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Abstract: Steroid hormones are lipophilic, low-molecular weight organic compounds all of which are derived from cho-
lesterol. They are primarily synthesized by steroidogenic glands such as gonads (ovary and testis), the adrenal gland and, 
during pregnancy, by the placental trophoblasts. Limited steroid synthesis also takes place in the brain. Steroid hormones 
are crucial for the proper functioning of the body. They mediate a wide variety of vital physiological functions, ranging 
from maintaining normal reproductive function and secondary sexual characteristics, to regulating virtually every meta-
bolic process in the body. Like many age-related endocrine disorders, aging also progressively impacts the tissue-specific 
synthesis and secretion of steroid hormones. The goal of this review is to summarize the effects of aging on steroid hor-
mone synthesis and secretion by the adrenal gland and gonads of both human and experimental animal models, to describe 
the potential involvement of excessive oxidative stress in mediating age-related alterations in steroidogenesis, and to dis-
cuss the possible underlying mechanisms involved.  
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INTRODUCTION 

 The steroid hormones are lipophilic, low-molecular 
weight organic compounds all of which are derived from 
cholesterol [1-6]. They share a typical but not identical 
cyclopentano-perhydrophenanthrene nucleus (steroid nu-
cleus) of cholesterol. They are mainly synthesized by steroi-
dogenic glands such as gonads (ovary and testis), the adre-
nals and, during pregnancy, by the placental trophoblasts, 
and are then released into the bloodstream [1-7]. Based on 
their physiological functions, the steroid hormones are 
broadly classified into three categories: the glucocorticoids, 
mineralocorticoids and sex steroids (androgens and estro-
gens). The adrenal cortex produces mineralocorticoids (al-
dosterone, deoxycorticosterone), glucocorticoids (cortisol, 
corticosterone), and sex steroids (mainly the androgen pre-
cursors dehydroepiandrosterone [DHEA] and andros-
tenedione); mineralocorticoids are mainly produced in the 
zona glomerulosa zone, whereas glucocorticoids are princi-
pally produced in the zona fasciculate of the adrenal cortex. 
The adrenal sex steroid (androgens) are mainly a product of 
the zona reticularis of the adrenal cortex [1-6,8].  

 Testosterone is a major androgen produced in the testis, 
and its primary site of synthesis is in Leydig cells [1-6,9]. 
The ovaries secrete three major sex steroids: estrogens, an-
drogens and progestin [1-6,10]. The 17-estradiol is the 
principal estrogen secreted by the ovarian theca cells. The 
ovary also secretes a variety of androgens including DHEA, 
androstenedione, testosterone, and dihydrotestosterone. They  
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are produced by the theca cells and to a lesser degree by 
ovarian stroma cells. The major ovarian androgen, andros-
tenedione is produced by the theca cells and transported to 
ovarian granulosa cells for estrogen production. Theca cells 
and to a lesser degree ovarian stroma cells also secrete a va-
riety of other androgens including DHEA, testosterone, and 
dihydrotestosterone (DHT). The major progestins include 
pregnenolone, progesterone, and 17-hydroxyprogesterone. 
Among these, pregnenolone is produced by all steroidogenic 
tissues where it serves as a precursor for all steroid hormones 
(Fig. 1). Progesterone is the principal secretory product of 
the corpus luteum and is responsible for the implantation of 
the fertilized ovum and maintenance of pregnancy during the 
first 6-8 weeks of gestation, but during pregnancy the main 
source for progesterone is the placenta [7]. It can also be 
converted to estrogen or testosterone in extraglandular tis-
sues.  

 Steroid hormones are vital to the smooth functioning of a 
number of physiological functions (Table 1). For example, 
female-sex steroids, estrogens and progestin are required for 
follicular development, ovulation, development, maturation 
and maintenance of secondary sex organs (female sexual 
determination), sexual behavior patterns, and also, for sus-
taining pregnancy when it occurs [7,11,12]. Estrogens also 
play an important role in cardiovascular physiology, bone 
integrity, neuronal growth and differentiation, neuroprotec-
tion, cognition, and behavior [13,14 and references therein]. 
Testosterone, the most prevalent male sex-hormone (andro-
gen) and its biologically active form, DHT are necessary for 
normal spermatogenesis and development, maturation and 
function of secondary sex organs (male sexual determina-
tion) [12,15]. Beyond its reproductive function, testosterone 
is responsible for increased muscle mass, sexual function 
and libido, body hair and decreased risk of osteoporosis, and 
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Fig. (1). Pathways of steroid biosynthesis in adrenal glands and gonads. Enzymatic reactions that are common to both adrenal and go-
nadal tissues, specific for adrenal (i.e., zona fasiculata and reticularis and zona glomerulosa) gland and gonadal tissues are shown shaded 
with different colors. Key enzymes are shown above the arrows indicating the specific enzymatic reactions. Modified from White [1], 
Conley and Bird [2], Payne and Hales [3] and Miller and Auchus [6].  

also takes part in the nervous system [16,17]. Interestingly, a 
very recent study by Oury et al., [17a] suggests that osteo-
calcin, a hormone produced by bone-building cells (os-
teoblasts) may have a role in regulating male fertility. These 
investigators, in a series of experiments using mice engi-
neered to generate only low levels of osteocalcin demon-

strated that male mice had lowered fertility due to reduced 
testosterone production. This effect appears to be specific for 
testis since osteocalcin levels failed to influence ovarian es-
trogen production and no impact on the fertility of female 
mice. 



Aging and Steroidogenesis Open Longevity Science, 2012, Volume 6    3 

Table 1. Physiological Functions of the Major Steroid Hormones 

Steroid Hormone Functions 

Progesterone (Progestin) 

 

 

Cortisol (Glucocorticoid) 

 

 

Aldosterone (Mineralocorticoid) 

 

 

Dehydroepiandrosterone (DHEA) and 
Dehydroepiandrosterone sulfate 
(DHEA-S) (Adrenal androgens) 

 

 

Testosterone (Androgen) 

 

 

Estradiol  

(Estrogen) 

Prepares uterus lining for implantation of ovum and mammary glands for lactation 

 

Helps control carbohydrate, protein and lipid metabolism; promotes gluconeogenesis; favors breakdown of fat 
and protein (fuel mobilization); exerts anti-inflammatory actions; protects against stress; reduces immune re-
sponses; helps to maintain blood pressure through its hypertensive actions. 

 

Helps to regulate body’s water and electrolyte balance. Maintains blood volume and blood pressure by increas-
ing sodium reabsorption in exchange for K+ and H+ at electrolyte-transforming epithelia of the kidney. 

 

The sulfated form of DHEA, DHEA-S is suggested to affect a wide variety of physiological systems including 
neurological, immune, aging and somatic growth and development. DHEA and DHEA-S are an important 
source of testosterone and estrogen in peripheral tissues, contributing as much as 50% of total peripheral andro-
gens in men, 75% of peripheral estrogen in premenopausal women, and 100% of peripheral estrogen in post-
menopausal women.  

 

Controls the development of male secondary sex characteristics; regulates sperm production; promotes increased 
muscle mass through increased protein formation; prevents bone resorption 

 

Controls the development of female secondary sex characteristics; regulates menstrual cycle; contributes to the 
hormonal regulation of pregnancy and lactation; prevents bone resorption 

 The adrenal mineralocorticoid, aldosterone, maintains 
salt and water balance, and hence blood pressure [18], while 
the adrenal glucocorticoid, cortisol (corticosterone in ro-
dents), is essential for diverse biological functions including 
regulation of carbohydrate, protein, and lipid metabolism in 
a manner nearly opposite to that of insulin, stress adaptation, 
inflammatory reactions, the immune system and stress adap-
tation [19]. The functional roles of adrenal androgens are not 
well understood, but considerable evidence now indicates 
that they are involved in the regulation of bone mineral den-
sity, muscle mass, well-being, and libido, as well as benefi-
cial effects against skin atrophy, type 2 diabetes, and obesity 
[20].  

 Like many age-related endocrine disorders, aging also 
progressively impacts the tissue-specific synthesis and secre-
tion of steroid hormones [21-24]. The goal of this review is 
to summarize the effects of aging on steroid hormone syn-
thesis and secretion by the adrenal gland and gonads of both 
human and experimental animal models, describe the poten-
tial involvement of excessive oxidative stress in mediating 
age-related alterations in steroidogenesis, and discuss the 
possible underlying mechanisms involved.  

STEROIDOGENESIS: AN OVERVIEW 

 Although the focus of this review is the age-related alter-
nations in steroid hormone synthesis and secretion in the 
adrenal gland and gonads, in order to familiarize the readers 
about the subject, first, a brief overview regarding the critical 
events involved in steroid hormone biosynthesis is presented.  

 

Source of Cholesterol  

Substrate 

 Cholesterol is an obligate intermediate in the synthesis of 
all of the steroids produced by the adrenal, ovary, testis and 
placenta. Cholesterol can be obtained from three principal 
sources: a) cholesterol synthesized de novo from the acetate; 
b) cholesterol derived from the circulating lipoproteins; and 
c) cholesterol recruited by the hydrolysis of cytoplasmic cho-
lesteryl esters stored in the form of lipid droplets (Fig. 2) 
[25,26]. In some cultured cells including steroidogenic cells, 
cholesterol can also be obtained from the plasma membrane 
[27-29].  

Low-density Lipoprotein (LDL) Receptor (LDL-R)-
mediated Endocytic Uptake of Apolipoprotein B (apoB) 
or Apoe containing Plasma 

Lipoproteins 

 The principal source of cholesterol utilized by the human 
adrenal and ovary is provided from the circulation in the 
form of low-density lipoprotein (LDL)-cholesterol. The first 
step in acquiring LDL-cholesterol is the binding of apolipo-
protein B-100 (apoB) cholesterol-rich LDL particles to the 
cell surface of LDL receptors [30]. LDL is then internalized 
via the receptor-mediated endocytosis, and a drop in the pH 
(from ~7.0 to ~5.0) causes the LDL to separate from its re-
ceptor. The vesicle then pinches apart into two smaller vesi-
cles: one containing free LDLs; the other containing now-
empty receptors. The vesicles with LDL particles fuse with 
lysosomes and free cholesterol produced following hydroly-
sis by enzymes of the lysosome which is released into the 
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Fig. (2). Cholesterol metabolism for the biosynthesis of adrenal and gonadal steroids. LDL cholesteryl esters (CEs) or apoE containing 
HDL (apoE-HDL) CEs can be internalized via the LDL-receptor (LDL-R)-mediated endocytic pathway, whereas LDL and HDL CEs can be 
‘selectively’ delivered into the cell via the scavenger receptor class B, type I (SR-BI)-mediated selective patrhway. CEs delivered by LDL-R-
endocytic are hydrolyzed to free (unsterified) cholesterol (FC), whereas selectively delivered CEs are hydrolyzed by neutral cholesteryl ester 
hydrolase (CEH) (hormone-sensitive lipase, HSL). FC can also be derived from the the stored CEs in the form of lipid droplets through the 
actions of CEH or via the de novo synthesis from the acetyl CoA. The newly acquired FC is transported into mitochondria via combined 
actions of steroidogenic acute regulatory protein (StAR/StarD1) peripheral-type benzodiazepine receptor/transporter protein (PBR/TSPO) for 
metabolism by cholesterol side-chain cleavage enzyme (P450scc/CYP11A1). Any excess FC cholesterol is esterified for storage by acetyl 
CoA: cholesterol acyltransferase (ACAT). C, adenylate cuclase; G, G proteins (guanine nucleotide-binding proteins); H, tropic hormones, 
ACTH, FSH and LH/hCG; R, Tropic hormone (LH/hCG, FSH, ACTH) receptor.  

cytosol [30-32]. The released cholesterol is either used di-
rectly for product formation (e.g., membrane biogenesis, 
steroid synthesis) or stored as cholesterol esters in the form 
of lipid droplets. The vesicles with empty receptors fuse with 
plasma membrane and deliver the LDL receptors to the cell 
surface for reuse. In addition to LDL, other plasma lipopro-
teins containing apoE (e.g., apoE-enriched rat or mouse 
high-density lipoprotein [HDL] are also processed via this 
endocytic pathway). 

Scavenger Receptor Class B, Type I (SR-BI)-mediated 
‘Selective’ Uptake of the Cholesteryl Esters by Adrenal 
Gland and Ovary 

 In contrast to humans, in the rodent adrenal and ovary, 
apoE-poor HDL-cholesterol is the preferential source of cho-
lesterol utilized for steroidogenesis. The uptake of HDL cho-
lesterol by steroidogenic cells, however, involves a unique 
pathway, termed ‘selective’ pathway in which cholesteryl 
esters (CEs) are selectively transferred to the cell interior 
without the parallel uptake and degradation of the HDL par-
ticle itself (Fig. 2) [33,34]. SR-BI, a multiligand cell surface 
receptor, binds HDL with high affinity and mediates selec-
tive cholesterol uptake [33,34]. The selectively delivered 
CEs are either hydrolyzed by the neutral cholesteryl ester 
hydrolase (CEH) and released as cholesterol used for 
steroiodogenesis, or stored in cellular lipid droplets [33,35].  

Cholesterol Requirement of Testicular Leydig Cell 

 The requirement for endogenously synthesized vs. 
plasma lipoprotein-derived cholesterol for testosterone syn-
thesis in testicular Leydig cells also varies according to the 
species. For example, in the rodent (rat) Leydig cells, the 
cholesterol that is synthesized de novo within the cell is the 
most important source of testosterone synthesis [36-39], but 
in the human testis, both endogenously synthesized choles-
terol as well as LDL-derived cholesterol contribute to testos-
terone production [39,40]. As noted above, all steroidogenic 
cells, however, contain the intracellular cholesterol pool in 
the form of cholesterol esters (lipid droplets) which are re-
garded as a short-term store of substrates that enables cells to 
respond rapidly to trophic hormone stimulation [25,33,39].  

Hormonal Regulation of Steroidogenesis 

 The type of a particular steroid hormone synthesized by a 
given steroidogenic cell type depends upon its sensitivity to 
a particular type of tropic hormone (Tables 2 and 3) and its 
genetically expressed complement of steroidogenic enzymes 
(Fig. 1). Thus, adrenocorticotropic hormone (ACTH) stimu-
lates glucocorticoid (cortisol/corticosterone) in adrenocorti-
cal fasiculata-reticularis cells [41,42]; ACTH or angiotensin 
II increases mineralocorticoid, aldosterone synthesis in adre-
nal glomerulosa cells [43,44]; human chorionic gonadotropin 
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Table 2. Major Steroid Synthesized by the Steroidogenic Cells of Adrenal, Ovary and Testis 

Steroidogenic Cells Regulatory Hormone Steroid Products 

Adrenal gland 
 
Zona glomerulosa 
cells 
 
Zona fasciculate cells 
 
 
Zona reticularis cells 
 
Ovary 
 
Granulosa cells 
 
 
Luteinized granulosa cells 
 
Luteal cell 
 
Theca-interstitial cells 
 
Testis 
Leydig cells 

 
 
Angiotensin II, K+ and to lesser extent 
ACTH 
 
ACTH 
 
 
ACTH, pro-opiomelanocortin- derived 
peptides, other factors 
 
 
FSH 
 
 
LH 
 
 
LH 
 
LH 
 
 
LH 

 
 
Aldosterone (Mineralocorticoid) 
 
 
Corticosterone*, Cortisol¶ 
(Glucocorticoids) 
 
Androstenedione, Dehydroepiandrosterone (DHEA) and Dehydroepiandros-
terone sulfate (DHEA-S) (adrenal androgens) 
 
Progersterone (progestin) 
Estradiol (estrogen) 
 
Progesterone (progestin) 
 
 
Progesterone (progestin) 
 
Androsterone (androgen) 
 
 
Testosterone (androgen) 

*Corticosterone is synthesized and secreted by the rodent adrenal gland. ¶Cortisol is the sole glucocorticoid secreted by the human adrenal gland. ACTH, adrenocorticotropic hor-
mone; LH, luteinizing hormone; FSH, follicle-stimulating hormone  

Table 3. Major Enzymes Involved in the Biosynthesis of Adrenal and Gonadal Steroids 

Common Name Old Designation Current Designation 

Cholesterol-side chain cleavage enzyme; desmolase 

3-Hydroxysteroid dehydrogenase 

17 -Hydroxylase/17,20 lyase 

21-Hydroxylase 

11-Hydroxylase 

Aldosterone synthase 

Aromatase 

P450scc 

3-HSD 

P450c17 

P450C21 

P450C11 

P450C11AS 

P450aro 

CYP11A1 

3-HSD 

CYP17 

CYP21A2 

CYP11B1 

CYP11B2 

CYP19 

(hCG) or luteinizing hormone (LH) promotes progesterone 
synthesis in luteinized granulosa-luteal cells [45,46]; follicle-
stimulating hormone (FSH) stimulates progesterone and es-
trogen synthesis in granulosa cells [47,48]; and LH regulates 
androgen production both in theca-interstitial cells (andros-
terone) [49,50] and testicular Leydig cells (testosterone) 
[51,52]. 

 The first reaction in the conversion of cholesterol sub-
strate (C27) to C21 (pregnenolone, progesterone, glucocorti-
coids and mineralocorticoids), C19 (androgens), and C18 (es-
trogens) steroids involves the cleavage of a 6-carbon unit 
from 27 carbon cholesterol to form the common steroid pre-
cursor, 21carbon pregnenolone [2,3,6] (Fig. 1). This NADPH 
dependent reaction is catalyzed by the side-chain cleavage 
(SCC) cytochrome P450 (P450scc or CYP11A1) complex, 
which is comprised of a flavoprotein (NADH-adrenodoxin 

reductase), a Fe2-S2* type iron-sulfur protein (adrenodoxin) 
and a hemoprotein CYP11A1 (P450scc) localized in the in-
ner mitochondrial membranes of steroid producing cells 
[2,3,6].  

 This initial reaction is the principal committed, regulated, 
and rate-limiting step in steroid biosynthesis. The rate limit-
ing nature of this step is not determined by the activity of 
CYP11A1 (i.e., enzymatic conversion of cholesterol to 
pregnenolone), but rather delivery of cholesterol to the sub-
strate site of CYP11A1 (translocation of cholesterol from 
outer to an inner mitochondrial [steroidogenic] pool readily 
accessible to CYP11A1) [53]. The tropic hormones, ACTH 
and gonadotropins (LH, FSH) acutely stimulate this process 
by facilitating the availability of cytosolic free cholesterol 
and its transport to and accumulation in the inner mitochon-
drial CYP11A1 sites. When steroidogenic cells are stimu-
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lated with tropic hormones in the presence of protein synthe-
sis inhibitors such as cycloheximide, cholesterol accumulates 
in the outer mitochondrial membrane and is not transferred 
to the inner mitochondrial membrane [54-57]. Therefore, it 
has been proposed that a labile protein is required for choles-
terol delivery to the inner mitochondrial membrane micro-
domains containing CYP11A1 [26,53,59].  

 The entire process of intracellular cholesterol transport to 
mitochondria can be broadly divided into two separate but 
equally important steps. In the first step, the tropic hormone-
mediated increased cAMP formation (second messenger) 
stimulates PKA [54,60], leading to phosphorylation (activa-
tion) of a cholesteryl esterase, which, in turn, hydrolyzes 
stored cholesteryl esters (in the form of lipid droplets) and 
generates increased concentrations of free cholesterol, the 
substrate for CYP11A1 [26,35]. Subsequently, the mobilized 
cholesterol is transported to the outer mitochondrial mem-
brane. In addition, depending on cell type, the cAMP-PKA 
signaling cascade may also directly mobilize cholesterol 
from the plasma membrane or other cellular membranes to 
the outer mitochondrial membrane [27-29]. Because choles-
terol is a hydrophobic molecule and diffuses poorly in an 
aqueous environment, a number of putative factors including 
cholesterol transport proteins such as sterol carrier protein2 
(SCP2), steroidogenesis activator polypeptide (SAP), cy-
toskeleton components/structures, StarD proteins (see below) 
and changes in cellular architecture have been suggested to 
facilitate cholesterol transport to the outer mitochondrial 
membrane, however, their mechanisms of action have not 
been completely known [58].  

 The second critical step is the delivery of the cholesterol 
substrate to inner mitochondrial membrane sites of 
CYP11A1 [53,56,57]. As noted above, this step is consid-
ered rate-limiting because hydrophobic cholesterol cannot 
rapidly diffuse through the aqueous intermembrane space of 
the mitochondria to support acute steroid synthesis and re-
quires the participation of a de novo synthesized labile pro-
tein [61-65]. The search for the putative regulatory protein 
identified several candidate proteins, namely SCP2, DBI, 
SAP, peripheral benzodiazepine receptor (PBR), steroido-
genesis inducing protein (SIP), and steroidogenic acute regu-
latory protein (StAR) [58].  

 Among them, the StAR protein possesses all the neces-
sary characteristics of the acute regulator of steroid hormone 
biosynthesis in steroidogenic cells [58,66], i.e., it is a synthe-
sis specifically induced in the adrenal and gonads in re-
sponse to tropic hormonal stimulation, is highly labile, and 
its expression is sensitive to the protein synthesis inhibitor, 
cycloheximide [58,67]. This candidate protein was initially 
described by Orme-Johnson and colleagues [64,65]. The 
discovery of mutations in the StAR gene in patients with 
lipid congenital adrenal hyperplasia was critical to the eluci-
dation of the role of StAR protein in the acute steroidogenic 
response [68]. Lipoid congenital adrenal hyperplasia patients 
have markedly impaired gonadal and adrenal steroidogenesis 
[due to an inability to efficiently transport into the mito-
chondria] associated with a massive accumulation of choles-
terol in lipid droplets] [68]. Deletion of the murine StAR 
gene by the homologous recombination yielded an identical 
phenotype of impaired steroidogenesis and lipid accumula-

tion in the adrenal gland, and to a lesser degree in testicular 
Leydig cells and none in the ovary of StAR knockout mice 
[69]. StAR is synthesized as a short-lived cytoplasmic 37-
kDa protein with a mitochondrial leader peptide that is 
cleaved upon mitochondrial import to yield the long-lived 
intramitochondrial 30-kDa form [58]. It is now well-
established that StAR functions as a sterol transfer protein 
[70], binds cholesterol [71,72], mediates the acute steroido-
genic response by moving cholesterol from the outer to the 
inner mitochondrial membrane [73], acts on the outer mito-
chondrial membrane [73-75], and requires the structural 
change previously described as a pH-dependent molten 
globule [76]. StAR is also a prototype of a family of proteins 
that contain START (StAR-related lipid transfer) domains 
(StarD proteins) [77], of which StarD3/MLN64, StarD4, 
StarD5 and StarD6 exhibit steroidogenic potential [78,79].  

 Peripheral-type benzodiazepine receptor (PBR), recently 
renamed mitochondrial translocator (TSPO) has also been 
implicated in the transport of cholesterol across mitochon-
drial membranes in steroidogenic cells [80,81]. PBR is ex-
pressed ubiquitously on the OMM, but is most abundant in 
steroidogenic cells [80]. PBR ligands stimulate steroido-
genesis and promote translocation of cholesterol from OMM 
to the IMM in testicular Leydig cells, ovarian granulose 
cells, and adrenocortical cells [81-85]. Targeted disruption of 
the PBR/TSPO gene in rat Leydig R2C cells (PBR-deficient 
cells) blocked the cholesterol import into the mitochondria 
and dramatically reduced steroid production, whereas rein-
troduction of PBR/TSPO in this cell line restored steroido-
genesis [86,87]. Likewise, mutation of a single amino acid 
residue in the “cholesterol recognition amino acid consen-
sus” domain in the carboxyl-terminal region disrupts choles-
terol binding and transfer to IMM [76,87]. PBR/TSPO is a 
component of the multimeric 140-200-kDa complex located 
on the OMM especially at the OMM-IMM contact sites. The 
complex consists of 18-kDa PBR or TSPO itself (and its 
polymorphic forms), the 34 kDa voltage-dependent anion 
channel (VDAC), the 30-kDa adenine nucleotide translocator 
(ANC), a 10-kDa protein (pk 10), PBR-associated protein 1 
(PRAX-1), and the PBR and protein kinase A (PKA) regula-
tory subunit RI-associated protein (PAP7) [88].  

 Multiple lines of evidence now indicate that PBR and 
StAR are likely to work in concert in mediating the move-
ment of cholesterol from OMM to IMM. Although a physi-
cal interaction between StAR and PBR/TSPO has not been 
established, FRET measurements indicated that 
StAR/StarD1 and PBR/TSPO come within the 100 Ao of 
each other [89]. Moreover, Hauet et al [87] reported that 
isolated mitochondria from mouse Leydig MA-10 cells that 
express the Tom20/StAR fusion construct produce steroids 
at a maximal level, but if the cells are treated with PBR-
antisense oligonucleotides, their ability to synthesize the 
steroid is lost; on the contrary, re-introduction of recombi-
nant PBR into the mitochondria in vitro rescued the steroi-
dogenesis [87,90]. Liu et al., [91] provided evidence that 
hormonal stimulation of a Leydig cell line leads to formation 
of a StAR/StarD1-PKARI-PAP7-PBR/TSPO macromo-
lecular signaling complex on the outer mitochondrial mem-
brane that mediates the effect of hormones on mitochondrial 
cholesterol transport and steroidogenesis. Recently, evidence 
is presented to suggest that StAR interacts with VDAC1, and 
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with phosphate carrier protein (PCP) on the OMM to initiate 
the action of StAR [92]. These studies further point to a 
functional cooperation between the PBR/TSPO and 
StAR/StarD1 proteins and possibly participation of many 
other proteins as well [76,88,90,93,94].  

Steroidogenic Steps and Enzymes Involved in Biosynthe-
sis of Steroids in a Tissue-specific Manner 

 Following cholesterol transport to mitochondria, it is 
cleaved by the cytochrome P-450 side-chain cleavage 
((P450scc; CYP11A1), adrenodoxin, and flavoprotein sys-
tem to generate pregnenolone [2,3,6]. Pregnenolone is then 
shuttled from the mitochondria to the smooth endoplasmic 
reticulum where it is converted to progesterone by 3-
hydroxysteroid dehydrogenase (3-HSD). Depending on cell 
type, the pregnenolone and progesterone are further metabo-
lized to sex steroids or corticosteroids (Fig. 1). In testicular 
Leydig cells, the synthesis of testosterone can occur through 
two biosynthetic pathways: the Δ-5 pathway and Δ-4 pathway. 
In man the major pathway of biosynthesis is via Δ-5 pathway 
including pregnenolone, 17-hydroxypregnenolone, and an-
drostenediol. In other species, testosterone biosynthesis pro-
ceeds via the Δ-4 pathway including progesterone, 17-
hydroxyprogesterone, and androstenedione.  

 The principal steroid-producing cells of the ovary, 
namely the granulosa, theca and corpus luteum cells, possess 
the complete enzymatic complement required for steroid 
hormone formation. The main pathway of steroid hormone 
synthesis in the human corpus luteum is the Δ-4 pathway 
which involves the conversion of pregnenolone to progester-
one. In the human ovarian follicle, the Δ-5 pathway is the 
preferred pathway for the formation of androgens and estro-
gens, because theca cells of the human ovary metabolize 17-
hydroxypregnenolone more efficiently than 17-hydroxypro-
gesterone. However, the predominant steroid differs among 
each of these cell types so that the corpus luteum primarily 
forms progesterone and 17-hydroxy progesterone in response 
to LH, the theca and stromal cells secrete androgen, and the 
granulosa cells secrete estrogen predominantly. LH regulates 
the first step in steroid hormone biosynthesis by controlling 
the conversion of cholesterol to pregnenolone and its subse-
quent metabolism to androgens in theca cells, whereas FSH 
(possibly plus LH) controls conversion of androgens to es-
trogens in granulose cells.  

 In zona fasiculata cells of the adrenal cortex, progester-
one is hydroxylated to 17-hydroxyprogesterone by CYP17 
which is subsequently metabolized to 11-deoxycortisol (or 
deoxycorticosterone by CYP21A2. The final step in cortisol 
biosynthesis takes place in the mitochondria and involves the 
conversion of 11-deoxycortisol to cortisol by the enzyme 
CYP11B1. The C17,20 lypase activity associated with 
CYP17 of zona fasciculate and zona reticularis cells cata-
lyzes the production of androgens, dehydroepiandrosterone 
(DHEA) and androstenedione. In the zona glomerulosa cells, 
progesterone is 21-hydroxylated by the enzyme CYP21A2 to 
yield 11-deoxycorticosterone. The next two steps in aldos-
terone biosynthesis are catalyzed by aldosterone synthase 
(CYP11B2) which converts 11-deoxycorticosterone to corti-
costerone and subsequently to aldosterone [2,3,6].  

AGING AND TESTOSTERONE SECRETION 

Humans 

 It is well-recognized as men age, plasma testosterone 
concentrations decline gradually after age 40, albeit with 
considerable variability between individuals (~0.4 to 2.6% 
per year) [95,96]. As early as 50-60 years ago it was realized 
that aging is accompanied by significant reduction in testos-
terone levels [97,98]. Although some follow-up studies 
failed to detect age-related decline in plasma testosterone 
levels in older men [99-104], subsequent population-based 
cross-sectional and longitudinal studies have confirmed pro-
gressive loss of testosterone with aging in healthy men 
[96,105-122]. Mirroring this decline in plasma testosterone 
concentration is an age associated increase in sex-hormone-
binding globulin (SHBG) level [117], a major plasma carrier 
of testosterone, resulting in even more dramatic decreases in 
unbound free testosterone [110,123-125], and weakly bound 
bioavailable testosterone [126,127]. [In healthy male adults, 
circulating testosterone exists in three forms: testosterone 
strongly bound to SHBG, testosterone weakly bound to al-
bumin and free testosterone]. Approximately 80% of the 
plasma testosterone is bound to SHBG and is not bioavail-
able. The remaining 20% is biologically active and consists 
of both weakly albumin-bound and free testosterone. Ac-
cording to one study, the Longitudinal Massachusetts Male 
Aging Study, total plasma testosterone decreases at a rate of 
1.6% per year, while bioavailable testosterone decreases at a 
rate of 2-3% per year [117]. In contrast, levels of SBG in-
crease 1.2% per year. The overall impact of these changes is 
not only a significant decrease in all three subfractions of 
testosterone, but also a significant shift toward functionally 
inactive bound testosterone as compared to bioavailable free 
testosterone.  

 Decreased testosterone availability in aging has been 
associated with parallel age-related decline in bone density, 
muscle mass, muscle strength, physical function, and sexual 
function [96,120-122,124,128]. Epidemiological studies 
have also correlated hypoandrogenemia with impaired qual-
ity of life, frailty, depressive mood and subtle impairments in 
cognitive function [122,124,125,128]. More recently, low-
circulating testosterone has been linked to age-related meta-
bolic abnormalities including body-wide reductions in rates 
of protein synthesis, abdominal obesity, diabetes, prediabetic 
states (insulin resistance, impaired glucose tolerance and 
metabolic syndrome), dyslipidiemia (alterations in LDL and 
HDL and plasma triglycerides) and increased risk of cardio-
vascular disease [125,129]. Although the precise causes have 
not been clarified, lower testosterone levels in the elderly 
male population is likely to result from defects in the hypo-
thalamus, pituitary gland and/or testis [96,120,130-132]. The 
age-related decreases in testosterone secretion have been 
related to structure and function of Leydig cells. Several po-
tential mechanisms for the loss of Leydig cell function has 
been proposed including: a) a reduction in Leydig cell num-
ber; b) a normal number of cells, each having defects in one 
or more enzymatic steps involving testosterone biosynthesis; 
c) a normal number of cells with reduced responsiveness to 
trophic hormone (luteinizing hormone or LH); and d) Leydig 
cell degeneration and dissolution [130,133].  
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 There have been many reports linking age-related altera-
tion in testosterone levels with the number and morphology 
of human Leydig cells. Sarjent and McDonald were the first 
to report significant reduction in Leydig cell number in au-
topsy samples of men with an age greater than 20 years 
[134]. Decreased Leydig cell numbers have also been re-
ported by Tillenger [135], Frick [136], Harbitz [137] and 
Kaler and Neaves [138]. In contrast to these findings, 
Sniffen, [139], as well as Sokal [140] observed no loss of 
Leydig cells with age, while Kothari and Gupta [141] re-
ported total Leydig cell mass to be increased in testes from 
their older men. Besides, a number of studies have also 
shown impaired testicular responsiveness to hCG stimulation 
[103,104,133,143-146] or to recombinant human LH 
[147,148] stimulation in aging men. Harman and Tsitouras 
[103], Nieschlag et al., [104], Rubens et al., [144], Nieschlag 
et al., [142], and Nankin et al., [146] all noted decreases in 
both the absolute and relative (i.e., ratio of stimulated to 
basal) testosterone responsiveness in elderly as compared to 
young men.  

 Relatively less information is available about the poten-
tial causes of the reduction in Leydig cell number and their 
responsiveness to LH/hCG stimulation during aging. The 
work of Sasano and Sadatoshi [149] and Takizawa and 
Hatakeyama [150] has demonstrated that changes in the mi-
crovasculature of the testis may be indirectly responsible for 
degenerative changes seen in the Leydig cells of older indi-
viduals. Several studies have provided evidence that loss of 
Leydig cell population in the adult human testis as a function 
of increasing age is caused by Leydig cell hyperplasia, dedif-
ferentiation, degeneration and dissolution [151-153]. In addi-
tion, there is evidence for an impaired hypothalamic GnRH 
outflow and decreased pulse generation of GnRH, with 
pulses being generated more irregularly, normal or enhanced 
LH secretion when stimulated by exogenous GnRH pulses, 
reduced pulsatile LH-stimulated testosterone synthesis, and 
decreased negative feedback in older men [131,132,154-
156]. From the above discussion, it is quite apparent that 
multiple alterations in hypothalamic-pituitary-testicular axis 
lead to the age-related decline in testosterone synthesis and 
secretion. In addition, with aging, the normal circadian 
rhythm of testosterone secretion is lost [132,133].  

Experimental Animals 

 Use of experimental animals to study the effects of aging 
on Leydig cell steroidogenesis is advantageous in terms of 
the flexibility with which experiments can be designed and 
the availability of tissues and cells for more mechanistic 
studies. However, it should be pointed out that experimental 
findings derived from laboratory animals may not be entirely 
applicable to the human situation, since it appears that the 
patterns of hormone changes vary considerably from species 
to species and even from strain to strain. The rat is the most 
popular laboratory animal to examine the effects of aging on 
testicular androgen synthesis and secretion. A number of 
studies carried out during the past few decades have led to a 
clear demonstration that aging leads to significant reduction 
in blood testosterone levels in several rat strains [157-169].  

 One study reported both a reduction in circulating testos-
terone levels and loss of diurnal rhythm for testosterone in 

the older rats [170]. Similar to the age-related loss of basal 
blood testosterone concentrations, the acute response (<1-4h) 
of the rat testis to gonadotropin (hCG) stimulation in vivo is 
also impaired in older rats [171-173]. Moreover, chronic 
hCG treatment (3-7 days) was shown to restore plasma tes-
tosterone levels of older rats to levels comparable to those of 
similarly stimulated young mature Wistar [173] or Long-
Evans [174] rats. In contrast, treating rats for up to three 
weeks with hCG, Lin et al., [175] were unable to restore 
testosterone levels in 24-month old Sprague-Dawley rats to 
values seen in identically treated young mature rats. 

 There is no consensus whether or not aging also affects 
the quantity, structure or the organelle content of testicular 
Leydig cells. A number of studies indicate that the number 
of Leydig cells per testis is either unchanged or increased 
[162,176-178]. In contrast, occurrence of Leydig cell hyper-
plasia as a consequence of aging has also been reported in 
stallions [179] and humans [141]. Other studies suggest that 
Leydig cells undergo atrophic changes in size 
[168,169,176,180] and organelle content [178] with aging. 
Bethea and Walker [181] provided evidence showing that 
aging leads to decreased Leydig cell mass, at least in testis of 
Fischer rats.  

 When specifically challenged in vitro, isolated Leydig 
cells of older rats of several different strains show signifi-
cantly less steroidogenic response to tropic hormone stimula-
tion than do cells from young animals [162,175,178,181-
183]. Only studies conducted by Kaler and Neaves [177] 
reported no significant differences in testosterone production 
by isolated Leydig cells from old rats as compared to simi-
larly isolated cells from young controls [177]. Tsitouras et 
al., [184] reported that in vivo pretreatment with, but not in 
vitro exposure to, hCG reverses the testosterone secretory 
defect of Leydig cells from old rats. Overall, these changes 
appear not to be a function of gonadotropin receptor activity, 
or cAMP formation [162,177,182,183,185,186] or a defect in 
the steroid hormone synthesizing enzymes [176,186] al-
though there are some exceptions to this. For example, Pirke 
et al., [162] reported significant loss of hCG binding to 
whole testicular membranes of old rats, while Tsitouras et 
al., [182] observed only a modest decrease in hCG binding 
to membrane preparations from the purified Leydig cells. 
Likewise, aged Leydig cells from Brown Norway rats also 
exhibited a significant reduction in gonadotropin (LH) recep-
tor content [187]. Contrary to these findings, other investiga-
tors failed to observe any reduction in gonadotropin binding 
either in vivo [162] or in vitro [177,185,188]. In addition, 
gonadotropin stimulation of cAMP production and PKA 
activity in Leydig cells was unaffected by the aging process 
[182,183,186]. Two reports, however, have provided evi-
dence suggesting that aging negatively impacts on cAMP 
production and cAMP-stimulated PKA activity in Leydig 
cells and that such reduction in the cAMP signaling cascade 
may be functionally linked to decreased testosterone synthe-
sis and secretion seen with advancing age [189,190]. On the 
other hand, studies from our laboratory indicate that testos-
terone secretory response to LH (endogenous gonadotropin), 
cholera toxin (a nonspecific stimulator of adenylate cyclase), 
forskolin (stimulator of adenylate cyclase) and cAMP ago-
nists (e.g., Bt2cAMP, 8Br-cAMP, 8CPT-cAMP), like hCG, 
is reduced by 60-70% in purified Leydig cells from older 
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animals [183]. These latter studies and others [184,186] 
strongly support the possibility that the ‘aging’ defect in the 
Leydig cells occurs beyond the hormone receptor binding 
and hormone-stimulated cAMP signaling cascade.  

 There is some evidence that aging affects the functional 
expression of certain steroidogenic enzymes involved in the 
conversion of cholesterol to testosterone in Leydig cells. 
Total testicular Δ5-3-hydroxysteroid dehydrogenase /Δ5-Δ4-
isomerase (3-HSD) activity, which converts pregnenolone 
→ progesterone, 17-hydroxypregnenolone → 17-
hydroxyprogesterone and dehydroepiandrosterone → an-
drostenedione (Fig. 2), has been reported to be decreased in 
old Long Evans rats, and this reduced activity was fully re-
stored following hCG treatment of old animals in vivo [191]. 
Extensive studies carried out by Zirkin and colleagues 
[188,191,192] further demonstrated that the activity of 
CYP11A1 (P450scc), which catalyzes the conversion of cho-
lesterol to pregnenolone, as well as 3-HSD, 17-KSR and 
individual activities of CYP17 (P450C17), namely 17-
hydroxylase and C17-20 lypase activities, which mainly 
convert progesterone to 17-hydroxyprogesterone and an-
drostenedione, respectively, decrease with aging. Western 
blot analyses revealed age-related changes in CYP11A1, 3-
HSD and CYP17 that were consistent with enzymatic activ-
ity analyses [188,190,192]. In contrast, no changes in testicu-
lar 3-HSD were noted by Lehmann et al [176].  

  Chan et al., [193] made an interesting observation that 
when dissected testes of old Long-Evans rats were incubated 
with [3H]progesterone, they generated less testosterone and 
5-androstene-3,17-diol but produced similar amounts of 
17-hydroxyprogesterone, androstenedione, and 5-
dihdrotestosterone (DHT) and large amounts of an inactive 
metabolite of testosterone, 7-hydroxyprogesterone, as 
compared to young rat testis. From these observations, the 
authors concluded that a shift towards increased formation of 
7-hydroxyprogesterone is responsible for lower testoster-
one production in old rats. Liao et al., [183] reported that the 
in vitro defect of testosterone production in old Leydig cells 
is not observed when an incubation medium is supplemented 
with freely-diffusible steroid precursors, 25-hydroxycholes-
terol, 20-hydroxycholesterol or 22(R) hydroxycholesterol, 
i.e., aging showed no inhibitory effect on hydroxycholes-
terol-supported steroidogenesis. These results were inter-
preted to suggest that aging interferes with the events con-
nected with the intracellular cholesterol mobilization and its 
transport to mitochondria [183]. Indeed, it has been shown 
by the same authors that aging directly affects LH-mediated 
cholesterol transfer into and within the mitochondria [183]. 
This conclusion is further supported by the observation that 
significant decreases occur in the expression of StAR/StarD1 
[194,195] and PBR/TSPO [196,197] proteins, which are now 
recognized as crucial players in facilitating cholesterol trans-
port to mitochondria for steroidogenesis. 

 The impact of aging on testicular steroidogenesis has also 
been studied in mice, but not as extensively as in rats. Eleft-
heriou and Lucas [198] and Nelson et al., [199] reported that 
plasma testosterone levels were similar in both young and 
old mice. In contrast, Bronson and Desjardins [200] and Co-
quelin and Desjardins [201] all observed lower levels of 
plasma testosterone, LH, but not FSH in mice of 18-30 

months of age. Likewise, a recent study reported that the 
plasma testosterone and androstenedione levels in old mice 
(18-19 months of age) on a heterogeneous genetic back-
ground derived from the Ola-BALB/cJ, C57BL/6J, and 
C3H/J strains, were lower as compared to young mice (3-4 
months of age) of a similar genetic background [202]. In 
addition, plasma testosterone responses to LH stimulation 
were attenuated in old mice, whereas plasma andros-
tenedione responses were insensitive to aging [202]. Given 
these conflicting reports, obviously more studies are needed 
to firmly establish the effects of aging on testosterone pro-
duction in mice.  

AGING AND SECRETION OF FEMALE SEX-
STEROIDS 

 Substantial and important age-related changes also occur 
in the ovary leading to a gradual decline in the reproductive 
potential of women with advancing age. Undoubtedly, the 
most widely recognized aging effect on the reproductive 
system in women is the age-associated transition from the 
normal cycling ovary to perimenopause to the menopause 
state. By the mid-sixth decade of life, all women undergo 
menopause, which is characterized by the permanent cessa-
tion of menstruation resulting from exhaustion of the ovarian 
follicular reserve as well as loss of their activity. Ovarian 
follicles are the source of fertilizable ova for reproduction, 
and are also responsible for biosynthesis of sex steroids, pro-
gestin, androgens and estrogens, all of which are essential 
for normal reproductive function and maintenance of fertil-
ity. Although age-associated depletion of ovarian follicles is 
the ultimate cause of menopause and end of reproductive 
function in females, concomitant hormone changes including 
sex steroids also contribute significantly to ovarian aging.  

 The purpose of this section is to summarize our current 
knowledge about the age-related alterations in human ovar-
ian steroid hormone synthesis and their relevance to meno-
pause. Although significant information is also currently 
available about the impact of aging on ovarian steroidogene-
sis using experimental animal models [203-211], to conserve 
space and given the fact that physiological events connected 
with the reproductive cyclicity and ovarian sex steroid syn-
thesis in animals, particularly rodents, are significantly dif-
ferent from that of humans, we will restrict our discussion to 
the aging human ovary only. Also, although aging is known 
to indirectly influence the ovarian steroid hormone produc-
tion through modulation of the hypothalamic-pituitary-
ovarian axis, again, due to space constraints, this aspect of 
ovarian regulation will not be discussed here, but interested 
readers may wish to consult several recent excellent reviews 
that specifically cover this topic [212-216]. Likewise, there 
are excellent reviews covering the entire spectrum of the 
pathophysiology of early and late menopause [217-221].  

 As noted before, the ovarian sex steroids, estrogens, an-
drogens and progestin are primarily synthesized in the ovar-
ian follicles. The follicle possesses two distinct steroidogenic 
cell types, which are highly compartmentalized but cooper-
ate functionally to biosynthesize from cholesterol, progestin, 
androgens and estrogens in a sequential manner, with each 
serving substrate for the subsequent steroid production in the 
pathway [222,223]. The LH responsive theca cells are re-
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sponsible for the production of androgens mainly andros-
tenedione, which serves as a precursor for estrogen produc-
tion in follicular granulosa cells by a process commonly re-
ferred to as aromatization [224]. These cells express rela-
tively high-levels of three enzymes, cholesterol side-chain 
cleavage (P450scc, CYP11A), 3-hydroxysteroid dehydro-
genase (3HSD) and 17-hydroxylase/17,20 lypase 
(P450c17, CYP17) which sequentially catalyze the conver-
sion of cholesterol to pregneolone to androstenedione [225]. 
The theca-derived androgens are transported to the adjacent 
granulosa cells for their conversion to estrogens.  

 The granulosa cell steroidogenesis and aromatization of 
androgens (androstenedione and testosterone) to estrogens is 
regulated by FSH during the follicular phase and LH during 
the luteal phase of the cycle. The granulosa cells) are also 
responsible for progesterone synthesis. These cells undergo 
hormone-mediated differentiation in the luteal phase of the 
menstrual cycle, transforming them from the primarily estro-
gen producing cells to mostly progesterone secreting cells. 
Likewise, granulosa cells exhibit high expression of aroma-
tase activity during the follicular phase and high 3HSD 
during the luteal phase. The granulosa cells do not express 
17-hydroxylase/17,20 lypase activity, thus necessitating the 
need for the development of an integrated process involving 
two cells (theca and granulosa cells) and two gonadotropins 
(LH and FSH) to facilitate estrogen production.  

 Changes in the circulating levels of ovarian steroids, es-
tradiol and progesterone together with those in the levels of 
circulating of gonadotropins, LH and FSH during the normal 
menstrual cycle have been well documented [226]. In brief, 
plasma levels of estradiol begin to rise around the mid-point 
of the follicular or proliferative phase, increasing almost 
linearly for the last few days, and reach a maximum level 1 
day before ovulation (i.e., LH and FSH peaks) [226,227]. 
Thereafter, estradiol levels decline rapidly, rise slightly dur-
ing the middle of the luteal or secretory phase and, subse-
quently, decline rapidly reaching a basal level shortly before 
the initiation of menstruation and the next cycle [226,211]. 
The plasma levels of progesterone remain low in menstrual 
phase and follicular phase, but rise steadily following ovula-
tion reaching maximum levels around the middle of the 
luteal phase and decline rapidly afterwards reaching a base-
line shortly before the onset of the menses [226,227]. In con-
trast to these fairly predictable changes in estradiol, proges-
terone and gonadotropin levels throughout the menstrual 
cycle during the fertility period, such changes become highly 
erratic with variable relationships between sex steroids, LH 
and FSH, the occurrence of ovulation, and initiation of men-
struation in response to the aging-induced menopausal tran-
sition (MT) and postmenopausal period [228-231].  

 The earliest evidence about the alterations in hormone 
levels occurring with advancing reproductive age was pro-
vided by Sherman and Korenman [232]. They reported that 
older women (46-51 years) undergoing MT (less functional 
ovarian follicles) had elevated levels of serum FSH along 
with decreased concentrations of estradiol, as compared to 
young women of 18-30 years of age [232,233]. LH and pro-
gesterone were comparable between the two groups 
[232,233]. Another study conducted by MacNaughton et al 
[234] reported that average FSH levels were two times 

higher in normal cycling women of 45-49 years of age as 
compared to three younger age groups. Serum estradiol lev-
els were also lower in the same age group, but LH levels did 
not vary significantly in any of the age groups. Recent large-
scale cohort studies conducted in Australia [235-238], Nor-
way [239], and United States [240] have provided further 
important insights into the overall pattern of ovarian sex 
steroids and gonadotropins that occur during the MT. It is 
reported that circulating FSH levels rise progressively during 
the MT and that in perimenopausal women estradiol produc-
tion fluctuates with FSH and often reaches higher concentra-
tions than those in young normal cycling women below the 
age of 35. On the other hand, estradiol levels do not decrease 
appreciably until late in the MT. Despite the continuing 
regular cyclic menstruation, progesterone levels during the 
early MT are lower than in women of mid-reproductive age. 
Testosterone levels do not vary significantly during the MT. 

 By the time the postmenopausal period sets in, estrogen 
and progesterone decrease dramatically but testosterone lev-
els decrease to a lesser extent [241,242]. The postmeno-
pausal ovary still contributes approximately about 40-50% of 
all of the circulating testosterone [241-243]. Rannevik et al 
[244] carried out a longitudinal study in which 160 healthy 
48-year-old enrolled women were followed for 12 years 
throughout the menopausal transition. They reported that 
both estradiol and estrone levels decreased significantly right 
at the onset of menopause. Following menopause, estradiol 
continued to show moderate but linear decline [242]. On the 
other hand, estrone levels did not change appreciably in re-
sponse to menopause presumably due to increased peripheral 
aromatization of adrenal androstenedione, and which eventu-
ally became the primary source of estrogen during the post-
menopausal years [242,244]. Significant decreases in the 
circulating levels of other sex steroids such as DHT, andros-
tenedione and DHEA have also been reported in postmeno-
pausal women as compared to women of reproductive age 
[243]. During the postmenopausal period, both LH and FSH 
concentrations remain highly elevated partially due to a de-
crease in negative feedback from ovarian steroids 
[228,229,245-247]. Elevated circulating levels of LH may 
also be responsible for enhanced androgen production by the 
theca cells as well as follicular atresia.  

AGING AND GLUCOCORTICOID AND MINER-
ALOCORTICOID SECRETION 

Humans 

 Studies aimed at determining the impact of aging on 
basal, nonstimulated HPA function have produced mixed 
results. A majority of studies have shown that basal circulat-
ing levels of cortisol [248-266 and references therein] do not 
vary significantly with aging in humans. These analyses in-
cluded the varying gender population as well as the health 
status of subjects with some using samples from males only 
[248,249,256,260-262], others employing both men and 
women [252-255,257,259,262,265], some from subjects 
classified as ‘normal healthy’ [248,249,256,260-262], and 
others from hospitalized patients [251,252,257,262]. Few 
studies have reported decreased [267,268], or increased 
[269-273] cortisol levels. Interestingly one report comparing 
the age-related changes in cortisol in men and women sug-
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gests that women exhibit much greater age-related increases 
in cortisol secretion, with postmenopausal women showing 
the highest increases [269].  

 Numerous studies have reported that diurnal rhythmicity 
of cortisol [254,257,269-280] and ACTH [238,263] is also 
unaffected by aging in both sexes, but there are some excep-
tions. For example, some studies reported higher evening 
[251,281] and morning [278] cortisol levels at older ages; 
higher 24h mean cortisol concentrations at older ages have 
also been reported in both men and women [269,270,272, 
281,282]. Other studies have reported no such age effect 
[280,283]. Interestingly, a recent study reported that 24-h 
cortisol levels were lower in men and higher in women with 
age [284]. This was attributed to decreased ACTH efficacy 
with age in men and increased ACTH efficacy with age in 
women [284]. Shifts in the timing of circadian peaks at older 
ages with later [285] or earlier morning peaks have also been 
reported [282,283]. Many follow-up studies particularly by 
Van Caulter et al., [269], Dueschle et al., [270], Yen and 
Laughlin [272], Kern et al., [286], and Magri et al., [287] 
further confirmed that circadian rhythms remain generally 
unchanged with age for ACTH and cortisol, but significant 
alterations do occur. The level of the nocturnal nadir cortisol 
progressively increases with aging [253,254,269,270], lead-
ing to a decline of the diurnal amplitude [269,270]. More-
over, the timing of the nocturnal nadir phase is advanced 
with aging [269,270,286,287], and the evening quiescent 
period shortened [269,270]. While the diurnal amplitude of 
ACTH also declines with age [270], ACTH levels were 
found to be either unchanged [287] or only moderately ele-
vated [270].  

 Other studies suggest that aging augments ACTH and 
cortisol release in both sexes after selected stressors [288-
292]. Raskind et al., [293] compared serum cortisol levels in 
young and elderly individuals in response to an infusion of 
hypertonic saline. The older group had a higher cortisol level 
after the infusion leading to the conclusion that aging is as-
sociated with an increased cortisol release to stimulatory 
events. Gotthard et al., [290] reported that cognitive chal-
lenges caused a greater rise in cortisol in the elderly than in 
the young. Consistent with this, Born et al., [289] reported 
that basal levels of ACTH were lower in the younger sub-
jects compared to older male and female subjects and that 
older subjects of both sexes had much greater response to the 
CRF (corticotrophin releasing factor) stimulation. Further-
more, Peskind et al., [294] found that the administration of 
the pharmacological doses of physostigmine leads to more 
robust increases in ACTH and cortisol in the older subjects 
than in the young raising the possibility that the elderly have 
a more responsive HPA (hypothalamic-pituitary-adrenal) 
axis. In addition, there are a large number of other studies 
describing the age-related alterations in human HPA re-
sponse to ACTH or DEX challenge. These studies are nicely 
summarized in a review article by Seeman and Robbins 
[262] and will not be discussed here. 

Experimental Animals 

 Extensive literature exists about the influence of aging on 
plasma glucocorticoid and mineralocorticoid levels, particu-
larly rodent plasma corticosterone levels under basal condi-

tions and in response to treatment with various stressors or 
ACTH. Table 4 summarizes findings of some of these re-
ports. It is apparent that both basal and stress-induced corti-
costerone levels differ markedly among various strains of 
rats and mice and also among the same strain when exam-
ined by different laboratories. Some of these variations may 
be due to various compensatory mechanisms operating in 
rodent models, increased or decreased disposal rates of the 
corticosterone or changes in binding proteins. But, when 
specifically challenged in vitro, isolated adrenocortical cells 
[295-302] of older male rats of several different strains show 
significantly less hormone response to maximal ACTH or 
cAMP stimulation than do cells from young or adult animals. 
Further studies from our own laboratory have shown that 
these changes in steroid hormone production and secretion 
are not a function of reduced ACTH receptors, cAMP pro-
duction, cAMP phosphodiesterase, steroidogenic enzymes or 
lipoprotein-mediated cholesterol delivery and the major al-
teration in the respective cell types occurs distal to cAMP 
generation [297,298,303-305]. In contrast, several reports 
from one laboratory, however, suggests that the adrenocorti-
cal cells isolated from aged female rats in fact possess an 
enhanced capacity to secrete corticosterone in response to 
ACTH stimulation than cells from young or adult animals 
[306-310]. Finally, there is also evidence for age-related im-
paired aldosterone secretion by the isolated rat adrenal cap-
sules and glomerulosa cells [311,312]. 

AGING AND ADRENAL ANDROGEN SECRETIONS 

Humans 

 Dehydroepiandrosterone (DHEA) and its sulfated form, 
dehydroepiandrosterone-sulfate (DHEAS) represent the ma-
jor androgens secreted by the human adrenal gland [313-
315]. They are commonly referred to as the adrenal andro-
gens. Although a small fraction of the circulating pool of 
DHEA is derived from gonads, the adrenal produces the bulk 
of circulating DHEA (S) [313-315]. It has been reported that 
plasma DHEAS levels in adult men and women are 100-500 
times higher than those of testosterone and are 1000 to 
10,000 times higher than those of estradiol [3,4], thus, pro-
viding a large reservoir for conversion into androgens and/or 
estrogens in peripheral intraendocrine tissues. Indeed, it is 
estimated that 30-50% of total androgen in men is synthe-
sized in peripheral tissue, whereas in women, peripheral es-
trogen formation may be even greater [317]. Both DHA and 
DHEAS, however, are relatively less biologically active than 
other androgens. 

 The DHEA(S) shows a most striking age-related synthe-
sis and secretion pattern that are unique to humans and non-
human primates [313-322]. In humans, it occurs at three life 
stages as classified by Conley et al [319]: a) in utero from 
the fetal zone (FZ) cells of the developing adrenal cortex; b) 
during adolescence with the onset of adrenarche and the de-
velopment of the zona reticularis (ZR); and c) in ever de-
creasing amounts from the ZR with advancing age. Before 
birth, DHEA(S) are produced in the fetal zone of the adrenal 
cortex early in gestation and production therein increases 
progressively through the second and third trimesters 
[3,6,9,11-13]. Immediately after birth, circulating DHEA(S) 
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Table 4. Effect of Age on Plasma Corticosterone Levels in Rodents 

Brown Norway (BN) Rats 
 van Eekelen et al., [430] reported that total plasma cholesterol measured in blood samples collected between 0700-0900 did not differ between young (3-
6-mo) and old (30-33-mo) rats. Likewise, corticosterone responses to novelty stress over a 4-hour period were comparable between young and old rats. 
 In a follow-up work, van Eekelen et al., [431] demonstrated that stress-induced peak circulating corticosterone levels were not different between two age 
groups, but in vivo sensitivity of adrenal glands to in vivo ACTH1-24 challenge was reduced in aged (29-30-mo) compared to young (6-mo) adrenal glands. 
However, neither the magnitude of response to ACTH1-24 nor total capacity of the adrenal cortex to synthesize and secrete corticosterone in response to 
ACTH1-24 stimulation was impacted by aging.  
 Gruenewald et al., [432] using young (3-mo), middle-aged (13-mo) and aged (23-24-mo) male Brown Norway rats showed that corticosterone levels 
over a 24-hour period significantly and progressively declined with advancing age.  

Fisher 344 (F344) Rats 
 Sencar-Cupović and Milković [433] observed no changes in plasma corticosterone levels in response to advancing age.  
 Landfield et al., [434] observed significant increases in aldosterone and corticosterone levels in the mid-aged (13 mo) as compared to the young (4 mo) 
Fisher 344 rats. In the aged (25 mo) animals, the circulating levels of these corticosteroids were reduced to levels similar to those seen in young animals. 
However, the mean plasma concentration of corticosterone was elevated in aged rats.  
 Brett et al., [435] found no change with age (young 3- to 6-mo vs old 24- to 27-mo) in either sex in basal corticosterone levels, no change with age in 
males in stress-induced increments in corticosterone, and no change with age in males in stress-induced elevations in corticosterone, but a reduction in 
elevations induced by more potent stressors. 
 Sapolsky et al., [436] reported elevation of basal corticosterone levels with advancing age (ranging from 3- to 27 months of age). Older animals showed 
no impairment in their capacity to respond to stressors such as cage transfer, cold exposure, or immobilization stress. More importantly, the authors demon-
strated that older animals recover from and adapt to stress in a delayed and incomplete manner.  
 Sapolsky et al., [437] noted comparable corticosterone levels in aged (24-26 mo) and young (3-5 mo) control rats under both basal and stressed condi-
tions. In addition, it was reported that at the cessation of stress, corticosterone levels in young animals declined to basal levels within 90 min, whereas old 
animals still displayed high corticosterone levels even after 3h.  
 Sapolsky et al., [438] reported that aged rats (24-28 mo) secreted excessive amounts of the corticosterone under basal conditions as compared to young 
mature (3-5 mo), following the end of stress and during habituation to mild stressors. The old rats also showed resistance to inhibitory effects of the syn-
thetic glucocorticoid dexamethasone upon subsequent corticosterone secretion.  
 Sonntag et al., [439] found no age-related changes in the diurnal rhythm or concentrations of plasma corticosterone, when plasma samples were analyzed 
from young (3-4 mo), middle-aged (10-12 mo) and old (22-24 mo) male rats. 
 As reported by Lorens et al., [440], the basal plasma corticosterone levels in the young (7 mo) and aged (22 mo) rats did not differ significantly when 
measured between 09:00-13:30. In contrast, the stress-induced increase in corticosterone levels were of greater magnitude in aged rats (155% compared to 
their age-matched control) as compared to young rats (88% higher compared to young control group), suggesting that stress leads to an exaggerated corti-
costerone in the aged rats.  
 Irwin et al., [441] reported that basal concentrations of plasma corticosterone and stress responses were similar in aged (24-mo) and young (4-mo) old 
F344 rats. 
 Cizza et al., [442] showed that basal corticosterone levels were lower in aged (24-mo) old rats as compared to young mature (8-mo) old rats. It was fur-
ther shown that ACTH-induced corticosterone response was significantly lower in the middle-aged (18-mo) and aged (24-mo) rats when compared against 
young (2-mo) or young mature (8-mo) old rats.  
 Hauger et al., [443] reported that elevated diurnal trough levels of corticosterone in aged rats (24 mo) compared to young rats (4 mo). During the cir-
cadian peak in the evening, aged rats exhibited a small but significant reduction in circadian peak corticosterone compared to the young rats. 
 Morano et al., [444] provided evidence that young (5-6 months) and old (26-27 months) exhibited similar circadian rhythm of plasma corticosterone. 
Furthermore, they demonstrated that aged rats exhibit an aberrant stress response during both the light phase and the onset of the dark period of the cycle.  
 Cizza et al., [445] reported a significant decline in plasma levels of corticosterone in response to advancing age. Treatment (iv) with two doses of CRF (2 
and 20 g/kg BW) resulted in significantly greater corticosterone responses in older rats (18-mo and 24-mo). Treatment with ACTH1-24 (0.5 mg/kg, iv) 
evoked a lower corticosterone response in older (18-mo and 24-mo old) that in the younger (2-mo and 8-mo old) groups of rats.  
 Mastorakos et al., [446] presented evidence that basal plasma corticosterone levels were similar in young (3-4 mo) and old (24 mo) female Fischer 344/N 
rats. Immobilization resulted in dramatic increases in corticosterone levels in both age groups. Furthermore, post-immobilization plasma corticosterone 
levels were found to be significantly higher in young as compared to old rats.  
 Mulchahey et al., [447] reported that basal corticosterone levels in aged (24 mo) rats were significantly elevated at both the AM (0700-0800 h) and PM 
(1800-1900 h) time points as compared to young (4 mo) rats.  
 The work of Silverstein et al., [448] demonstrated that stress significantly increased plasma corticosterone levels by 928%, 270% and 665% in 7-, 16- 
and 23-month-old rats, respectively. Furthermore, plasma corticosterone was increased by 174% in 23-month-old compared to 7-month-old young rats in 
response to stress. In addition, basal corticosterone levels were robustly increased in 16-month and 23-month old rats as compared to 7-month old rats. 

Fisher 344/Brown-Norway F1 hybrid Rats (F344/BN F1 hybrid rats) 
 The Taglialatela et al., [449] reported significant increases in basal corticosterone levels in 18- and 30-mo old F344/BN F1 hybrid rats relative to young 
(3-mo) rats.  
 Hebda-Bauer et al., [450] utilized young (4-6-mo), old (23-25-mo) and very old (31-mo) F344/BN F1 hybrid rats to examine the effect of aging on circu-
lating corticosterone levels. No age-related differences were noted in baseline, peak-time 2, and clearance of plasma cortiocsterone levels. Very old rats, 
however, showed significantly lower peak-time 1corticosterone levels than the young animals (4-6-mo). 
 The authors employed young (3-mo), middle-aged (15-mo) and aged (30-mo) F344/Brown-Norway hybrid rats in their studies [451]. They determined 
the effect of age on plasma corticosterone levels in response to 3 stressors: restraint, spatial novelty and hypoxia. Compared to young (3-mo) and middle-
aged (15-mo), aged-rats (30-mo) exhibited elevated corticosterone secretion in response to spatial novelty, but not in response to restraint or hypoxia. In 
contrast, middle-aged responded to chronic stress with increased corticosterone secretion in following hypoxia but not novelty.  
 The Kascknow et al., [452] examined corticosterone responses in 3-, 15-, and 30-mo old F344/BN F1 hybrid rats. Basal plasma corticosterone levels did 
not change with age. Similarly, corticosterone response to restraint stress was also unaffected by the advancing age. However, at 8 h after a dexamethasone 
challenge, corticosterone response in 30-mo old rats was significantly lower from that of the 3-mo old rats.  
 Young (4-mo), middle-aged (12-mo) and aged (24-mo) F344 rats and aged (24-mo) and aged F344/BN F1 hybrids were used here [453]. Significantly 
higher plasma corticosterone levels were noted in aged (24-mo) F344 rats as compared to 4- and 12-mo old F344 rats. Likewise, corticosterone levels in 30-
mo old F344/BN rats were significantly higher than cortiocsterone levels in 4-mo old F344 rats. 
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Hooded Rats 
 Spencer and McEwen [454] showed that there was no difference in basal plasma corticosterone levels between young (2-3-months) and aged male (22-
23-months) hooded rats. 

Long-Evans (LE) Rats 
 Hess and Riegle [455] found no change in basal corticosterone levels in young (4-mo) female vs old (25-mo) female (Long-Evans) rats and young (6-mo) 
vs old (22-mo) male rats. However, both old female and male rats secreted significantly less corticosterone in response to either ACTH treatment or ether 
stress compared to respective young (control) animals. 
 The work of Riegle and Hess [456] and Riegel [457] suggest that the ability of aged (22-32-mo) male and female rats (Long-Evans) to a negative feed-
back inhibition of the hypothalamic-pituitary axis is significantly impaired as compared to young (4-6-mo) adult animals.  
 Meaney et al., [458,459] reported elevated corticosterone levels in 16- and 24-mo old male Long-Evans rats as compared to young (3-mo) and adult (8-
mo) rats. They also showed a tendency for increased hypothalamic-pituitary-adrenal activity (i.e., blunted feedback inhibition of HPA). 
 Issa et al., [460] demonstrated that basal corticosterone levels were significantly higher in cognitively impaired (AI) 23-27 month old male Long-Evans 
rats than those of cognitively unimpaired (AU) 23-27 month old rats or control (6-mo) animals. Evaluation of stress-induced changes in HPA activity 
showed that: a) basal pre-stress corticosterone levels were significantly higher in the AI animals; b) there were no group differences in the peak levels of 
corticosterone attained during stress; and c) AI animals had significantly higher plasma corticosterone levels at each point following the termination of the 
stressor.  
 Rakotondrazafy and Brudieux [461] reported that plasma aldosterone incremental response to angiotensin II was significantly lower in aged (28-32-mo) 
female Long-Evans rats than in adult (8-10-mo) rats.  
 Brudieux et al., [462] examined age-related changes in plasma corticosterone and aldosterone responses to exogenous corticotrophin-releasing hormone 
(CRH) in female Long-Evans rats. Basal plasma corticosterone and aldosterone levels did not differ between young adult (7-9-mo) and aged (30-35-mo) 
rats. Treatment with CRH markedly increased plasma levels of corticosterone and aldosterone with similar kinetics, but incremental responses at each time 
points in old as compared to adult rats. 
 Ait-Chaoui et al., [463] observed no age-related changes in basal corticosterone and aldosterone levels in both male and female Long-Evans rats. Fur-
thermore, the authors reported a blunting of corticosteroid (corticosterone and aldosterone) to ACTH in aged male/female (25-31-mo) rats as compared to 
young male (3-4-mo)/female (4-5-mo) or adult female (12-14-mo) rats.  
 Bizon et al., [464] reported finding no differences in either basal or peak plasma corticosterone levels were observed between young (6-mo) or aged (27-
28-mo) male Long-Evans rats.  

Sprgue-Dawley (SD) Rats 
 Lewis and Wexler [465] observed elevated corticosterone levels in middle-aged (15-18-mo) rats versus young (3-4-mo) rats.  
 Britton et al., [466] reported a 75% decline in circulating corticosterone levels as rats aged from 2-mo to 24-mo.  
 Tang and Phillips [467] found no age-related differences in either basal or stress-stimulated corticosterone levels. 
 DeKosky et al., [468] measured serum corticosterone levels at three time points in the diurnal cycle (08:00, 18:00, and 23:30 h) using young adults (3-5-
mo), middle-aged (14-16-mo), and aged (26-28-mo) rats. In aged animals, serum corticosterone levels at both 18:00 h and 23:30 h were elevated as com-
pared to young rats with most dramatic aging noted at 23:30 h. Moreover, these high levels persisted for a longer time.  
 Scaccianoce et al., [469] observed higher circulating levels of corticosterone in aged (25-mo) relative to young (3-mo) rats. 
 Foreman et al., [470] provided data showing elevated corticosterone levels in aged (23-mo) compared to young (3-mo) rats. In addition, it was reported 
that the magnitude of the stress-stimulated corticosterone levels were significantly higher than of similarly treated young animals. 
 Terrazino et al., [471] reported higher basal corticosterone levels in old (24-mo) as compared to young (3-mo) rats (p<0.01). In contrast, decreased corti-
costerone secretion in old rats was noted in response to LPS stimulation. 
 Studies by Núñez et al., [472] revealed elevated basal corticosterone levels in old female (19-22-mo) compared to young (4-6-mo) female rats. However, 
isolation stress-induced increases in corticosterone levels were similar between young and old rats. In contrast, stress-stimulated corticosterone levels de-
clined more rapidly in young than aged rats following the cessation of isolation stress. 
 Lo et al., [473] demonstrated that plasma corticosterone levels were significantly increased in middle-aged (12-mo) and aged (22-24-mo) as compared to 
young (3-mo) or young mature (6-mo) rats. However, no age-related differences in ACTH stimulation of plasma corticosterone levels were noted among the 
four groups. Interestingly, two hours after ACTH treatment, plasma corticosterone levels were relatively elevated in old rats compared to young mature rats. 
Montaron et al., [474] reported an age-related increase in basal plasma corticosterone levels [i.e., young (3-mo) or young mature (14-mo) vs old (21-26-
mo). However, no aging effect on plasma corticosterone levels was detected when animals were subjected to restraint stress.  

Wistar Rats 
 Korte et al., [475] reported that basal plasma corticosterone levels were slightly higher in the aged rats (24 mo) compared to young (3-mo) controls, but 
the differences were not statistically significant. Both young and old rats showed similar increases in plasma corticosterone levels in response to a single 
foot shock. Interestingly, one day after shock, the plasma corticosterone levels were reported to be significantly higher than that of controls. On the other 
hand, no significant differences were noted in the plasma corticosterone levels of young and old rats when challenged with the conditioned defensive bury-
ing (CDB) test.  
 Yau et al., [476] provided evidence that the basal plasma corticosterone levels were unaffected in aged rats (18-24 mo) as compared to young (7-months) 
rats.  
 Mizuno et al., [477] reported that in aged rats (23-24 mo), basal concentrations of corticosterone were significantly elevated than that in the young (3-4 
mo) rats. In young rats, but not in old rats, plasma corticosterone levels were increased in response to stress. 
 Bazhanova et al., [478] reported that young (3-6 mo) and old (28-mo) rats had similar levels of basal corticosterone levels. Furthermore, it was noted 
that stress-induced corticosterone levels also did not change with age.  
 Descamps and Cespuglio [479] showed that immobilization stress led to greatly increased plasma corticosterone levels in both young (3-mo) and old 
(24-mo) rats, although aging had no effect on such responses.  
 Garrido et al., [480] provided evidence that the basal levels of total plasma corticosterone measured in blood samples were not different between young 
(6-mo) and aged (27-mo) rats. Restraint stress significantly increased plasma corticosterone levels in both young and old rats, although the average increase 
in corticosterone levels in response to stress was significantly higher in old rats.  

BALB/c Mice 
 Buchanan et al., [481] examined the effect of repeated stress on plasma corticosterone levels in adult (3-5 months) and aged (22-24 months) male 
BALB/c mice. It was reported that aged-mice had higher levels of basal plasma corticosterone compared to adult mice. They also showed that in adult mice, 
plasma corticosterone increased to a greater extent with each successive stress session, whereas in aged mice, two stress sessions produced the maximum 
increase in corticosterone.  
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C57BL/6 Mice 
 Padgett et al., [482] showed that restraint stress caused conparable increases in circulating plasma corticosterone levels in control (3-mo) and aged (22-
mo) male C57BL/6 mice, but old mice required a longer time to attain baseline plasma corticosterone levels following the removal of a stressor.  
 Rosenthal and Morley [483] provided data showing that aging has no significant effect on plasma corticosterone levels, i.e., plasma corticosterone levels 
were similar in adult (10-mo) and aged (27-mo) male C57Bl/6 Nnia mice both under basal condition and in response to CRF stimulation.  
 Studies by Waziers et al., [484] demonstrated that plasma corticosterone levels were significantly higher in young control (2-mo) as compared to aged. 
 Park et al., [485], reported no age-related alteration in plasma corticosterone levels in female C57BL/6J mice both under basal condition and in response 
to extended restraint stress. For these studies mature adult control (7.5-mo) and aged (22-mo) C57BL/6J female mice were employed. 
 Dalm et al., [486] employed 3-, 9-, and 16-month old C57BL/6J mice to examine the age-related changes in hypothalamic-pituitary-adrenal (HPA) activ-
ity. The highest AUC values over 24h periods were shown by 9-months old mice as compared to 3-months and 16-months old mice. The three age groups 
showed a distinct circadian pattern; during the light period, 9-month old mice secreted highest levels of corticosterone followed by 3- and 16-months old 
mice. The corticosterone secretion rates during the dark phase were not impacted by aging.  

C3B10RF1 Hybrid Strain of Mice 
 Harris et al., [487] found no age-related changes in plasma corticosterone levels in the long-lived C3B10RF1 hybrid strain mice. These studies employed 
7-, 17- and 29-month old female mice.  

CF-1 Male Mice  
 Thurmond and Heishman [488] assessed the secreted corticosterone levels in young (3-mo) and aged (30-mo) CF-1 male mice after cold swim stress. 
They showed that circulating levels of corticosterone increased to a greater extent in young than aged CF-1 mice.  

 

levels are high due to their synthesis by the fetal adrenal 
gland. However, DHEA(S) levels drop rapidly as a result of 
fetal zone atrophy and its disappearance in the first year of 
life [320,321,323-325]. During childhood, DHEA(S) con-
centrations remain low through early childhood, but by about 
6-7 years of age (with the development of ZR cells in the 
adrenal cortex), the plasma DHEA(S) concentrations begin 
to rise and about 2 years before the onset of puberty, there is 
a dramatic increase in DHEA(S) secretion, termed the 
‘adrenarche’ [316,317,321]. The plasma levels of DHEA(S) 
peak at approximately 20 years of age and decline progres-
sively after the age of 25 [318] to 5-10% of young adult 
(peak) levels peak values [3,6] by age 70-80. In general, the 
age-related decline in DHEA(S) levels shows high inter-
individual variability and seems to be associated with a loss 
of zona reticularis cells and/or impairment of their function 
[318,325]. This phenomenon is referred to as adrenopause, 
and it occurs in both men and women with a gradual pace at 
similar ages.  

Non-human Primates 

 Besides humans, the fetal adrenal gland and adult zona 
reticularis (ZR) of non-human primates also secrete mg 
quantities of DHEA(S) [319,321,326]. Although various 
non-human primates show some degree of age-associated 
secretion pattern in DHEA(S), until now none of the non-
human primates have been identified that faithfully duplicate 
the human adrenal secretion pattern covering all three life 
stages (i.e., fetal zone or FZ, adrenarche, and senescence) 
[319,321,326]. However, based on the limited morphologi-
cal, biochemical, and endocrine data, however, it appears 
that the marmoset simulates the human pattern of FZ, the 
chimpanzee the human adrenarche, and the Rhesus macaque 
or Rhesus monkey and baboons the human mature ZR func-
tion that progressively declines with senescence [319,321, 
326].  

Rodents and Other Mammals 

 In contrast to humans and non-human primates, rodent 
adrenals lack P450c17, and hence cannot synthesize DHEA 
[327]. Because of the P450c17 deficiency, circulating levels 

of DHEA and its sulfated form, DHEAS, are several orders 
of magnitude lower than in humans. Furthermore, no age-
related changes in plasma DHEA levels have been docu-
mented in rodents [328]. Likewise, studies by Cutler et al 
suggest that circulating concentrations of DHEA(S) remain 
low throughout life in most mammals including the guinea 
pig, hamster, rabbit, dog, sheep, pig, goat, horse, and cow 
[329].  

OXIDATIVE STRESS AND AGE-RELATED DECLINE 
IN STEROIDOGENESIS 

 The extensive evidence as presented above indicates that 
aging in humans and experimental animal models is associ-
ated with a general decline in steroid hormone production. 
Work over the years from this laboratory has shown that the 
basic problem, at least in aging rats, is that adequate amounts 
of cholesterol are not available to adrenal (adrenocortical 
cells) and testis (Leydig cells) for the first step in steroid 
biosynthesis (i.e., conversion of cholesterol to pregnenolone 
by the inner mitochondrial membrane-associated side-chain 
cleavage enzyme system, P450scc [also designated as 
CYP11A1]) [25,53,58,66,76,90]. Questions now center on 
the nature of this defect. It appears that the uptake of lipopro-
tein-derived cholesterol esters in the adrenal of aging rats is 
entirely normal and ample [304,305], and that overall, the 
accumulated stores of steroid precursor, cholesterol in both 
adrenocortical cells and Leydig cells from aging animals is 
more than adequate [183,298]—yet the mitochondria of the 
steroidogenic cells of these animals do not receive adequate 
cholesterol substrate.  

 A substantial body of evidence has accumulated over the 
last few years indicating that levels of both StAR and 
PBR/TSPO (the two important intracellular molecules that 
assist in mediating the cholesterol transport process) are de-
creased in aging rats—linking an alteration in sterol transfer 
and transport proteins with the age-related defect in steroi-
dogenesis. When these issues were explored further, it be-
came evident that increased ROS production (primarily from 
impaired anti-oxidant defense systems) leads to changes in 
expression of sterol transfer proteins (StAR, StAR-related 
proteins [StarDs] and PBR/TSPO] in steroidogenic tissues of 



Aging and Steroidogenesis Open Longevity Science, 2012, Volume 6    15 

aged animals, and downstream, this leads to a reduction in 
cholesterol transfer to mitochondria sites where cholesterol 
side chain cleavage takes place. In the following sections, we 
summarize the impact of aging-induced excessive ROS gen-
eration and ensuing excessive oxidative stress on the events 
connected with the cholesterol transport to mitochondria for 
steroid hormone production.  

Theories of Aging 

 Physiologically aging is an extremely complex, multi-
factorial process, affecting a myriad of genetic, biochemical, 
and metabolic processes. Although, numerous aging theories 
have been proposed to explain mechanisms of aging [330], 
no theory has been more lasting in this regard than that 
known as the “free radical theory of aging,” in which dam-
age by free radicals (reactive oxygen species [ROS]) is 
deemed critical in determination of life span [331-333]. This 
theory proposed in 1956 by the Denham Harman [334] states 
that free radicals, especially ROS formed as by-products of 
normal metabolic processes, cause oxidative damage to mac-
romolecules, whose accumulation causes cellular dysfunc-
tion, and this ultimately determines the lifespan of an organ-
ism [335,336].  

 Over time, the free radical theory has been further re-
fined; first it was modified to become the “oxidative stress 
theory” of aging to reflect the fact that oxygen species such 
as peroxides and aldehydes, which do not fall under the 
category of free radicals, also play a role in oxidative dam-
age to cells [337]. Later with the realization that mitochon-
dria are at the same time major sources and targets of ROS, 
the theory was renamed as the “mitochondrial theory of ag-
ing” [331,332,335,337,339]. According to this theory of ag-
ing, ROS produced as by-products of the mitochondrial oxi-
dative respiratory chain damage mitochondrial macromole-
cules, especially mitochondrial DNA (mtDNA). As a result, 
an accumulation of mtDNA mutations leads to production of 
defective mitochondrial respiration, further increasing ROS 
generation and oxidative damage. It is also suggested that 
accumulation of oxidant-induced somatic mutations alter the 
mitochondrial respiratory complex function leading to in-
creased ROS production and further damage to mtDNA as 
well as other macromolecules [340,341]. This “vicious cy-
cle” of ROS generation and concomitant oxidative damage 
to macromolecules is suggested as the principal determinant 
of mammalian lifespan. Over the past few decades a signifi-
cant amount of correlative evidence has been accumulated in 
support of the mitochondrial theory of aging including stud-
ies that show an increase in ROS generation with age, the 
age-related increase in oxidative damage to DNA including 
mtDNA, lipids, and proteins, increased mtDNA deletions 
and mitochondrial dysfunction with age [338,340].  

 In recent years, however, the use of transgenic and 
knockout mouse models with altered expression of antioxi-
dant enzymes and mutant mouse models that have been ge-
netically modified to increase mitochondrial deletions or 
mutations (PolyD257A/D257A mutant mice) to directly test the 
validity of the mitochondrial theory of aging have yielded 
inconsistence results [337,342-346 ]. Moreover, in some 
instances, the data obtained failed to directly support a direct 
role for mitochondrial oxidative stress or oxidative stress in 

the determination of life span in mice and also did not sup-
port the overall free radical theory of aging [337,342-346]. 
Although, these various findings are somewhat disappoint-
ing, more recent mechanistic studies, however, have clearly 
implicated the mitochondrial free radical damage and im-
paired mitochondrial function as being a central contributor 
to the pathophysiology of aging [347-349]. One prevailing 
view is that mitochondria influence longevity not only 
through increased production of ROS and ensuing oxidative 
damage but also via a stress (ROS)-evoked signal that acts in 
a cell-non-autonomous manner to regulate mitochondrial 
protein homeostasis [347,348]. The other studies emphasize 
a link between excessive ROS production and the functional 
efficacy of insulin signaling, which are based on the epige-
netic oxidative redox shift (EORS) theory of aging [349]. 
According to EORS, which unifies the free radical and insu-
lin signaling theories, sedentary behavior associated with age 
triggers an oxidizing redox shift, enhanced ROS generation, 
reduced mitochondrial turnover and impaired mitochondrial 
function [349], culminating in further accelerated aging.  

Aging and Excessive Oxidative Stress 

 Based on extensive in vivo and in vitro studies, it now 
appears that senescence is associated with increased oxidant 
generation, a decline in the robustness of cellular defenses 
and repair, and an accumulation of the end products of the 
oxidative damage [331,336,339-354]. In general, the three 
main classes of biological macromolecules (lipids, nucleic 
acids and proteins) are susceptible to free radical attack and 
suffer oxidative damage in vivo [331,336,339-354]. Because 
cellular membranes house the production of these radicals, 
membrane lipid peroxidation is now regarded as the major 
process that produces ROS damage during aging [354,355]. 
This idea is reinforced by the fact that lipid peroxidation 
increases with age [331,336] and that oxidized lipid residues 
are major components of lipofucsin, the fluorescent pigment 
that accumulates with age in most tissues [331].  

 The risk of lipid peroxidation is especially high for ster-
oidogenic cells, which use molecular oxygen for steroid bio-
synthesis [356,357] in addition to a more standard cell func-
tion [353-355,358]. Cytochrome P450 enzymes of the ster-
oidogenic pathway use molecular oxygen to hydroxylate 
substrates. As this occurs, ROS such as superoxide anions, 
hydrogen peroxide, hydroxyradicals and other oxygen free 
radicals can also be formed as a result of electron leakage or 
by interaction of the P450 hydroxylases with steroid prod-
ucts (or pseudosubstrates) [356-361]. These oxy-radicals 
combined with a high content of target substrates for ROS 
(such as polyunsaturated fatty acids in the adrenal gland and 
gonads) exaggerate the potential of oxidative changes lead-
ing to cell damage and death. Because lipid peroxidation 
involving membranes could affect membrane composition, 
structure, fluidity and function (e.g. the activation of mem-
brane proteins like receptors, ion channels, participants of 
signal transduction pathways, transport proteins and mem-
brane associated enzymes [362-366]), and virtually every 
event associated with cholesterol processing and steroido-
genesis is dependent on the integrity of cell membranes [1-
6,25,26,53,81,90,367-369], the likelihood of steroidogenesis 
being adversely affected is quite high. As a result, steroido-
genic cells, like other mammalian cells, are well equipped 
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with antioxidant systems to combat free radicals [370-375]. 
These antioxidant systems are comprised of 1) low molecu-
lar weight agents such as vitamin E (atocopherol), vitamin C 
(ascorbic acid), reduced glutathione (GSH), carotenoids, 
flavonoids, uric acid, bilirubin, and lipoic acid; 2) iron and 
copper sequestering proteins such as transferrin, lactoferrin, 
hemopexin, albumin, and ceruloplasmin; 3) antioxidant en-
zymes such as superoxide dismutase (Cu,Zn-SOD, Mn-
SOD), glutathione peroxidases (e.g., cytosolic glutathione 
peroxidase [cGPX], phospholipid hydroperoxidase glu-
tathione peroxidase [PHGPX], plasma glutathione peroxi-
dase [pGPX]), catalase, heme oxygenase, and thioredoxin 
reductase (TR); and 4) accessory antioxidant proteins such as 
thioredoxins, glutaredoxins, and peroxyredoxins [331,350-
353,376-381].  

Oxidative Damage and Oxidant-sensitive Transcription 
Factors 

Indeed, this laboratory has shown that adrenals from young 
rats show the least endogenous lipid peroxidation and the 
highest levels of resistance to pro-oxidant-induced oxidative 
damage of the various tissues examined, and show exceed-
ingly high levels of tissue antioxidants [372]. Despite this, 
aging leads to many oxidative changes both in the adreno-
cortical and the testicular Leydig cells [372,374]. These are 
linked, with time, to a dramatic reduction in the normally 
protective antioxidant defense system, thus, leading to ex-
cessive oxidative stress, and, we believe, ultimately to the 
decline of steroid production in the aging animals, i.e., the 
increase in lipid peroxidation in steroidogenic tissues may be 
the underlying cause of the age-related decrease in corticos-
terone/testosterone synthesis. It is unclear why steroidogenic 
cells do not respond to this oxidant balance by simply modu-
lating the expression of antioxidant enzymes [372,374], oxi-
dant-sensitive transcription factors, AP-1 and NF-B 
[353,358,382-385] and other stress inducible cytoprotective 
genes invoking cellular protective mechanisms [386]. We 
speculate that up-regulation does not occur in the aging ani-
mals because the continuous oxidant burden likely over-
whelms the cells, leading to the failure of cellular transcrip-
tional/translational machinery and, thus, the function of vari-
ous proteins involved in the transport of cholesterol to the 
mitochondrial sites of P450scc. Experimental evidence that 
this is the case comes from earlier reports from our labora-
tory showing that the expression of oxidant-sensitive tran-
scription factors, the activator protein-1 (AP-1) and nuclear 
factor B (NF-B) are both substantially reduced in adrenal 
extracts from aging rats [387,388].  

AP-1 Transcription Factor 

 The transcription factor AP-1 mediates gene regulation in 
response to a broad range of physiological and pathological 
stimuli, including cytokines, growth factors, ROS, infection 
and other stress signals as well as oncogenic stimuli 
[353,385,389-394]. In addition, steroid producing tissues are 
thought to require AP-1 for the regulation of steroidogenesis 
[387,385-400]. AP-1 transcription factors are homo- and 
hetero-dimers of Jun (c-Jun, JunB and JunD), Fos (c-Fos, 
FosB, FosB splice variants FosB2 and DeltaFosB2 and Fra-1 
and Fra-2) Jun dimerization partner (JDP1 and JDP2) and 

the closely related activating transcription factor (ATFa, 
ATF2, LRF1/ATF3, B-ATF) family of proteins character-
ized by basic region and leucine-zipper domains 
[353,385,389-394]. In addition, some of the Maf proteins (v-
Maf, c-Maf and Nrl) can heterodimerize with c-Junior c-Fos, 
whereas other Maf related proteins, including MafB, MafF, 
MafG and MafK, heterodimerize with c-Fos but not with c-
Jun. While Jun proteins can themselves form stable 
homodimers, Fos family members are not able to form 
homodimers, but homodimerize with Jun partners, giving 
rise to various trans-activating or trans-repressing com-
plexes with different biochemical properties. Together, all 
these proteins form the group of AP-1 proteins that after 
dimerization bind to the AP-1 DNA recognition elements 
(5’-TGAG/CTCA-3’), also known as 12-O-tetradecanoyl-
phorbol-13 (TPA)-response element (TRE) in the promoter 
and enhancer regions of the target genes [389-391,393,394]. 

 Members of the ATF family of proteins can form 
homodimers or heterodimers with AP-1 proteins (predomi-
nantly with Jun proteins) that preferentially bind to cAMP-
responsive elements (CRE, 5’-TGACGTCA-3’). AP-1 activ-
ity is regulated at various levels, including transcriptional 
and post-transcriptional mechanisms leading to increased 
AP-1 expression and post-translational modifications, such 
as phosphorylation, post-translational processing and turn-
over or pre-existing or newly synthesized AP-1 subunits and 
oxidation/reduction, altering DNA binding affinity and 
transactivation potential [390,392-394,401-405]. Since DNA 
binding affinity and transactivation potential are different for 
the various proteins, AP-1 activity is also determined by its 
composition [390,393,403,405]. Thus, the extent of tran-
scriptional activation or repression conferred upon AP-1 
responsive genes depends on post-translational modifica-
tions, selective dimerization between different family mem-
bers, and protein-protein interactions with other regulatory 
molecules. AP-1 function is also cell type specific 
[390,393,403,405].  

 Our own studies demonstrate that the expression of AP-1 
constituent proteins (Fos and Jun family of proteins) are con-
siderably reduced in the adrenal extracts of 24-month old rats 
, and that adrenal expression of JunB (normally considered a 
repressor of transcription, a cell proliferation inhibitor, a 
senescence inducer and tumor suppressor [406-410]), is 
greatly increased [387]. All the AP-1 Fos/Jun family of pro-
teins in adrenal extracts are dramatically activated by 
lipopolysaccharide (LPS) (a pro-oxidant stressor), as antici-
pated for agents regulating oxidative stress events, but sig-
nificantly activation occurs in adrenal extracts of aging (24-
mo-old rats) compared to that of 5-mo-old mature rats [387].  

Aging and p38 Subfamily of MAP Kinases 

The p38 subfamily of MAP kinases consists of 4 members, 
p38, p38, p38 and p38 MAPKs, which share high se-
quence homology and a signature TGY, where T, G and Y 
are threonine, glycine and tyrosine, respectively [412-415]. 
Phosphorylation of both the threonine and tyrosine within 
this signature sequence is required for p38 MAPK activation. 
Phosphorylation of p38 MAPKs via a signaling cascade in-
volving MAPK kinases [MKK3/MKK6] is responsible for 
phosphorylation of p38 MAPK,,, and , and MAPK 
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kinase kinases [MAPKKKs] that phosphorylate and activate 
MKK3/MKK6. The activated [phosphorylated] form of p38 
MAPK phosphorylates a large number of transcription fac-
tors including the NFAT, p53, MEF2, and AP-1 family of 
proteins such as ATF2, c-Jun, JunB, and c-Fos).  

 Our recent Western blot analyses data indicated that the 
levels of active (phosphorylated) form of the p38 MAP 
kinase (p38 MAPK), in adrenal [411] and Leydig cell lysates 
(unpublished observation) were substantially increased with 
aging. The follow-up studies demostrtaed that exposure of 
Y1-BS1 mouse adrenocortical and the MLTC-1 mouse to 
various oxidative stressors preferentially stimulated p38 
MAPK activity, but at the same time inhibited steroid pro-
duction [416] and caused down regulation of AP-1 activity 
(unpublished observation). In addition, recently completed 
studies with the use of active (wild-type) and dominant nega-
tive (dn) cDNA constructs of the p38 MAPK signaling 
pathways (e.g. p38 MAPK and MKK6) suggest that p38 
MAPK is a negative regulator of the functional expression of 
AP-1 in steroid producing model cell lines.  

 Thus, it appears that aging in the rat adrenal [372] and 
testicular Leydig cells [374] is linked to a reduction in both 
enzymatic and non-enzymatic components of a cellular natu-
ral defense system against oxidative damage, as well as loss 
in the expression of major AP-1 transcription factor. Under 
normal stress conditions the expression of major AP-1 con-
stituent proteins [382,402] is up-regulated, but in the aging 
adrenal, the only transcription factor whose expression is 
increased (rather than decreased) is Jun B [387], a putative 
repressor of AP-1 function [406-410]. These events suggest 
that cellular defense against oxidative stress is reduced in 
aging animals, and the potential impact of this on steroido-
genesis becomes even more clear when one realizes that 
promoter regions of StarD1/StAR and PBR/TSPO genes, the 
two intracellular molecules which assist in mediating the 
cholesterol transport process [53,58,59,66,76,81,417-419], 
contain an AP-1 response element [420,421], and that the 
proximal AP-1 site in the StarD1/StAR promoter plays a 
pivotal role in regulating StarD1/StAR gene transcription 
[420].  

 It is well known that the acute, rate-limiting step in ster-
oid hormone biosynthesis in steroidogenic tissues is the 
translocation of cholesterol from the outer mitochondrial 
membrane (OMM) to the inner mitochondrial membrane 
(IMM), where it is converted to the pregnenolone by the 
cholesterol-side chain cleavage enzyme, P450scc 
(CYP11A1), thus initiating the synthesis of the steroid hor-
mone [1-6]. It can be demonstrated that when hydroxyl ana-
logs of cholesterol [such as 22(R)-, 20- or 25-
hydroxycholesterol, which readily diffuse though cell mem-
branes to the P450scc] are provided to cells, high levels of 
steroid can be produced even in the absence of hormone 
stimulation, i.e., it is not the reaction catalyzed by P450scc 
that is rate limiting, but rather the transport of cholesterol to 
these sites. The same is true for cells from aging animals. 
When supplied with freely diffusible cholesterol analog (i.e., 
hydroxyl cholesterols), adrenocortical and testicular Leydig 
cells from aging rats are totally competent in producing ster-
oids (corticosterone and testosterone). The “acute” produc-
tion of steroids is dependent upon a hormone-stimulated, 

rapidly synthesized, cyclohexamide-sensitive and highly 
labile protein whose function is to transfer cholesterol from 
outer to inner mitochondrial membranes [53,61-63]. 
StarD1/StAR is now identified as a putative acute regulatory 
protein [53,58,59,76,90,417,418]. Recent evidence, however, 
indicates that StarD1/StAR may also requires participation 
of a PBR/TSPO multimeric complex in facilitating choles-
terol transport from the outer to the inner mitochondrial 
membrane [75,90,419].  

 In regard to the apparent critical function of an “acute” 
regulatory protein in steroidogenesis, it is of interest that 
expression of both StarD1/StAR and PBR/TSPO is down-
regulated in the adrenal and Leydig cells of aging rats [422-
426]. For example, studies from this laboratory have shown 
an 80% reduction in StarD1/StAR protein expression of non-
stimulated Leydig cells prepared from old Sprague-Dawley 
rats suggesting that the impaired testosterone production that 
occurs during aging may involve attenuated StAR expression 
[422]. Upon stimulation with hCG, Leydig cells from young 
rats demonstrated a 3-4-fold increase in StAR expression 
(both protein and mRNA levels), while expression in cells 
from aging (24-mo-old) rats increased no more that 50-70%. 
Likewise, expression of StarD2 and StarD4 is reduced in 
aging Leydig cells, both under basal and hCG-stimulated 
conditions [426]. The expression of neither StarD3 nor 
StarD5 was affected by aging. Also, experiments using adre-
nals from aging animals show ACTH stimulated 
StarD1/StAR and PBR/TSPO mRNA expression is dramati-
cally reduced (unpublished observation). At the same time, 
expression of DBI did not change, nor did the expression of 
the other putative sterol transfer factors such as SCP2, SAP 
precursor (GRP-78), VADC1-3 or ANC. The concept that 
insufficient sterol transfer protein in steroidogenic cells of 
aging animals explains the age-related impairment in hor-
mone production is strengthened by studies of mutations in 
humans and the ablation of the StAR gene in mice. Similar 
to what is observed in aging adrenal and Leydig cells, hu-
mans carrying mutations that inactivate StarD1/StAR exhibit 
markedly reduced gonadal and adrenal steroidogenesis, a 
condition that leads to excessive accumulation of cholesterol 
in lipid droplets and a disease named congenital lipoid adre-
nal hyperplasia [427]. Ablation of the StarD1/StAR gene in 
mice also results in a phenotype of impaired steroidogenesis 
and adrenal lipid accumulation [428]. Likewise, deletion of 
PBR/TSPO results in a greater than 90% reduction in steroid 
production and severe impairment in cholesterol transport to 
mitochondria, both of which can be rescued by re-
introduction of the PBR/TSPO [429]. 

 It appears, therefore, that several critical inter-relating 
factors relevant to steroidogenesis are significantly altered in 
the aging rat model. These may include expression levels of 
sterol transfer proteins (such as StarD1/StAR, StAR-related 
proteins and PBR/TSPO), oxidant sensitive transcription 
factors (such as AP-1 possibly involved in the inducible ex-
pression of sterol transfer protein genes) and other genes 
responsive to oxidative stress. A significant attenuation in 
AP-1 expression over time and continual excessive oxidative 
insult might lead to impaired regulation of StAR gene tran-
scription, decreased expression of other StAR-related choles-
terol transfer proteins, and the StAR partner, PBR, and as a 
result, decreased cholesterol delivery to mitochondria and 
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loss of steroidogenesis. It remains to be determined as to 
how increased ROS formation and ensuing oxidative damage 
leads to changes in expression of sterol transfer proteins, 
StAR, StarD proteins and PBR/TSPO in steroidogenic tis-
sues of aged animals, and downstream, this leads to the 
transfer of less cholesterol to mitochondrial sites where cho-
lesterol side chain cleavage takes place.  

CONCLUSION AND PERSPECTIVES 

 All steroid hormones are derived from cholesterol, and 
they are made up of three six-carbon rings, one five carbon 
ring, and a unique side chain, a basic structure that is charac-
teristic of the cholesterol molecule. They are secreted pri-
marily by three “steroidogenic glands”—the adrenal gland, 
ovaries and testes and during pregnancy by the placenta. 
Steroid hormones are classified into five classes namely: 
estrogens, progestins, androgens, glucocorticoids and miner-
alocorticoids. Glucocorticoids and mineralocorticoids to-
gether are called corticoids, whereas estrogens, progestin and 
androgens are often referred to as sex steroids. The andro-
gens and estrogens are primarily responsible for the devel-
opment and maintenance of reproductive function and sec-
ondary sex characteristics in the male and female, respec-
tively. Estrogens and progestin are typically linked with the 
female reproductive functions such as menstrual cycle, ovu-
lation and implantation of the embryo. Mineralocorticoids 
such as aldosterone help maintain the balance between water 
and salts in the body, predominantly exerting their effects 
within the kidney. Glucocorticoids are typically involved in 
the regulation of lipid, carbohydrate and protein metabolism.  

 Numerous cross-sectional longitudinal studies conducted 
during the past four decades or so have established that cir-
culating levels of testosterone decline with advancing age in 
men, and this decline has been associated with parallel age-
related metabolic and pathophysiological changes such as 
increased fat mass, decreased muscle and bone mass, frailty, 
depression, sexual function, osteopenia, and osteoporosis, 
insulin resistance, diabetes and increased cardiovascular risk. 
Although there is dysfunction of the hypothalamic-pituitary-
gonadal (HPG) axis in men, the age-related decline in testos-
terone levels is most likely to involve direct alterations of 
testicular Leydig cell function. Likewise, aging of the human 
ovary also results in a gradual decline in ovarian steroid pro-
duction, followed by an abrupt and complete cessation of 
both progesterone and estrogen production at the onset of 
menopause. Human aging is also associated with alterations 
in adrenal steroid secretion, a decline in aldosterone secre-
tion and subtle changes in cortisol production. Also, the ad-
renal androgens, DHEA and DHEAS decline more dramati-
cally with age in a situation similar to menopause, and these 
decreases are considered to aggravate some age-related dis-
eases. 

 Similar to humans, advancing age in experimental ani-
mals, particularly rats, is also associated with profound 
changes in the synthesis and secretion of steroid hormones. 
With corticosterone or testosterone, one does not always 
notice a decline in circulating levels due to various compen-
satory mechanisms of the organism, decreased disposal rates 
of the hormones, or change in binding proteins, etc? But 

when specifically challenged in vitro, isolated adrenocortical 
cells or Leydig cells of older rats in several different strains 
show significantly less steroidogenic response to trophic 
hormone stimulation than do cells from young animals. 
Overall, these changes appear not to be a function of reduced 
tropic hormone receptor signaling or a defect in the steroid 
synthesizing, but a change in the ability of aging tissues to 
mobilize the intracellular cholesterol needed for steroid hor-
mone production. Despite the fact that these accumulate ex-
cessive amounts of cholesteryl esters in the form of lipid 
droplets, it appears they cannot appropriately transport the 
steroid precursor (i.e., free cholesterol) to mitochondrial sites 
of the CYP11A1/P450scc enzyme, where the conversion of 
cholesterol to pregnenolone (the precursor of all steroid 
hormones) takes place with side chain cleavage. Although 
various cellular and molecular mechanisms controlling this 
aging defect have not been definitively identified, consider-
able evidence from this laboratory points to excessive free 
radical (ROS) formation and oxidative damage (especially 
from life-long continued processing of cholesterol for steroid 
production) to the cell machinery regulating the functional 
expression of crucial proteins involved in cholesterol trans-
port. The latter include cellular sterol transport proteins 
(such as StarD1/StAR protein, certain StAR-related [StarD] 
proteins, and a multimeric protein complex collectively 
known as the PBR/TSPO complex, which assists in translo-
cation of cholesterol from the OMM to the IMM, where it is 
converted to pregnenolone by mitochondrial side chain 
cleavage (CYP11A1/P450scc), as well as interactions be-
tween tissue AP-1 transcription factors and p38 MAPK, 
which appear to regulate the expression of the StarD1StAR 
protein, and possibly that of PBR/TSPO.  

 However, very little is known about the underlying mo-
lecular mechanisms by which aging-induced excessive oxi-
dative stress alters the functional expression of these critical 
inter-relating factors relevant to steroidogenesis. Outstanding 
questions that should be addressed in the future include: (1) a 
detailed characterization of molecular events that lead to 
excessive ROS production and oxidative damage; (2) 
mechanism(s) by which aging-related continual excessive 
oxidative insults leads to a significant attenuation of AP-1 
expression, and consequently, impaired regulation of 
StarD1/StAR and its partner PBR/TSPO and the relevant 
StarD proteins; (3) the involvement; and (4) the pathological 
and physiological roles of p38 MAPK isoforms in mediating 
age-related excessive oxidative stress-induced alterations in 
the functional expression of these crucial steroidogenic pro-
tein factors. The application of the state-of-the-art molecular, 
cellular and biochemical approaches, coupled with high-
throughput proteomic and lipidomics approaches, may pro-
vide valuable insights into these important questions. More-
over, the use of genetically modified mice to modulate (de-
creased or increased) expression of antioxidant enzymes 
(e.g., Cu,Zn-SOD, Mn-SOD, catalase, GPX-1 or GPX-4) in 
a time-dependent manner will be very useful to elucidate in 
vivo mechanism(s) by which excessive oxidative stress con-
tributes to age-related decline in steroid hormone synthesis 
and secretion. The use of designer cell lines overexpressing a 
pair of various combinations of antioxidant enzymes (e.g. 
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Mn-SOD/catalase or Mn-SOD/GPX-1 will convert superox-
ide anions into harmless water) or chronic treatment of old 
rats with small molecular weight natural or synthetic anti-
oxidants should also yield valuable information. It is likely 
that future studies along these lines may identify novel tar-
gets for the development of new therapies to treat male hy-
pogonadism and other clinical conditions associated with 
alterations in the level of specific steroid hormones in re-
sponse to aging. 

ABBREVIATIONS 

ACTH = Adrenocorticotropic 
hormone 

ANC = 30-kDa adenine nucleo-
tide translocator 

AP-1 = Activator protein-1 

CEH = Cholesteryl ester hy-
droxylase 

C = Adenylate cyclase 

CEs = Cholesteryl esters 

DEX = Dexamethasone 

CRF = Corticotrophin-releasing 
factor 

cGPX = cytosolic glutathione 
peroxidase 

CRE = cAMP-responsive ele-
ments 

Cu,Zn-SOD = Cu, Zn-superoxide dis-
mutase 

DHEA = Dehydroepiandrosterone 

DHT = Dihydrotestosterone 

FSH = Follicle-stimulating 
hormone 

G = G proteins (guanine nu-
cleotide-binding pro-
teins) 

GnRH = Gonadotropin-releasing 
hormone 

GSH = Reduced glutathione 

H = Tropic hormone (ACTH, 
LH, FSH) 

hCG = human chorionic gonad-
otropin 

HDL = High-density lipoprotein 

IMM = Inner mitochondrial 
membrane 

LDL = Low-density lipoprotein 

LH = Luteinizing hormone 

MKK3 = Mitogen activated pro-
tein kinase kinase 3 

MKK6 = Mitogen activated pro-
tein kinase kinase 6 

Mn-SOD = Mn-superoxide dismu-
tase 

MT = Menopausal transition 

mtDNA = mitochondrial DNA 

NF-B = Nuclear factor B 

OMM = Outer mitochondrial 
membrane 

PBR = Peripheral-type benzodi-
azepine receptor 

P450scc = Side-chain cleavage 
(scc) cytochrome P450 

PHGPX = Phospholipid hydroper-
oxide glutathione per-
oxidase 

pGPX = plasma glutathione per-
oxidase 

PKA = cAMP-dependent protein 
kinase or protein kinase 
A 

PRAX-1 = PBR-associated protein-
1 

R = Tropic hormone (ACTH, 
FSH, and LH) receptors 

ROS = Reactive oxygen species 

SAP = Steroidogenesis activator 
polypeptide 

SCP2 = Sterol carrier protein2 

SHBG = Sex-hormone-binding 
globulin 

StAR = Steroidogenic acute 
regulatory protein 

StAR-related lipid transfer = (START) domain con-
taining protein 

StarD2 = Steroidogenic acute 
regulatory protein-
related transfer (START) 
domain protein2 

TPA = 12-O-
tetradecanoylphorbol-13-
acetate 

TR = Thioredoxin reductase 

TRE = Responsive element 

TSPO = Mitochondrial transloca-
tor protein 

VDAC = 34 kDa voltage-
dependent anion 
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