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Abstract: Elliptic Curve Cryptography (ECC) can be used as a tool for encrypting data, creating digital signatures, and 
performing key exchanges. Regarding the encryption capability, the first schemes that appeared were either versions of 
already existing public-key algorithms (Massey-Omura and ElGamal) or new schemes specified ad hoc (Menezes-
Vanstone). However, all the initial elliptic curve encryption schemes had similar problems, and thus were conveniently 
discarded by the academic community. The encryption schemes currently used are known as hybrid cryptosystems, as 
they use both symmetric and asymmetric techniques. Among those hybrid cryptosystems based on ECC, the best known 
ones are the Elliptic Curve Integrated Encryption Scheme (ECIES), the Provably Secure Elliptic Curve encryption scheme 
(PSEC), and the Advanced Cryptographic Engine (ACE). 

In this work, we present an extensive review of the basic concepts of elliptic curves, the initial ECC encryption 
algorithms, and the current ECC hybrid cryptosystems. After that, we provide a comprehensive comparison of ECIES, 
PSEC, and ACE, highlighting the main differences between them. Finally, we conclude that, with the available data, it can 
be stated that ECIES is the best ECC encryption scheme from a performance and ease of implementation point of view. 
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1. INTRODUCTION 

 In 1987, Neal Koblitz proposed the use of elliptic curves 
over finite fields in order to implement some cryptosystems 
that were previosly specified for the multiplicative group of 
a finite field [1]. In the sections referring to the equivalent of 
the ElGamal algorithm, Koblitz detailed the procedure and 
computations to be performed with the points of an elliptic 
curve, including examples about how to choose those points. 
Additionally, Koblitz described how the Diffie-Hellman key 
exchange procedure could be implemented with elliptic 
curves. This scheme received the name ECDH (Elliptic 
Curve Diffie-Hellman). In an independent research [2], 
Victor Miller prepared a similar proposal in relation to the 
general model described by Diffie and Hellman, though he 
did not include comparisons with other existing implemen-
tations. 

1.1. Definition of an Elliptic Curve 

 Given the field   and the affine plane A
2 () = 2  

defined over  , the corresponding projective plane is 
represented as the set  

 P
2 () = {(X,Y,Z )3 | (X,Y,Z )  (0, 0, 0)}  
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together with an equivalence relation defined so that two 
points of the projective plane,  (X,Y,Z )  and ( X , Y , Z ) , are 

equivalent if and only if there exists a value   0  so that 
( X , Y , Z ) = (X,Y ,Z )  [3]. The equivalence class of the 
point (X,Y,Z )  is represented as  [ X :Y : Z ] . 

 A plane curve defined over a field   can be expressed in 
the affine plane A

2 ()  by means of the equation f (x, y) = 0  

using non homogeneous coordinates, or alternatively in the 
projective plane P

2 ()  through the equation F(X,Y , Z ) = 0  
expressed in homogeneous coordinates [4], where a 
polynomial is considered to be homogeneous if all its 
monomials have the same degree. 

 The plane curve has rational points when the coordinates 
of those points belong to the field   (not necessarily  ) 
[5]. The existence of rational points on a curve depends on 
the genus g  of the curve, which is a concept derived from 
the Riemann theorem [6]. The genus allows to classify the 
plane curves based on the degree of the polynomial that 
defines the curve and the singularities it has through the 
expression  

g =
(n 1)(n  2)

2


Pi


mPi

(mPi
1)

2
,  

where n  is the degree of the polynomial and mPi
 represents 

the multiplicity of each singular point Pi  [7]. 
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 Depending on the genus of a curve, it is possible to 
determine the existence of rational points (and, in particular, 
the existence of points where the coordinates are integer 
values) [8]:  

• A curve of genus g = 0  has either no rational points or an 

infinite number of them. In particular, it can have no points 
where the coordinates are integer values, it can have a finite 
number of them or even infinite points of that type.  

• A curve of genus g = 1  can have no rational points, a finite 

number of them or even infinite rational points, but it can 
only have a finite quantity of points with integer coordinates.  

 • A curve of genus g  2  can only have a finite number of 

rational points.  

 A point of a curve is singular if and only if the partial 
derivatives of the elliptic curve expression are cancelled at 
that point [9]. A singular point of a plane cubic curve is 
called a node if the point has two distinct tangents and a cusp 
if the point has a double tangent [10]. A curve is singular if it 
has at least one singular point, while it is regular when it 
contains no singular points [11]. Figs. (1) and (2) present two 
examples of singular points taking the form of a node and a 
cusp, respectively. 

 Based on the previous definitions, it can be stated that an 
elliptic curve E  over the field   is a regular projective 
curve of genus 1 with at least one rational point [9, 12]. 
Every elliptic curve admits a canonical equation called the 
Weierstrass form. That equation in homogeneous 
coordinates is  

Y 2Z  a1XYZ  a3YZ 2 = X 3  a2 X 2Z  a4 XZ 2  a6Z 3,  

with a1, a2 , a3, a4 , a6   and   0 , where   is the 

discriminant of E  and can be computed in the following 
way [13]: 

 = d2
2d8  8d4

3  27d6
2  9d2d4d6 ,

d2 = a1
2  4a2 ,

d4 = 2a4  a1a3,

d6 = a3
2  4a6 ,

d8 = a1
2a6  4a2a6  a1a3a4  a2a3

2  a4
2 .

 

 The Weierstrass equation is usually expressed in non 
homogeneous form, where the relationship between both 
equations is given by f (x, y) = F(x, y,1)  and 

F(X,Y , Z ) = f (X / Z,Y / Z )  Z 3 , which produces the 

following affine equation:  

E : y2  a1xy  a3y = x3  a2 x2  a4 x  a6 .  (1) 

 The homogeneous Weierstrass equation defines a 
projective plane curve with one point in the infinity, namely 

= [0 :1: 0] . In principle that curve does not have to be 

elliptic, as it could have singular points. Due to that fact, the 
condition   0  assures that the curve is regular, which is 
equivalent to stating that every root of the equation must be 
necessarily simple [11, 14]. 

1.2. Group Structure 

 Given an elliptic curve E  defined over a field   by 
means of equation (1), and given the elliptic curve points 
P = (xP , yP ) , Q = (xQ , yQ ) , and R = (xR , yR ) , the operation 

  is defined as follows [12, 15, 16]:  

1. P E , P  =  P = P .  

2. Given a point P , there exists 
P = (xP ,yP  a1 xP  a3 ) , so that P  (P) = . It is 

 
Fig. (1). Curve y2 = x3  with node in (0, 0) . 

 
Fig. (2). Curve y2  xy  x3 = 0  with cusp in (0, 0) . 
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important to notice that P  and P  are the only points of 
the curve whose first coordinate is xP .  

3. Given two points P  and Q  such that P  Q , then 

R = P Q , with  

  

x
R

= 2  a
1
  a

2
 x

P
 x

Q
,

y
R

= (x
P
 x

R
) y

P
 a

1
x

R
 a

3
,

 =
y

Q
 y

P

x
Q
 x

P

.

 

4. Given a point P , R = P  P = 2P  has the following 
coordinates:  

2
1 2 1 3

2
2 4 1

1 3

= , = ( ) ,

3 2
= .

2

R P Q R P R P R

P P P

P P

x a a x x y x x y a x a

x a x a a y

y a x a

          

  
 

 

 The Mordell-Weil theorem [17, 18] states that the set of 
elliptic curve points, together with the sum operation, form 
an abelian group, where the sum operation has the following 
properties:  

 • Associativity: P,Q, R E, (P Q) R = P  (Q  R) .  

 • Identity element: P E, P  =  P = P .  

 • Inverse element: given a point P = (x, y) , there exists only 

one point P  such that P  P = , where P = P .  

 • Commutativity: P,Q E, P Q = Q  P .  

 This properties imply that all the rational points of an 
elliptic curve defined over   (or an extension of  ) can be 
obtained from a finite number of points. In the case of finite 
fields, the number of generators needed is exactly 1 or 2 
[19]. 

1.3. Elliptic Curves Over Finite Fields 

 The order of a finite field   is the number of elements of 
that field. If the order of a finite field is q , then q = pm , 

where p  is a prime number called the characteristic of the 

field, and m  is a positive integer [14]. 

 In general, elliptic curve cryptosystems use two types of 
finite fields q  with q = pm  elements: p  (prime finite 

fields) and 2m  (binary finite fields). 

 In prime finite fields, the elements of p  are 

{0,1,2, , 1}p  , and the operations are performed modulo 

p  [20]. 

 In comparison, in finite fields of the type 2m  the 

elements are represented as bit strings of length m . If f (x)  

is an irreducible polynomial of degree m  with coeficientes 
in 2 , then the field 2m  can be interpreted as the set of 

polynomials with coefficients in 2  of degree less than the 

degree of f (x)  [20]:  

2m = 2[x] / ( f (x)).  

 In practice, the Weierstrass equation is not used, and the 
following simplified equations with affine coordinates are 
used depending on the characteristic of the finite field   
where the elliptic curve is defined:  

 • If the finite field is a prime field, i.e.  = p , where p > 3  

is a prime number, the equation defining the (non-
supersingular) elliptic curve becomes:  

y2 = x3  ax  b.  (2) 

 • If the finite field is a binary field, i.e.  = 
2m , where m  

is an integer number, then the equation of the (non-
supersingular) elliptic curve is:  

y2  xy = x3  ax2  b.  (3) 

1.4. Order of an Elliptic Curve 

 The order of an elliptic curve E  defined over a field q  

of characteristic p , denoted as #E(q ) , is the number of 

points of E(q ) . If the base field is a finite field, the order of 

the curve is finite and is made up of the points of the curve 
that satisfy the curve equation plus the point in infinity. 

 The Hasse theorem [21] provides the following 
expression related to the order of the curve, where t  is the 
trace of the curve [14]:  

#E(q ) = q 1 t, | t | 2 q .  

1.5. Elliptic Curve Parameters 

 For elliptic curves defined over p , where p > 3  is a 

prime number, the set of parameters that must be used in 
relation to a specific elliptic curve is  

{ } = (p, a,b,G, n, h) ,  

where:  

 • p  is the prime number that specifies the finite field p .  

 • a  and b  are the elements of p  that define the curve 

E(p )  given by the equation y2 = x3  ax  b .  

 • G = (xG , yG )  is the generator of a cyclic subgroup of the 

curve.  

 • n  is the prime number that indicates the order of G .  

 • h  is the elliptic curve cofactor, computed as #E(p ) / n .  

 In comparison, if the curve is defined over 2m , the set of 

parameters that must be managed is  

{ } = (m, f (x), a,b,G, n, h) ,  
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where:  

 • m  is the positive integer number that specifies the finite 
field 2m .  

 • f (x)  is an irreducible polynomial of degree m .  

 • a  and b  are the elements of 2m  that define the curve 

E(
2m )  given by the expression y2  xy = x3  ax2  b .  

 • G , n  and h  have the same meaning as in the case of 
prime elliptic curves.  

2. ELLIPTIC CURVE CRYPTOSYSTEMS 

2.1. Early Cryptosystems 

 The first encryption schemes based on elliptic curves 
were the equivalent versions of the Massey-Omura [22] and 
ElGamal [23] cryptosystems, both presented by Koblitz in 
1985 (and published in 1987) [1], and the Menezes-Vanstone 
cryptosystem [24]. 

 Algorithm 1 describes the Massey-Omura protocol by 
which user U  sends the message m  to user V , where E  is 
an elliptic curve defined over the finite field q  of q  

elements, and there exists a publicly known relationship 
between the plaintexts and some points of the curve, so for 
any message m  the point Pm E  is known by all the 

parties. 

Algorithm 1. Massey-Omura Cryptosystem with Elliptic 
Curves 

1. U  must generate a random number c , with 0 < c < #E , 

where c  and the order of the curve, #E , are relative 

primes. U  must send the computed elliptic curve point, 

 cPm , to V .  

2. V  must generate a random number d  (where 
0 < d < #E  and the values d  and #E  are coprimes). 
After that, V  must send the elliptic curve point dcPm  to 
U .  

3. After receiving the information from the other user, U  must 
transmit to V  the curve point  c dcPm = dPm , where 

1(mod # )c c E  .  

4. Finally, user V  must obtain the curve point Pm  associated 
to the message m  by computing d dPm , where 

1(mod # )d d E  .  

 
 Similarly, given a curve E , a generator G , and a 
publicly available correspondence of plaintexts and curve 
points, Algorithm 2 presents the steps that must be 
performed so user U  can send the message m  to V  using 
the ElGamal encryption scheme adapted for elliptic curves. 

 One of the main disadvantages of the Massey-Omura and 
ElGamal versions adapted for elliptic curves is that 
plaintexts and encrypted messages must be represented as 
points of an elliptic curve E . This disadvantage, when using 
elliptic curves whose order #E  is a high value, produces a 

limitation which is more theoretical than practical. However,  
the requirement to build tables stating the relationship 
between every possible message and its related elliptic curve 
point limits the usefulness of these cryptosystems to closed 
environments (enterprises, small groups, etc.) where all 
possible messages are previously established. 

Algorithm 2. ElGamal Cryptosystem with Elliptic Curves 

1. V  must choose randomly the value v , making publicly 
available the key =V vG .  

2. Taking into account the message m  and its associated curve 
point mP , user U  must generate a random value k  and send 
the pair of points ( , )mkG P kV  to V .  

3. After receiving the pair of points, V  can recover the curve 
point associated to the message by multiplying the point kG  
by the value v , thus obtaining the point 

( ) = ( ) =v kG k vG kV . After that, V  must substract the 
generated point from P kVm . 

 
 The Menezes-Vanstone cryptosystem for elliptic curves 
was designed precisely to overcome this limitation, as 
instead of matching each message with a point of the curve 
E , it represents the plaintexts as ordered pairs of *  * , 
where 

* =  \ {0}  and those pairs do not necessarily have 

to represent the coordinates of an elliptic curve point. Using 
this cryptosystem, it is possible to split any plaintext in 
blocks, where each block could be easily encoded as an 
ordered pair. The disadvantage of this procedure is that, 
instead of transforming each clear message into a single 
point of the curve (where the binary representation of every 
point of the curve has the same length), the size of the 
encrypted message depends directly on the length of the 
plaintext. 

 Algorithm 3 presents the steps that are necessary in order 
to complete the encryption and decryption procedures of a 
message represented as the element x = (x1, x2 )q

*  q
*  

using the Menezes-Vanstone cryptosystem adapted for 
elliptic curves. In the procedure, the order of the generator of 
a cyclic subgroup of E , defined as G , is n , while v  and 
V = vG  represent the private and public keys of user V , 

respectively. 

 In the Menezes-Vanstone cryptosystem, the expansion 
factor (i.e. the ratio between the size of the cryptogram and 
the length of the clear message) is 2, since a plaintext 
x = (x1, x2 ) , consisting of two elements of the finite field 

* , produces the cryptogram (Y0 , y1, y2 ) , where y1, y2   

and Y0  is an elliptic curve point with two coordinates that 

belong to the finite field, so in summary the total number of 
finite elements to be transmitted is 4. When using point 
compression in order to decrease the length of the 
information to be transmitted (i.e. only the first coordinate of 
the point is sent along with an additional byte that includes 
the necessary data for recovering the whole point), the 
expansion factor is reduced to approximately 1.5. 
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Algorithm 3. Menezes-Vanstone Cryptosystem for Elliptic 
Curves 

1. U  must choose a random value {1, , 1}k n   and 
compute Y0 = kG E , 1 1 1= (mod )y c x p , and 

2 2 2= (mod )y c x p , where 1 2( , ) =c c kV .  

2. U  must send the cryptogram 0 1 2= ( , , )Y y y  to V .  

3. After receiving the cryptogram, V  will recover the pair 

1 2= ( , )x x x  by means of the operations 1
1 1 1= (mod )x y c q  

and 1
2 2 2= (mod )x y c q , where 0 1 2= ( , )vY c c .  

 
In comparison, the expansion factor of the variants of the 
Massey-Omura and ElGamal cryptosystems is 2, as the clear 
message is considered to be a point of the curve and, in each 
one of those cryptosystems, it is necessary to transmit 2 
elliptic curve points. In practice, a high value for the 
expansion factor implies that the encryption of the 
information generates cryptograms much larger than those 
produced when using a symmetric key algorithm like AES. 

 Another disadvantage resulting from the design of the 
Menezes-Vanstone cryptosystem is that it is necessary to 
perform operations with the points of the elliptic curve in 
each encryption process. As depending on the plaintext 
length it is necessary to divide the plaintext in multiple 
segments and perform asymmetric encryption operations 
with each of those segments, when the number of segments 
increases the performance of the Menezes-Vanstone scheme 
degrades much faster than in the case of using a symmetric 
encryption algorithm. 

In addition to the previously mentioned practical 
disadvantages, Klaus Kiefer showed in 1998 that, under 
certain conditions, this cryptosystem is insecure [25]. Kiefer 
also demonstrated that, contrary to the terms of its 

specification, the Menezes-Vanstone cryptosystem cannot be 
considered a probabilistic encryption algorithm. 

2.2. Hybrid Cryptosystems 

Due to the reasons mentioned in the previous section, over 
the years the academic community abandoned the study of 
the three initial cryptosystems based on elliptic curves. As an 
illustrative example, while in the first edition of the work by 
Douglas Stinson [26] both the ElGamal and the Menezes-
Vanstone cryptosystems for elliptic curves were included, in 
the second and third editions these schemes were replaced by 
ECIES, the Elliptic Curve Integrated Encryption Scheme. 
Even in one of the latest books about this subject, co-
authored by Alfred Menezes and Scott Vanstone [14], the 
Menezes-Vanstone scheme is not included. 

However, the discovery of the limitations of these early 
cryptosystems did not imply the abandonment of the search 
for a practical and secure elliptic curve cryptosystem, as it 
only caused a change of direction, occupying now the 
spotlight the hybrid encryption schemes, which bring the 
best characteristics of both symmetric and asymmetric 
cryptography. The most important hybrid schemes that use 
elliptic curves are ECIES, PSEC (Provably Secure Elliptic 
Curve encryption scheme) [27, 28], and ACE (Advanced 
Cryptographic Engine) [28, 29]. 

Of the three schemes, ECIES is available in a greater number 
of standards (ANSI X9.63 [30], IEEE 1363rd [31], ISO/IEC 
18033-2 [32], and SECG SEC 1 [33]). PSEC can be found in 
ISO/IEC 18033-2 [32], IETF RFC 4051 [34], and the set of 
algorithms selected for the NESSIE (New European 
Schemes for Signatures, Integrity and Encryption) project 
[35, 36], while ACE is available in ISO/IEC 18033-2 [32], 
and the final selection of NESSIE [35, 36]. 

Table 1. Encryption Process in ECIES, PSEC, and ACE 

 ECIES   PSEC   ACE  

 u [1, n 1]    r {0,1}l    u [1, n 1]   

 U = uG    K =  KDF( 032 || r )   U = uG   

 P = uV    K = t || k1 || k2    P = uW   

 P = (xP , yP )    u = t(mod n)    P = uZ  

 K = KDF( U || xP )   U = uG    P = (x P , y P )   

 K = k1 || k2    P = uV     =  HASH (U || P)   

  c = ENC k1
(m)    s = r KDF( 132 || U || P )   u =u(mod n)   

 tag=MAC
 
k2

(c)    c = ENC k1
(m)    Q = u X  u Y   

  = (U, , tag)   tag=MAC k2
(c)    K = KDF( U || x P ) 

   = ( U,n , s, tag)   K = k1 || k2   

     = ENC k1
(m)   

     tag=MAC k2
(n )   

     = ( , , , ,U P Q  tag) 
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Table 1 includes a comparative summary of the encryption 
process of ECIES, PSEC, and ACE, using for all of them an 
equivalent notation in order to highlight the similarities 
between them. 

The meaning of the functions and elements included in  
Table 1 is the following:  

 • KDF (Key Derivation Function): Mechanism that produces 
a set of keys from keying material and some optional 
parameters.  

 • HASH: Digest function.  

 • ENC (Encryption): Symmetric encryption algorithm.  

 • MAC (Message Authentication Code): Function used to 
authenticate a message.  

 

 • G : generator of the cyclic subgroup of elliptic curve 
points used in the procedure.  

 •   n : order of the point G .  

 • u : temporary private key of the user who sends the 
cryptogram, U .  

 • U : temporary public key of U, where U = uG .  

 • v : permanent private key of the user who receives the 
cryptogram, V .  

 • V : permanent public key of V. In ECIES and PSEC, 
V = vG , whilst in ACE the public key is composed of four 
points of the elliptic curve, so V = (W , X,Y , Z ) .  

 • r : random binary string whose length l  is fixed.  

 • 032 : 32-bit string representing the integer value 0.  

 • 132 : 32-bit string that represents the integer value 1.  

 • t : ( 128) -bit string that must be interpreted as an 

integer value, where   is a security parameter whose value 

is the length in bits of the working finite field (i.e.,  2log p  

or m , depending on the type of finite field).  

3. COMPARISON OF ECIES, PSEC, AND ACE 

After reviewing the three schemes, the main differences that 
can be identified are the following:  

 • In PSEC and ECIES, the receiver's public key is a point on 
the elliptic curve, V = v G , where v  is the receiver's private 
key, and G  is the generator of the group of points of the 
cyclic subgroup used in the computations. In contrast, in 
ACE the public key consists of four elliptic curve points, that 
is, V = (W , X,Y , Z ) .  

• PSEC uses twice a key derivation function in order to 
obtain a pair of MAC and symmetric encryption keys, whilst 
ACE and ECIES use such a function only once.  

 • ECIES and ACE use the first coordinate of a point of the 
curve generated during the calculations (instead of both 
coordinates) as an input parameter to the key derivation 
function previously mentioned, while PSEC requires to use 
both coordinates.  

• PSEC is the only scheme that uses the XOR function 
during the key generation process (regardless of its usage as 
a symmetric encryption function).  

 • Cryptograms in ECIES consist of three elements (the 
sender's ephemeral public key, the encrypted message, and a 
MAC code), while cryptograms in PSEC include one 
additional element, a binary string, and in ACE the 
cryptograms include two additional elliptic curve points.  

Table 2. Number of Group Operations in ECIES, PSEC, and ACE 

   ECIES   PSEC   ACE  

 Group exponentiations   2   2   5  

 Group multiplications   0   0   1  

 Random numbers   1   1   1  

 Hash calls   1   2   2 

 Symmetric cipher calls   1   1   1 

 MAC calls   1   0   0 

Table 3. Estimated Performance of ECIES, PSEC, and ACE 

   ECIES   PSEC   ACE  

 Encyption cycles   2500K   2500K   6250K  

 Encryption time   5 ms   5 ms   12.5 ms 

 Decryption cycles   1250K   2500K   3750K  

 Decryption time   2.5 ms   5 ms   7.5 ms 
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 After presenting the encryption procedure for the three 
schemes, we will present an evaluation in terms of 
performance, security and adaptability to the hardware 
platforms where they can be implemented. 

3.1. Performance 

 Regarding the performance aspects, Table 2 presents a 
comparison about the number of operations that are needed 
in order to encrypt a message with the three cryptosystems. 
The data contained in that table have been extracted from the 
Nessie final report [36]. 

 On the other hand, Table 3 presents the estimated 
performance of the three encryption schemes using a 
Pentium III PC with a clock frequency of 500 MHz [36]. 

 Another aspect that must be taken into account in order 
to evaluate the efficiency of the schemes is the expansion 
factor. Table 4 shows the private and public key lengths in 
bytes, as well as the cryptogram length equally in bytes, 
where the length of the finite field elements, the plaintext 
and the hash function output are 20, 16, and 20 bytes, 
respectively. In this comparison, the elliptic curve points use 
the compression feature, so instead of the two coordinates 
only one is sent along with an addition byte that can be used 
to obtain the proper value of the second coordinate. 

3.2. Security 

 The security level of the three schemes is a topic on 
which there is no agreement in the academic community. 
The final NESSIE report selected PSEC and ACE, leaving 
out of the selection ECIES. This was due, among other 
factors, to the bening malleability problems that affect 
ECIES, and to the fact that ECIES is an unauthenticated 
KEM (Key Encapsulation Mechanism) scheme (i.e., it does 
not check if the element P = uV  used for the calculation is 
correct based on other parameters of the cryptogram), while 
PSEC and ACE are authenticated schemes that do not have 
bening malleability problems. 

 However, there are several solutions to prevent benign 
malleability [28]. In addition, the usefulness of the authen-
ticated KEM models in comparison to the unauthenticated 
models is unclear, as in the DEM (Data Encapsulation 
Mechanism) phase a MAC algorithm is used to authenticate 
the message data [37]. Finally, some authors believe that the 
analysis included in NESSIE is incomplete and that, with the 
currently known data, it cannot be stated that PSEC is safer 
than ECIES [38]. NESSIE documents were delivered in 
2004 and, due to the completion of the European Union  
 

project to which they were related, they have not been 
reviewed since then. 

3.3. Adaptability 

 The last topic that must be considered when comparing 
ECIES, PSEC, and ACE is related to the capabilities 
available on the devices that will implement those encryption 
schemes. While certainly in PCs there are no limitations in 
this regard, since any cryptographic function can be 
programmed using for instance C++ or Java Standard 
Edition, in devices with limited resources such as smart 
cards there are significant differences. 

 In Java Card, for example, there are no methods for 
performing point additions or scalar multiplications. 
However, in Java Card it is possible to use the Diffie-
Hellman function with elliptic curves, which can be 
considered equivalent to the scalar product with the 
particularity that the Java Card API defines, as a result of 
this function, the first coordinate of the point of the curve 
representing the multiplication or the output of a hash 
function that takes as input the value of that coordinate. 
Given that Java Card does not have functions for adding 
elliptic curve points or computing modulo operations, ECIES 
is the only encryption scheme of the three considered that 
can be implemented efficiently in Java Card. 

4. SUMMARY 

 Throughout this contribution, we have presented the 
early elliptic curve cryptosystems (Massey-Omura, ElGamal, 
and Menezes-Vanstone) and their evolution, the hybrid 
cryptosystems (ECIES, PSEC, and ACE). Hybrid 
cryptosystems present the advantage of using the best 
techniques of both assymetric and symmetric cryptography. 

 After evaluating the three criteria (performance, security 
and functionality available on the PC and Java Card 
platforms), in view of their features it can be stated that the 
best asymmetric encryption scheme based on elliptic curves 
is ECIES. Not only ECIES provides a good overall 
performance, but it can be easily implemented in PC and 
Java Card. 
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Table 4. Comparison of Usual Parameter Lengths (in Bytes) for ECIES, PSEC, and ACE 

   ECIES   PSEC   ACE  

 Private key   20   20   80  

 Public key   20   20   80  

 Cryptogram   36   52   76 
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