar and W. Schreiner, "A survey on web services composi-
tion," International Journal of Web and Grid Services, vol .1, no. 1,

Fig. (7). The results of the composed web services.

An Intelligent Web Service Workflow The Open Information Systems Journal, 2010, Volume 4 11
pp. 1-30, August 2005. [Online]. Available:
http://www.infosys.tuwien.ac.at/Staff/sd/papers/A%20survey%20o
n%20web%20services%20composition_Dustdar_Schreiner_inPres
s.pdf [Accessed: Sept. 7, 2009].

[5] J. Rao, and X. Su, "A survey of automated web service composi-
tion methods," in Proceeding of the First International Workshop
on Semantic Web Services and Web Process Composition, San Di-
ego, USA, 2004, pp. 43-54.

[6] "UDDI," [Online]. Available: http://uddi.xml.org/ [Accessed: Sept.
7, 2009].

[7] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana,
"Web Services Description Language (WSDL) 1.1," w3.org, Mar.
15, 2001. [Online]. Available: http://www.w3.org/TR/2001/NOTE-
wsdl-20010315 [Accessed: Sept. 7, 2009].

[8] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
H.F. Nielsen, S. Thatte, and D. Winer, "Simple Object Access Pro-
tocol (SOAP) 1.1," w3.org, May 8, 2000. [Online]. Available:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ [Accessed:
Sept. 7, 2009].

[9] "Petri net," [Online]. Available: http://en.wikipedia.org/wiki/
Petri_net [Accessed: Sept. 7, 2009].

[10] L. Bing and C. Huaping, "Web Service Composition and Analysis:
A Petri-net Based Approach," in First International Conference on
Semantics, Knowledge and Grid, 2005, p. 111.

[11] D. W. Evren, D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia,
"Automatic Web services composition using SHOP2," in Workshop
on Planning for Web Services, Trento, Italy, 2003. [Online]. Avail-
able: http://www.mindswap.org/papers/ICAPS03-SHOP2.pdf [Ac-
cessed: Sept. 7, 2009].

[12] O. Ilghami, "Documentation for JSHOP2," Technical Report CS-
TR-4694, Department of Computer Science, University of Mary-
land, Feb. 2005.

[13] "Common Lisp Language Overview," lispworks.com. [Online].
Available: http://www.lispworks.com/products/lisp-overview.html
[Accessed: Sept. 7, 2009].

[14] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-
mann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S.

Weerawarana, "Business process execution language for Web serv-
ices 1.1," Technical report, May 2003. [Online]. Available:
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/
ws-bpel/ws-bpel.pdf [Accessed: Sept. 7, 2009].

[15] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S.
Mcllraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara, "OWL-S: Semantic Markup for Web
Services," w3.org, Nov 22, 2004. [Online]. Available:
http://www.w3.org/Submission/OWL-S/ [Accessed: Sept. 7, 2009].

[16] F. Casati, S. Ilnicki, L.-j. Jin, V. Krishnamoorthy, and M.-C. Shan,
"Adaptive and Dynamic Service Composition in eFlow," in Pro-
ceedings of the 12th International Conference on Advanced Infor-
mation Systems Engineering, 2000, pp. 13-31.

[17] R. Fu, W. Dong, G. Yang, Y. Mei, and X. Dong, "Fuzzy Petri Net-
Based Optimized Semantic Web Service Composition," in Pro-
ceedings of the 2008 Seventh International Conference on Grid and
Cooperative Computing, 2008, pp. 496-502.

[18] "Home page- SHOP2," [Online]. Available:
http://www.cs.umd.edu/projects/shop/index.html [Accessed: Sept.
7, 2009].

[19] "OWL-S API," mindswap.org, [Online]. Available: http://www.
mindswap.org/2004/owl-s/api/download.shtml. [Accessed: Sept. 7,
2009].

[20] T. Freytag, and A. Eckleder, "Workflow Petri net Designer
(WoPeD)," woped.org, [Online]. Available: http://www.woped.
org/ [Accessed: Sept. 7, 2009].

[21] "A Java Fuzzy Engine Example," [Online]. Available:
http://people.clarkson.edu/~esazonov/neural_fuzzy/loadsway/Load
Sway.htm [Accessed: Sept. 7, 2009].

[22] "Browse SHOP Files on SourceForge.net," sourceforge.net. [On-
line]. Available: http://sourceforge.net/projects/shop/files/ [Ac-
cessed: Sept. 7, 2009].

[23] N. Milanovic, and M. Malek, "Current solutions for web service
composition," IEEE Internet Computing, vol. 8, pp. 51-59, 2004.

Received: September 10, 2009 Revised: November 25, 2009 Accepted: December 16, 2009

© Hossny et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

