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Abstract: A continuing trend these days is the use of micro-electro-mechanical actuators with electronic circuitry to fab-

ricate MEMS devices such as micro-switches, hard disks, optical micro-mirrors ... One of the problems with the electro-

static MEMS actuator is that when an electrical voltage is applied to these devices, the micro-actuators undergo a residual 

vibration before reaching their permanent position. This paper addresses the control of an electrostatic microelectrome-

chanical actuator to reduce the vibration effect on its performance. A feedback linearization controller, a static sliding 

mode controller and a dynamic sliding mode controller are designed for the microelectromechanical system. The stability 

of the closed loop system is proved. Simulation results indicate that the proposed control schemes work well. 
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INTRODUCTION  

 Micro-Electro-Mechanical Systems (MEMS) have been 
the subject of a lot of research in the past 50 years or so and 
a variety of devices have been developed in many fields such 
as biomedical, automotive, and robotics. Among these de-
vices one finds pressure sensors, discrete acceleration sen-
sors, integrated acceleration sensors, and integrated rate/gyro 
sensors. One actuator that has proven to be useful in MEMS 
applications is the Electrostatic type. There are two types of 
electrostatic actuators: gap-controlled and area-controlled. 
The gap-controlled actuator is commanded by varying the 
distance between its electrodes whereas the area-controlled 
type is governed by changing the overlapping region be-
tween the electrodes. The secret behind electrostatic actua-
tors are the coulomb forces that develop between ca-
pacitively-coupled conductors differing in voltage. What 
makes these types of actuators popular is the fact they have 
simple structure and may be fabricated from standard, well-
understood, materials.  

 The dynamics of the electrostatic actuators is highly non-
linear due the nature of the electrostatic force on the top plate 
and presents a challenge to researchers. Open-loop control of 
this type of actuators has proven to be extremely difficult 
especially over a large operating range. Therefore, research-
ers have tried to command these actuators through closed-
loop control and that technique also has its share of prob-
lems. When controlled through the electrode voltage, the 
nonlinearity gives rise to a saddle-node bifurcation called 
pull-in which severely limits the operation of the electro-
static actuators. Another major problem that MEMS re-
searchers have faced with electrostatic actuators is that dur-
ing analog set-point operation with constant voltage bias, the 
nominal capacitive gap must be at least three times larger 
than the required range of motion to prevent pull-in. Increas-  
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ing the capacitive gap complicates the fabrication process 
and requires higher operating power. Eliminating the pull-in 
or snap-through effect can increase the range of the movable 
electrode considerably. Moreover, in the absence of pull-in, 
disturbances will not cause the movable electrode to depart 
from its stable operating region and no motion limiters 
and/or anti-stiction measures are necessary. Many research-
ers tried to get around the pull-in problem by designing bi-
stable digital devices which exploit the bifurcation in the 
system. The strategy proved to be successful and resulted in 
numerous research prototypes and commercial devices [1, 2]. 
Although bi-stable digital devices performed remarkably 
well, the analog counterparts with continuously variable po-
sitioning enhance functionality in many applications, such as 
optical switching [3] and spatial light modulators for image 
projection [4]. Another approach to avoiding the pull-in ef-
fect is to use electrode charge instead of electrode voltage to 
adjust the position. It was shown that when charge is used as 
the control input instead of voltage, the bifurcation associ-
ated with voltage control is eliminated [5].  

 The complexity of MEMS has increased rapidly and new 
research areas have emerged such as micromechatronics and 
microfluidics. The diversity and increase in complexity and 
integration level of MEMS devices require control tech-
niques and strategies that will make these devices function 
more efficiently. A few control techniques have been used in 
the control of MEMS and readily available in the literature; a 
representative few will be discussed here. A good review of 
some of the control issues associated with MEMS can be 
found in [6]. Many researchers designed closed-loop voltage 
control laws based on the electrode gap; see for example [1]. 
The authors showed theoretically that the linear position 
feedback may be used to locally stabilize any point in the 
gap. The results obtained in [1] were based on local set-point 
control and moves the electrode through large translations 
using a series of small step changes. Seeger and Crary [7] 
showed that every point in the gap may be stabilized by a 
precisely selected capacitor placed in series with the electro-
static MEMS. Many researchers continued along the same 
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lines of [7] and developed models which account for para-
sitics and rotational tip-in instability for rigid electrodes [8,9] 
and for membrane electrodes [7]. Maithripala and his group 
[10] developed a capacitive stabilization controller for an 
electrostatic MEMS based on the output feedback control 
technique. The authors used static charge feedback and 
showed that it is possible to semi-globally stabilize every 
point in the gap. While it has been shown that it is not possi-
ble to significantly affect mechanical transients using static 
charge feedback [10], dynamic output feedback may be used 
instead to stabilize any point of the gap with good transient 
performance. Wang [11] developed a technique for im-
provement of the transient performance of a MEMS device 
consisting of a cantilever beam with double-sided actuation. 
The author also applied an energy-based control method, and 
found that velocity feedback is needed. However, it was 
shown that robust variable-structure approach does not re-
quire velocity measurement. Sane et al. [11] also applied 
variable-structure control to an electrostatically-actuated 
torsional mirror. Although, the authors were able to achieve 
good results by sensing the mirror angle through large mo-
ment arm beam deflections, it was not clear if the presented 
approach will work outside the laboratory. Zhu et al. [12] 
used a non-linear control technique to improve the perform-
ance of a parallel plate electro-static actuator. The control 
schemes are based on differential flatness, Lyapunov func-
tions, and backstepping. The simulation results showed that 
the designed controllers were able to stabilize the system as 
well as attaining a good performance level. Wang et al. [11] 
applied a control law for a MEMS comb resonator to per-
form impulse disturbance damping and sinusoidal position 
control. The position feedback signal was produced by a 
through-wafer optical microbe and used to determine the 
effective mass, damping, and spring constants. After identi-
fying the model of the MEMS, the authors applied a PID 
translational controller and proved the controllability of such 
microstructure. Yunfeng et al. [13] used a decoupled control 
design structure and pole placement technique in the control 
of a MEMS-based dual stage magnetic disk drive. The 
authors also analyzed the effect of the microactuator reso-
nance mode variations on the stability and performance of 
the controller. Dong et al. [14] developed an adaptive control 
system to control both axes of a vibrational MEMS gyro-
scope. The Lyapunov technique was used to design the con-
troller as well as the adaptive laws and the results were veri-
fied through simulations.  

 Lu and Fedder [15] used capacitance measurements to 
measure the displacement, and derive a classical linear, time-
invariant control law which led to approximately doubling 
the operational range of a parallel plate capacitor. The tran-
sient behavior is addressed through an input-shaping pre-
filter. Although the proposed technique extends the opera-
tional range of the device, stability of the closed-loop is 
guaranteed locally only. Anderson et al. [16] presented a 
charge and position sensor for electrostatic MEMS. The 
functionality of the sensor was validated through numerical 
finite element analysis using ANSYS. The authors also de-
signed a non-linear passivity based controller for the electro-
statically actuated MEMS which can be on-chip, local or 
integrated circuit components. Horenstein et al. [17] pre-
sented an integrated capacitive position sensor. This sensor 
is similar the one presented by Anderson et al. [16], but it 

does not measure charge, and is therefore not suitable for use 
in the passivity-based feedback controller. Other passive and 
semi-passive control techniques have also been used in the 
literature; however, these techniques tend to further compli-
cate the system; see for example [7] and [18]. In this paper 
controllers based on the sliding mode technique will be de-
signed for an electro-static actuator. This technique has been 
successfully used with nonlinear dynamic systems and good 
results where achieved; see for example [19] 

 The rest of the paper is organized as follows: The dy-
namic model of an electrostatic MEMS with one mechanical 
translational degree of freedom is presented in section 2. The 
model consists of three-parallel plate capacitor with the mid-
dle plate movable and the top and bottom plates fixed. A 
linear spring and a viscous damper are used in the system to 
represent the flexible support holding the top. A few assump-
tions have been made in order to obtain the equations of mo-
tion of the electrostatic MEMS such as no stiction and no 
electrical shorting. The latter effect could be guaranteed by 
having an insulating layer of pre-specified thickness on the 
bottom plate. It is assumed that the voltage across the elec-
trodes and the charge or the capacitance of the device are 
measurable. Three control techniques are presented in Sec-
tions 3, 4, and 5. We begin by designing a feedback lineari-
zation controller for the electrostatic MEMS in section 3. A 
second controller based on the sliding mode technique is 
designed in section 4. Finally, a dynamic sliding mode con-
trol law is derived in section 5. The simulation results of all 
three controllers are presented in section 6. Finally, some 
concluding remarks are given in section 7.  

DYNAMIC MODEL OF THE ELECTROSTATIC 
MICRO-ELECTROMECHANICAL SYSTEM 

 Many microelectromechanical systems (MEMS) rely on 
parallel-plate electrostatic microactuators. These actuators 
have two fixed plates at the top and bottom of the device and 
one movable plate in the middle. The actuation principle 
behind this type of actuators is the attractive force of two 
oppositely charged plates resulting from applying a voltage 
between them. For transverse drive electrostatic microactua-
tors, the electrostatic force is a nonlinear function of the gap 
and the applied voltage. It is worth mentioniong that the 
electrostatic force has an inherent negative spring constant. 
To ensure small motion stability of the device, the movable 
plate is suspended via mechanical elastic members, spring 
and damper, see Fig. (1) In this section, the theoretical model 
for a parallel-plate electrostatic microactuator is derived. 

Consider the one-dimensional schematic diagram of an elec-
trostatic microactuator shown in Fig. (1). 

 

 

 

 

 

 

 

Fig. (1). Schematic diagram of an electrostatic microactuator. 
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 The following variables are used throughout the paper. 

A: Cross-sectional area of each of the electrodes; 

b: Damping coefficient; 

i(t): Current through the device; 

k: Linear spring constant; 

l(t): Gap between the electrodes; 

lo: Zero voltage gap; 

: Damping ratio; 

: Positive real number; 

o
l : Normalized zero voltage gap; 

m: Mass of the movable electrode; 

Q: Charge on a electrode; 

r: Electrical resistance in the circuit; 

t: Time; 

t̂ : Normalized time; 

u: Normalized control voltage; 

v: Control voltage; 

x: Normalized state vector; 

x1: Normalized charge; 

x1d: Normalized desired equilibrium charge; 

x2: Normalized gap; 

x2d: Normalized desired equilibrium gap; 

x3: Normalized velocity. 

 The capacitance of the device is equal to A/l(t). The at-

tractive electrostatic force on the top plate is Q
2
(t)/2 A. The 

current through the input resistance r is 

1 ( ) ( )
( ) ( )

Q t l t
i t v t

r A
=  

 The equations of motion in the form given by Senturia 

[20] 
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 Normalizing the time scale such that t̂ = t and define 

v= r  u,  = Ar , A mr=  and let the normalized 

state vector x be such that: 
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 The dynamic model of the electrostatic microelectrome-

chanical system can be described by the following set of 

ordinary differential equations [20]:  
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 The objective of the control scheme is to regulate x to its 

desired value xd. The constant desired value of x is such that, 
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 Consider the change of variables z=T(x), with  

z =[z1 z2 z3]
T
 such that, 
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Remark 1 

 Using (5)-(6), it is easy to check that if z(t) converges to 

zero as t , then the states x1(t) and x2(t) converge to their 

desired values x1d(t) and x2d(t) as t  and x3(t) converges to 

0 as t . 

 Using (4) and (6), the equations of the motor can be writ-

ten as functions of the new variables z1, z2 and z3 such that, 
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1
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 In the upcoming sections, three controllers will be de-

signed for the electrostatic microelectromechanical actuator 

using the control diagram shown in Fig. (2). 

DESIGN OF A FEEDBACK LINEARIZATION 

CONTROLLER 

 Let 1, 2 and 3 be positive scalars such that the poly-

nomial P1(s)=s
3
+ 3s

2
+ 2s+ 1 is Hurwitz. 
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Fig. (2). Control diagram for the electrostatic microactuator. 

 

Proposition 1 

 The controller 

( )1 1 2 2 3 3

1
u f z z z

g
=         (10) 

when applied to the transformed microelectromechanical 

system (7) guarantees the asymptotic convergence of the 

states 

z(t) to zero as t  . 

Proof 

 The closed loop system when the controller (10) is ap-

plied to the microelectromechanical system (7) is such: 

1c
z A z=           (11) 

with  

1

1 2 3

0 1 0

0 0 1
c

A =          (12) 

 The solution of the above equation is z(t) = exp(Ac1t)z(0). 

Since Ac1 is a stable matrix, then z(t) converges to zero as t 

 . It should be mentioned that since z(t) converges to zero 

as t  , then the states of the system will converge to their 

desired values as t  . 

Remark 2 

 The controller (10) can be written as a function of the 

coordinates x1, x2 and x3 such that  
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DESIGN OF SLIDING MODE CONTROLLERS FOR 

THE SYSTEM 

Design of a Static Sliding Mode Controller 

 The design of a sliding mode control scheme for the sys-

tem is discussed in this section. 

 The first step in designing a sliding mode control scheme 

for the system is to design the switching surface. Let the 

switching surface S be such that, 
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where 1 and 2 are positive scalars. Let W be a positive sca-

lar. 

Proposition 2 

 The following sliding mode controller: 
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when applied to the microelectromechanical system, guaran-

tees the convergence of z1, z2 and z3 to 0  

as t  . 

Proof 

 Differentiating (14) with respect to time and using (7), it 

follows that, 

3 1 2 2 1

1 3 2 2

S z z z

f gu z z

= + +

= + + +

         (16) 

 Substituting u by its value from (15) and using (14), it 

follows that, 
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1
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 It is a well known fact that, to guarantee switching, we 

need to have SS < 0. It can be easily checked that the dynam-

ics in (17) guarantees that SS < 0. The trajectories associated 

with the unforced discontinuous dynamics (17) exhibit a 

finite time reachability to zero from any given initial condi-

tion S(0) provided that the constant gain W is chosen to be 

large enough strictly positive. Since S is driven to zero in 
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finite time, the reduced order model of the system is gov-

erned after such finite amount of time by, 

2r c r
z A z=           (18) 

where 

1

2

2 1 2

0 1

c r

z
A z

z
= =  

 The matrix Ac2 is a stable matrix because the scalars 1 

and 2 are chosen to be positive scalars. Since Ac2 is a stable 

matrix, then equation (18) implies that zr(t) will asymptoti-

cally converge to zero. Since z1 and z2 asymptotically con-

verge to zero, then because of the choice of the sliding sur-

face given in (14), z3 will also asymptotically converge to 

zero. Therefore, the controller (15) guarantee the asymptotic 

convergence of the states x1(t) and x2(t) to their desired val-

ues x1d(t) and x2d(t) as t   and the convergence of x3(t) to 

0 as t  . 

 To avoid the chattering associated with sliding mode 

controllers, we will use the hyperbolic tangent instead of the 

sign function in the controller given by Proposition 2. 

Proposition 3 

 The following sliding mode controller: 
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when applied to the microelectromechanical system, guaran-

tees the convergence of z1, z2 and z3 to 0 as t goes to infinity. 

Proof 

 Let the Lyapunov function be such that V be such that 

21

2
V S=            (20) 

 Taking the derivative of V with respect of time, it follows 

that: 

tanh( )V SS WS s= =          (21) 

 Since W is chosen to be positive, it follows that 0V <  for 

S  0 and 0V =  for S = 0. Therefore, it can be concluded 

that the dynamics 

tanh( )S W S=           (22) 

guarantees the reachability to the surface S = 0. The rest of 

the proof is the same as the one for Proposition 2. 

Remark 3 

 The controller (19) can be written as a function of the 

coordinates x1, x2 and x3 such that 
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with  
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DESIGN OF A DYNAMIC SLIDING MODE 

CONTROLLER 

 To reduce the chattering due to the static sliding mode 

controller, a dynamic sliding mode controller is proposed in 

this section. 

 Let the output of the system be such that: 

y = z1              (25) 

 Differentiating (25) with respect to time four times, it 

follows that, 

(4)y f gu gu= + +          (26) 
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1 2
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 We will choose the switching surface  such that, 

(3)

1 2 3y y y y= + + +          (29) 

where 1, 2 and 3 are positive design parameters which are 

chosen such that the polynomial 3 2

2 1 2 3( )P s s s s= + + +  is a 

Hurwitz polynomial. Using (29), (25) and (6), the switching 

surface  can be written as, 
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 Let Wd be a positive scalar. 

Proposition 4 

 The following discontinuous dynamic control scheme, 
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when applied to the microelectromechanical system, asymp-

totically stabilizes the states to their desired values. 

Proof 

 Differentiating (29) with respect to time and using (26), 

(25) and (6), it follows that, 
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 Substituting u  by its value from (31), we get, 
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 To guarantee switching, we need to have  < 0. It can 

be easily checked that the dynamics in (33) guarantees that 

 < 0. The trajectories associated with the unforced dis-

continuous dynamics (33) exhibit a finite time reachability to 

zero from any given initial condition (0) provided that the 

constant gain Wd is chosen to be strictly positive. Since  is 

driven to zero in finite time, the output y= z1 is governed 

after such finite amount of time by the third order differential 

equation 
1 2 3

0y y y y+ + + = . Thus the output y(t)=z1 will 

converge to zero because 1, 2 and 3 are positive scalars 

such that 3 2

2 1 2 3( )P s s s s= + + +  is a Hurwitz polynomial. 

Since z1 converges to zero, then z2 and z3 will also converge 

to zero. Thus x1, x2, and x3 will also converge to their desired 

values. 

 Therefore, it can be concluded that the dynamic sliding 

mode controller given by (31) guarantees the asymptotic 

convergence of the states to their desired values. 

SIMULATION RESULTS 

 The closed-loop system described by (2) or (7) and one 

of the controllers (10), (15), (19), or (31) is analyzed through 

computer simulations. The normalized natural frequency of 

the system is  =1 and the damping ratio  =0; a worst case 

scenario in terms of damping. The normalized zero voltage 

gap is taken as 
0

1l =  and a nominal gap x2d=0.2 is stabilized 

by each of the proposed control schemes. 

Simulation Results for the Feedback Linearization Con-

troller 

 Two sets of values for 1, 2, and 3 are used. In the first 

set, we used 1=0.0013, 2=0.0362, and 3=0.33 (corre-

sponding to three real closed loop poles located at -0.1, -0.11 

and -0.12). In the second set, we used 1=0.2, 2=2.02, and 

3=0.3 (corresponding to one real and two complex closed 

loop poles located at -0.1, -0.1+j1.41 and -0.1-j1.41). 

 The simulation results for the feedback linearization con-

troller are given in Figs. (3)-(6). In the figures, the dashed 

lines correspond to the first set of ’s and the continuous 

lines correspond to the second set of ’s. 

 The figures indicate that the proposed feedback controller 

works well for the regulation of the microelectromechanical 

system. It is clear that the system is more sluggish with first 

set of ’s and that is expected due to the location of the 

closed-loop poles. Although the time response is a little slow 

overall, the normalized maximum control voltage is rela-

tively low (<1). This is an attractive feature of the proposed 

control scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The Normalized charge versus normalized time when the 

F.L. controller is used: (solid): first set of ’s and (dashed): second 

set of ’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The Normalized gap versus normalized time when the F.L. 

controller is used: (solid): first set of ’s and (dashed): second set 

of ’s. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). The Normalized velocity versus normalized time when the 

F.L. controller is used: (solid): first set of ’s and (dashed): second 

set of ’s. 
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Fig. (6). The Normalized control voltage versus normalized time 

when the F.L. controller is used: (solid): first set of ’s and 

(dashed): second set of ’s. 

 

Simulation Results for the Static Sliding Mode Controller 

 The static sliding mode controller is used to control the 

electrostatic actuator and the simulation results are presented 

here. The parameters of the static sliding mode controller are 

1=1.8, 2=0.8, and W=1. The simulation results for the 

static sliding mode controller (23)- (24) are given in Figs. 

(7)-(10). The figures indicate that the proposed static sliding 

mode controller works well for the regulation of the microe-

lectromechanical system. The normalized time response is 

faster than that of the closed-loop system described in Sec-

tion 3. However, the maximum normalized voltage has al-

most doubled (<2). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). The Normalized charge versus normalized time when the 
S.S.M controller is used. 

Simulation Results for the Dynamic Sliding Mode Con-

troller 

 Finally, the electrostatic actuator closed-loop system is 

simulated using the dynamic sliding mode controller (31) 

and the results are given in Figs. (11)-(14). The parameters 

of the dynamic sliding mode controller are 1=7.8, 2=20.27,  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). The Normalized gap versus normalized time when the 
S.S.M controller is used. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). The Normalized velocity versus normalized time when the 
S.S.M controller is used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). The Normalized control voltage versus normalized time 
when the S.S.M controller is used. 

 

3=17.55 and Wd=8. The simulation results for the dynamic 

sliding mode controller (31}) are given in Figs. (11)-(14).  
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The figures indicate that the proposed static sliding mode 

controller works well for the regulation of the microelectro-

mechanical system. The normalized time response as well as 

the normalized voltage appear to be similar to those pre-

sented in Section 4.1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). The Normalized charge versus normalized time when the 

D.S.M controller is used. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). The Normalized gap versus normalized time when the 

D.S.M controller is used. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (13). The Normalized velocity versus normalized time when 

the D.S.M controller is used. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (14). The Normalized control voltage versus normalized time 

when the D.S.M controller is used. 

 

CONCLUSION 

 Three nonlinear controllers are proposed for a microelec-
tromechanical system. The controllers are a feedback lineari-
zation controller, a static and a dynamic feedback control-
lers. It is proved that the proposed controllers guarantee the 
asymptotic regulations of the states of the microelectrome-
chanical system to their desired values. Simulation results 
are presented to show the effectiveness of the proposed con-
trol schemes. 

 Future research will address the implementation of the 
proposed control schemes on an experimental setup. 

REFERENCES 

[1] Chu PB, Pister SJ. 1994, Analysis of Closed-loop Control of Par-
alle-Plate Electrostatic MicroGrippers, Proceeding of the IEEE In-

ternational Conference on Robotics and Automation, 1994: 820-
825. 

[2] Hornbeck LJ. From cathode rays to digital micromirrors: A history 
of electronic projection display technology, TI Technical Journal, 

July-September, 1998: 7-46. 
[3] Comtois J, Michalicek A, Cowan W, Butler J. Surface-

micromachined Polysilicon MOEMS for Adaptive Optics, Sensors 
and Actuators A, 1999: 78, 54-62. 

[4] Kovacs GTA. Micromachined Transducers Sourcebook, McGraw-
Hill, New York; 1998. 

[5] Nadal-Guardia R, Dehe A, Aigner RLM. Castaner, 2002, Current 
drive methods to extend the range of travel of electrostatic microac-

tuators beyond the voltage pull-in point, J Microelectromech Sys 
2002; 11(3): 255-263. 

[6] Bryzek J, Abbott E, 2003, Control Issues for MEMS, Proceedings 
of the 42nd IEEE Conference on Decision and Control, Maui, Ha-

waii, 1997: 3039-3057. 
[7] Seeger JI, Crary SB. Stabilization of Electrostatically Actuated 

Mechanical Devices, Proc. of the Ninth Int. Conf. on Solid-State 
Sensors and Actuators (Transducers '97), Chicago, IL, June 16-19, 

1997: 1133-1136. 
[8] Chan EK, Dutton RW. Electrostatic micromechanical actuator with 

extended range of travel, J Microelectromechanical Sys 2000; 9(3): 
321-328. 

[9] Pelesko JA, Triolo AA, Nonlocal Problems in MEMS Device Con-
trol, J Eng Mathe 2001; 41(4): 345-366. 

[10] Maithripala DHS, Berg JM, Dayawansa WP, Control of an Electro-
static MEMS Using Static and Dynamic Output Feedback, ASME J 

Dyna Sys Measu Control 2005; 127: 443-450. 
[11] Wang PKC. Feedback Control of Vibrations in a Micromachined 

Cantilever Beam with Electrostatic Actuators, J Sou Vibration 
1998; vol. 213(3): 537-550. 



20    The Open Mechanics Journal, 2008, Volume 2 Karkoub and Zribi 

[12] Zhu G, Levine J, Praly. Improving the Performancd of an Electro-

statically Actuated MEMS by Nonlinear Control: Some Advances 
and Comparisons, Proceedings of the IEEE Conference on Deci-

sion and Control and the European Control Conference, Seville, 
Spain, 2005: 7534-7539. 

[13] Yunfeng L. Horowitz R. Mechatronics of Electrostatic Microactua-
tors for Computer Disk Drive Dual-Stage Servo Sytems, 

IEEE/ASME Transactions on Mechatronics, 2001; 6(2): 111-121.  
[14] Dong L, Leland R. The Adaptive Control System of a MEMS 

Gyroscope with Time Varying Rotation Rate, Proceedings of the 
American Control Conference, Portland, Oregon; 2005: 3592-3597. 

[15] Lu, M S-C. Fedder G K. Position Control of Parallel-Plate Micro-
actuators for Probe-Based Data Storage, J Microelectromechanical 

Sys 2004; 13(5): 759-769. 

[16] Anderson RC, Kawade B, Maithripala DHS, Ragulan K, Berg JM, 

Gale RO. Integrated charge sensors for feedback control of electro-
static MEMS, Proceedings of the SPIE conference on Smart Struc-

tures and Materials: Sensors and Smart Structures Technologies for 
Civil, Mechanical, and Aerospace Systems, San Diego, 2005. 

[17] Horenstein MN, Perreault JA, Bifano TG. Differential capacitive 
position sensor for planar MEMS structures with vertical motion, 

Sensors Actuators 2000; 80: 53-61. 
[18] Kyynarainen JM, Oja AS, Seppa, H. Increasing the Dynamic 

Range of a Micromechanical Moving-Plate Capacitor, J of Analog 
Integra Cir Sig Processing, 2001; 29: 61-70. 

[19] Karkoub MA, Zribi M. Robust Control Schemes for an Overhead 
Crane, J Vibra Cont, 2001; 7: 395-416. 

[20] Senturia SD. Microsystem Design, Kluwer Academic Publishers: 
Norwell, MA: 2001. 

 

 

Received: January 23, 2008 Revised: March 13, 2008 Accepted: March 19, 2008 

 
© Karkoub and Zribi; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the 

work is properly cited. 

 

 


