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Abstract: The nonlinear dynamic response of thin plates made of linear viscoelastic material of fractional derivative type 

is investigated. The resulting governing equations are three coupled nonlinear fractional partial differential equations in 

terms of displacements. The solution is achieved using the AEM. According to this method the original equations are 

converted into three uncoupled linear equations, namely a biharmonic (linear thin plate) equation for the transverse deflec-

tion and two Poisson’s (linear membrane) equations for the inplane deformation under time dependent fictitious loads. 

The resulting thus initial value problems for the fictitious loads is a system of nonlinear fractional ordinary differential 

equations, which is solved using the numerical method developed recently by Katsikadelis for multi-term fractional dif-

ferential equations. Several plates subjected to various loads and boundary conditions are analyzed and the influence of 

the viscoelastic character of the material is investigated. Without excluding other viscoelastic models, the viscoelastic ma-

terial employed herein is described by the generalized Voigt model of fractional order derivative. The numerical results 

demonstrate the efficiency and validate the accuracy of the solution procedure. Emphasis is given to the resonance re-

sponse of viscoelastic plates under harmonic excitation, where complicated phenomena, similar to those of Duffing equa-

tion occur. 
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ments, analog equation method, fractional partial differential equations, numerical solution. 

1. INTRODUCTION 

 Thin plates of viscoelastic material are extensively used 
as structural members in many modern engineering applica-
tions such as aircrafts, ships and other industrial structures. 
They are exposed to severe lateral and inplane loads which 
may produce large amplitude vibrations. In many cases the 
external load is varying harmonically with time. Resonance 
may occur when the frequency of the external excitation is 
close to the lower natural frequencies of the plate. In this 
case the linear plate theory predicts unbounded oscillations. 
However, due to the nonlinear character of the problem and 
the presence of damping, large oscillations remain within 
certain limits, and jump phenomena on the amplitude of the 
oscillations may appear as the external monochromatic exci-
tation varies. Such abrupt variations on the plate response are 
extremely dangerous and have to be avoided in real struc-
tures. 

 Viscoelastic materials, such as polymers, exhibit both 
elastic and viscous character and have the advantage of light 
weight and high strength. There have been proposed various 
linear and nonlinear models for the mechanical behavior of 
these materials, such as Maxwell, Voigt, Zener and multi-
parameter models. The constitutive equations can be pre-
sented in differential or in hereditary integral form. Recently,  
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many researchers have shown that differential viscoelastic 
models with fractional derivatives are in better agreement 
with the experimental results than the integer derivative 
models [1-3]. 

 The nonlinear oscillations of single and multi-degree of 
freedom systems have been examined thoroughly by many 
authors such as Nayfeh and Mook [4] and Fang and Dowell 
[5]. The nonlinear dynamic plate problem is investigated in 
several papers. Chu and Herrman [6] were among the first 
who studied large amplitude free vibrations and nonlinear 
resonance of elastic plates using a perturbation technique. 
Sridhar et al. [7] investigated nonlinear resonances of forced 
circular plates using the method of multiple scales. Amabili 
[8] studied nonlinear vibrations of rectangular plates using 
Rayleigh-Ritz method. He investigated the influence of in-
plane boundary conditions on the nonlinear resonance and 
compared his results with experimental ones. Many other 
researchers studied the large amplitude vibrations of thin 
elastic rectangular and circular plates using approximate 
techniques (Galerkin method) [9-11]. The FEM has proven 
to be a powerful method for the solution of the nonlinear 
oscillations of complicated structures. Lee and Ng [12] stud-
ied the nonlinear response of isotropic and composite plates 
using FEM and a modal reduction method in order to reduce 
the degrees of freedom. Ribeiro and Petyt [13, 14] used FEM 
and the harmonic balance method to study rectangular plates 
subjected to harmonic excitations. They examined the influ-
ence of inplane and transverse boundary conditions on reso-
nance and compared their results with experimental findings. 
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The BEM has been also used for the nonlinear dynamic 
analysis of thin plates [15-17].  

 The literature on nonlinear response of viscoelastic plates 
is rather limited. Ioannides and Grootenhius [18] used the 
FEM to study harmonic excitations of layered plates with a 
viscoelastic core. Eshmatov et al. [19, 20] studied the non-
linear vibrations and dynamic stability of viscoelastic plates 
with integral constitutive equations using Bubnov-Galerkin 
method. Rossikhin and Shitikova [21] analyzed the nonlinear 
vibrations of viscoelastic plates with damping modeled with 
fractional derivatives. The resulting fractional differential 
equations are solved using a finite difference approximation 
for the fractional terms. 

 In this paper the nonlinear dynamic response of thin vis-
coelastic plates of fractional derivative model is studied. The 
plate has an arbitrary shape and is subjected to any type of 
boundary conditions and loading. The governing equations 
result by taking the equilibrium of the plate element in a 
slightly deformed configuration (moderate large deflections). 
Fractional differential constitutive equations are employed. 
Without restricting the generality the generalized Voigt 
model is employed. The resulting equations of motion are 
three coupled nonlinear partial fractional differential equa-
tions in terms of the three displacement components. The 
nonlinearity is due to nonlinear kinematic relations based on 
the von Kármán assumption. The solution is achieved using 
the Analog Equation Method (AEM) [22]. The concept of 
the analog equation of Katsikadelis is applied to convert the 
original three coupled nonlinear fractional partial differential 
equations (PDE’s) into three uncoupled linear equations, 
namely a biharmonic (linear thin plate) equation for the 
transverse deflection and two Poisson’s (linear membrane) 
equations for the inplane deformation under time dependent 
fictitious loads that are unknown in the first instance. Subse-
quent use of the BEM results in the initial value problem for 
the fictitious sources, which constitutes a system of nonlin-
ear fractional ordinary differential equations including third 
order nonlinear terms. Its solution is achieved using the nu-
merical method developed recently by Katsikadelis [23] for 
multi-term linear and nonlinear fractional differential equa-
tions. Several plates subjected to various loads and boundary 
conditions are analyzed and the influence of the viscoelastic 
character of the material is studied. The worked out exam-
ples illustrate the method and demonstrate its efficiency. 
Emphasis is given in the study of the resonance response of 
the viscoelastic plate under harmonic excitation, where phe-
nomena similar to those of Duffing’s equation occur. In con-
clusion, the developed method provides a computational tool 
for a systematic analysis of viscoelastic plates under large 
displacements permitting thus a better insight in their re-
sponse. 

2. DERIVATION OF THE GOVERNING EQUATIONS 

 Consider a thin plate of uniform thickness  h  of linear 

viscoelastic material occupying the two dimensional multi-

ply connected domain   of the xy  plane with boundary 

   
=

i=0

K

i
 (Fig. 1). The curves 

   i
 (i = 0,1,2,...,K)  may 

be piece-wise smooth. The boundary may be simply sup-

ported, clamped, free or elastically supported with transverse 

stiffness 
   kT

(x)  and rotational stiffness 
   kR

(x)  
   
x : (x,y) . 

The plate is subjected to transverse 
 
p

z
 and inplane loads 

  
p

x
,p

y
 (body forces).  

 Without restricting the generality, it is assumed that the 

material is described by the generalized Voigt model. The 

three dimensional viscoelastic differential constitutive equa-

tions for this model read [24] 

    
sij = 2μeij + 2μ Dc eij          (1a) 

    kk
= 3K

kk
+ 3K D

c kk
         (1b) 

where ,ij ijs e  are the deviatoric components and ,kk kk  

the dilatational components of stress and strain respectively, 

with    i, j,k = 1,2,3  (   1 x,2 y,3 z ); 

    μ =G = E / 2(1 + )  and    K = E / 3(1 2 )  are the shear 

and bulk modulus, respectively, with 
   
E,  being the engi-

neering constants;  is the viscoelastic parameter and 
 
D

c

a  

the Caputo fractional derivative of order  defined as [25] 

    

D
c
u(t) =

1

(m )

u
(m)( )

(t ) +1 m
d

0

t

, m 1 < < m

d
m

dt
m

u(t) m =

 (2) 

 The relations between the deviatoric and dilatational 

components are given as [26] 

    
sij = ij

1

3
kk ij  

    
eij = ij

1

3
kk ij     (3a,b) 

 The assumptions of the Kirchhoff plate theory are stated 

as 

   33
=

23
=

13
= 0                  (4a,b,c) 

 Using Eqs (3) and (4) the constitutive equations (1a,b) 

become  

    
11 =

(1 2)
11 + 22( ) +

(1 2)
D

a

11 + D
a

22( )   (5a) 

    
22 =

(1 2)
11 + 22( ) +

(1 2)
D

a

11 + D
a

22( )  (5b) 

    

12
=

E

1 +
12

+
E

1 +
D

a

12
        (5c) 

 Moderate large deflections are considered where the von 

Kármán assumption for the kinematic relation is adopted. 

That is 

    
11 = u,

x
+

1

2
w,

x

2  
    

22 = v,
y

+
1

2
w,

y

2  

    
12 =

1

2
u,

y
+v,

x
+w,

x
w,

y( )                (6a,b,c) 

where 
   u = u(x,y,t), v = v(x,y,t)  are the membrane and 

   w = w(x,y,t)  the transverse displacements. 
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 On the basis of the Eqs (5) and (6) the stress resultants 

are written as 

 

 

 

 

 

 

 

 

 

Fig. (1). Plate geometry and supports (C=clamped, SS=simply sup-

ported, F=free). 

 

    

Nx =C u,x + v,y +
1

2
w,x

2 + w,y
2( ) +

C Dc u,x + Dc v,y +
1

2
Dc w,x

2 + w,y
2( )

      (7a) 

    

Ny =C u,x +v,y +
1

2
w,x

2 +w,y
2( ) +

C Dc u,x +Dc v,y +
1

2
Dc w,x

2 +w,y
2( )

       (7b) 

    

Nxy =C
1

2
u,y +v,x +w,x w,y( ) +

C
1

2
Dc u,y +Dc v,x +

1

2
Dc w,x w,y( )

       (7c) 

    
Mx = D w,xx + w,yy( ) D Dc w,xx + Dc w,yy( )       (8a) 

    
My = D w,xx +w,yy( ) D Dc w,xx +Dc w,yy( )       (8b) 

    
Mxy = D 1( )w,xy D 1( )Dc w,xy        (8c) 

where     C = Eh / (1 2)  is the membrane stiffness and 

    D = Eh
3 /12(1 2)  is the flexural stiffness of the plate. 

The governing equations result by taking the equilibrium of 

the plate element in a slightly deformed configuration. This 

yields 

     

2Mxx

x 2
+ 2

2Mxy

x y
+

2Myy

x 2
+

x
Nxw,x +Nxyw,y( )

                        +
y

Nxyw,x +Nyw,y( ) + pz hw = 0

  (9a) 

     

Nx

x
+

Nxy

y
+ px hu = 0         (9b) 

 

   

Nxy

x
+

Ny

y
+ py hv = 0           (9c) 

 Using Eqs (7), (8) and (9) we obtain the plate equations 

in terms of displacements in   as 

i. For the Transverse Deflection 

     

D 4w + DDc
4w Nxw,xx 2Nxyw,xy Nyw,yy

              px hu( )w,x + py hv( )w,y + hw = pz

    (10a) 

ii. For the Inplane Deformation 

     

2u +
1 +

1
u,x +v,y( ),x +w,x (

2

1
w,xx +w,yy )+

1 +

1
w,xy w,y

+ Dc

2u +
1 +

1
u,x +v,y( ),x +

w,x (
2

1
w,xx +w,yy )+

1 +

1
w,xy w,y

                      +
px

Gh G
u = 0

(10b) 

     

2v +
1 +

1
u,x +v,y( ),y +w,y (

2

1
w,yy +w,xx )+

1 +

1
w,xy w,x + Dc

2v +
1 +

1
u,x +v,y( ),y +

w,y (
2

1
w,yy +w,xx )+

1 +

1
w,xy w,x

                     +
py

Gh G
v = 0

 (10c) 

 The associated boundary conditions result as [27] 

    
V

n
+ D

c
V

n
+ N

n
w,

n
+N

t
w,

t
+k

T
w =V

n
 or   w = w  on  

          (11a) 

    
M

n
+ D

c
M

n
k

R
w,

n
= M

n
 or 

   
w,

n
= w,

n
 on      (11b) 

     
k
T

(k)
w

(k)
M

nt
k

D
c

M
nt

k
( ) = R

k
 or 

   w
(k)

= w
k

 at 

corner point k        (11c) 

  
N

n
= N

n
 or 

  
u

n
= u

n
 on       (11d) 

  
N

t
= N

t
 or 

  
u

t
= u

t
 on       (11e) 

where the overbar designates a prescribed quantity. Moreo-

ver, the viscoelastic plate is subjected to the initial conditions 

    w(x,0) = g1(x) , 
    
w(x,0) = q1(x) , in    (12a,b) 

    u(x,0) = g2(x) , 
     u(x,0) = q2(x) , in    (13a,b) 

    v(x,0) = g3(x) , 
    
v(x,0) = q3(x)  in    (14a,b) 

 In Eqs (11), 
  
V

n
=Vw  is the equivalent shear force, 

  
M

n
= Mw  is the normal bending moment; 

  
M

nt
=Tw  is 

the twisting moment along the boundary and 
 
M

nt
k

 is its 

discontinuity jump at corner  k . The operators producing 

these quantities are given as [28] 

SS

C

0Γ

Γ k

( , )yp x y

x

y

SS

corner

( , )xp x y

F

N *
n

N *
t( )Ω

hole
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V = D
n

2
+ (1 )

s

2

s n s
    (15a) 

    

M = D
2 (1 )

2

s
2

+
n

          (15b) 

    

T = D(1 )
2

s n s
      (15c) 

where 
    = (s)  is the curvature of the boundary and 

  
n,s  

the intrinsic boundary coordinates, i.e. the coordinates along 

the normal and tangential directions at a boundary point. 

3. THE AEM SOLUTION  

3.1. The Plate Problem  

 The initial boundary value problem (10a), (11a,b,c) and 

(12a,b) for the response of the plate is solved using the 

AEM. Noting that Eq. (10a) is of fourth order with respect to 

w , the analog equation for the transverse displacement is  

    
4w = b(x,t), x = {x,y}         (16) 

where    b(x,t)  represents the time dependent fictitious load, 

unknown in the first instance. Eq. (16) is a quasi-static equa-

tion, that is the time appears as a parameter, and it can be 

solved with the boundary conditions (11a,b,c) at any instant 

t  using the BEM. Thus, the solution at a point 
  x

 is 

obtained in integral form as 

     

w(x,t) = w bd + (w V
n

+ w,
n
M

n
w ,

n
M

n
wV

n
)ds

                                            w M
nt

w M
nt( )

k
k

   (17) 

which for 
  x

 yields the following two boundary integral 

equations for points where the boundary is smooth 

     

1

2
w(x,t) = w bd +

(w V
n

+ w,
n
M

n
w ,

n
M

n
wV

n
)ds

w M
nt

w M
nt( )

k
k

      (18) 

      

1

2
w, (x,t) = w1bd +

(w1Vn
+ w,

n
M

n1 w1 ,n M
n

wV
n1)ds

w1 M
nt

w M
nt1( )

k
k

       (19) 

where 
  
V

n
=Vw , 

  
M

n
= Mw , 

  
M

nt
=Tw  and 

   
V

1n
=Vw

1
, 

   
M

n1
= Mw

1
, 

   
M

nt1
=Tw

1
 in which 

    w = w (x,y) , 
   
x,y , is the fundamental solution and 

   
w

1
 its normal derivative at point 

  x
 in the direction , 

i.e. 

    

w =
1

8
r

2
lnr  

    

w1 =
1

8
r

2 lnr , =
1

8
rr, (2 lnr + 1)  (20a,b) 

 

 

 

 

 

 

 

 

 

Fig. (2). BEM notation. 

 

   is the unit normal vector to the boundary at point  x , 

whereas  n  is the unit normal vector to the boundary at the 

integration point 
 
y  and 

   
r = x y  (see Fig. 2). Eqs (18) 

and (19) can be used to establish the not specified boundary 

quantities. They are solved numerically using the BEM. The 

boundary integrals are approximated using  N  constant 

boundary elements, whereas the domain integrals are ap-

proximated using  M  linear triangular elements. The domain 

discretization is performed automatically using the Delaunay 

triangulation [29]. Since the fictitious source is not defined 

on the boundary, the nodal points of the triangles adjacent to 

the boundary are placed on their sides (Fig. 3). 

 

 

 

 

 

 

 

 

Fig. (3). Boundary and domain discretization. 

 

 Thus, after discretization and application of the boundary 

integral Eqs (18) and (19) at the  N  boundary nodal points 

and Eq. (18) at the 
 
N

c
 corner points we obtain 

    

H

w

w
c

w,
n

= G

V

R

M

+ Ab          (21) 

where 

  
H,G  :  are  N N  known coefficient matrices originating 

from the integration of the kernel functions on the boundary 

elements. 

 A : is an  N M  coefficient matrix originating from the in-

tegration of the kernel function on the domain elements. 
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2 3
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nt
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x ν
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 w ,
  
w

c
,
   
w,

n
: are the vectors of the  N  boundary nodal dis-

placements, 
 
N

c
 corner displacements and  N  boundary 

nodal normal slopes, respectively. 

  
V,

  
R,  M : are the vectors of the  N  nodal values of effective 

shear force, 
 
N

c
 concentrated corner forces and  N  nodal 

values of the normal bending moment. 

 b : is the vector of the  M  nodal values of the fictitious 

source inside  . 

 Eq. (21) constitutes a system of 
   
2N + N

c
 equations for 

   
4N + 2N

c
+ M  unknowns. Additional 

   
2N + N

c
 equations 

are obtained from the boundary conditions. Thus, the BCs 

(11a)-(11c), when applied at the  N  boundary nodal points 

and the 
 
N

c
 corner points yield the set of equations 

     

1w + 2w,
n

+ 3V = 4 1w,
n

+ 2M = 3

c1wc
+ c2R = c3

(22a,b,c) 

where 
   1, 2, 3, 4, 1, 2, 3,c1, c2,c3  are known coeffi-

cient matrices. The time dependent terms of the boundary 

conditions are neglected in this investigation and their influ-

ence will be the subject of further research. Note that 

Eq. (22a) has resulted after approximating the derivative 
  
w,

t
 

in Eq. (11a) with a finite difference scheme. 

 Equations (21) and (22) can be combined and solved for 

the boundary quantities  w ,
  
w

c
,
   
w,

n
,  V ,  R ,  M  in terms of 

the fictitious load  b . Subsequently, these expressions are 

used to eliminate the boundary quantities from the discre-

tised counterpart of Eq. (17). Thus we obtain the following 

representation for the deflection 

    

w(x,t) = b
k
(t)W

k
(x)

k=1

M

+W0(x)  
  x

       (23) 

 The derivatives of    w(x)  at points  x  inside  are ob-

tained by direct differentiation of Eq. (17). Thus, we obtain 

after elimination of the boundary quantities 

    

w,pqr (x,t) = bk(t)Wk ,pqr (x)
k=1

M

+W0,pqr (x) ,  

   p,q,r = 0,x,y  
  x

         (24) 

where 
   
Wk ,pqr (x)  are known functions. The term 

  
W

0
 result 

from the nonhomogeneous boundary conditions. Note that 

the above notation implies
   
w,000 = w , 

   
w,0y0 = w,

y
, etc. 

3.2. The Plane Stress Problem 

 Noting that Eqs (10b) and (10c) are of the second order 

with respect to the displacements u  and v , their analog 

equations are obtained using the Laplace operator. This 

yields 

    
2
u = b1(x,t)  

    
2
v = b2(x,t)    (25a,b) 

 The integral representation of the solution of Eq. (25a) is 

     
u(x) = v

*
b1d (v*

q q u)ds  
 
x       (26) 

in which 
   
q = u,

n
;    v = nr / 2  is the fundamental solu-

tion to Eq. (25a) and 
   
q = v,

n
 its derivative normal to the 

boundary; 
   
r = y x  

 
x  and 

  
y ;   is the free 

term coefficient (   = 1  if 
  x

,    = 1 / 2  if 
  x

 and 

   = 0  if 
 
x ). Using the BEM with constant bound-

ary elements and linear triangular domain elements and fol-

lowing the same procedure applied for the plate equation, we 

obtain the following representation for the inplane displace-

ment u  and its derivatives 

    

u,pq (x,t) = bk
(1)(t)Uk

(1),pq (x)
k=1

M

+ bk
(2)(t)Uk

(2),pq (x)
k=1

M

+U0,pq (x)

,    p,q = 0,x,y  
 
x          (27) 

 Similarly, we obtain for the displacement v  

    

v,pq (x,t) = bk
(1)(t)Vk

(1),pq (x)
k=1

M

+ bk
(2)(t)Vk

(2),pq (x)
k=1

M

+V0,pq (x)

,    p,q = 0,x,y
 
x           (28) 

where 
   Uk

(1)(x) , 
   Uk

(2)(x) , 
   Vk

(1)(x) , 
   Vk

(2)(x) , 
   U0 (x) , 

   V0 (x)  

are known functions. The terms 
  
U

0
,
  
V

0
 result from the 

nonhomogeneous boundary conditions. 

3.3. The final Step of the AEM  

 Eqs (24), (27) and (28) give the displacements 

  w(x,t),u(x,t) ,  v(x,t)  and their derivatives provided that the 

three fictitious sources 
   b(t),b

(1)(t),b(2)(t)  are first estab-

lished. This is achieved by working as following. 

 Collocating the fractional PDEs (10) at the M  internal 

nodal points and substituting the expressions for the trans-

verse deflection, Eqs (24), and the membrane displacements, 

Eqs (27) and (28), we obtain the following system of   3M  

nonlinear fractional ordinary differential equations for 

  bk
(t),b

k

(1)(t),b
k

(2)(t) , (   k = 1,..,M ) 

      F(b,b(1),b(2),D
c
b,D

c
b

(1),D
c
b

(2),b,b(1),b(2)) = P      (29) 

where 
   
P = pz px py{ }

T

 is the vector of the nodal values 

of the external loads. The initial conditions Eqs (12)-(14) for 

  bk
(t),b

k

(1)(t),b
k

(2)(t)  become  

   b(0) = W
1
g1 , 

   b
(1)(0) = S1

1
g2 , 

   b
(2)(0) = S2

1
g3       (30) 

    
b(0) = W

1
q1 , 

    
b

(1)(0) = S1
1
q2 , 

    
b

(2)(0) = S2
1
q3       (31) 

where 
  
W,S1,S2  are  N N  known matrices. 

 Equations (29) constitute a system of   3M  three-term 

nonlinear FDEs, which are solved using the time step nu-
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merical method for multi-term FDEs developed recently by 

Katsikadelis [23]. This solution method is concisely pre-

sented in the Appendix. The use however, of all the degrees 

of freedom may be computationally costly and in some cases 

inefficient due to the relatively large number of coefficients 

  bk
(t),b

k

(1)(t),b
k

(2)(t) . To overcome this difficulty in this inves-

tigation, the number of degrees of freedom is reduced using 

the Ritz transformation, namely 

   

b

b
(1)

b
(2)

= z            (32) 

where 
  zk

(t) , (   k = 1,..,L < 3M ) are new time dependent 

parameters and   is the    3M L  transformation matrix. In 

this investigation the eigenmodes of the linear problem are 

selected as Ritz vectors [27]. Using Eq. (32), Eqs (29), (30) 

and (31) are transformed into the following reduced initial 

value problem of nonlinear FDEs 

      F(z,D
c
z,z) = P              (33) 

    
z(0) =

T( )
1

T
b(0) , 

     
z(0) =

T( )
1

T
b(0)  (34a,b) 

where 

      

F(z,D
c
z,z) =

T
F(b,b(1), b

(2),D
c
b,D

c
b

(1),

D
c
b

(2),b,b(1),b(2))
      (35) 

   P =
T
P           (36) 

    
b(0) = b(0) b

(1)(0) b
(2)(0){ }

T

, 

     
b(0) = b(0) b

(1)(0) b
(2)(0){ }

T

   (37a,b) 

4. NUMERICAL EXAMPLES 

 On the basis of the previously described procedure a 

FORTRAN code has been written for solving the nonlinear 

vibrations of viscoelastic plates. The efficiency and accuracy 

of the method is demonstrated by the following examples. 

Example 1. Forced vibrations of a square viscoelastic plate. 

 The nonlinear vibrations of the square plate with side 

length     a = 4m  (   0 x,y a ) and thickness     h = 0.1m  are 

investigated. All edges are simply supported (   w = Mw = 0 ) 

and immovable in the plane of the plate (   u = v = 0 ). The 

results were obtained with    N = 204  boundary elements and 

   M = 137  internal nodal points resulting from 216 triangular 

cells (Fig. 4).  

 First the response of the elastic plate is studied for a uni-

form transverse load (i) 
   pz = 100H(t)  and (ii) 

   pz = 100sin(100t) . The parameters of the elastic material 

are    E = 21 106 N/m2 ,   = 104 kg/m3    = 0.3 . Figs. (5 

and 6) present the time history of the transverse deflection   
w(t)  at the center of the plate and the inplane displacement 

  
u(t)  at point (1, 2) for load cases (i) and (ii), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Boundary and domain discretization (   N = 204 , 

   M = 137 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. (5). Elastic plate (

   
= 0 ). Time history of the deflection 

  w(t)  at the center of the plate (a) and the inplane displacement 

  
u(t)  at point (1, 2) (b) for elastic material; 

   pz = 100H(t)   

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

time

w
/h

30 modes
60 modes
120 modes
FEM

0 0.05 0.1 0.15 0.2

-5

-4

-3

-2

-1

0

1

2x 10-4

time

u

30 modes
60 modes
120 modes
FEM



14    The Open Mechanics Journal, 2010, Volume 4 Babouskos and Katsikadelis 

The analysis has been performed using various numbers of 

linear modes for reduction. The results obtained with 120 

modes (total number of modes  3 137 ) are in good agree-

ment with those obtained from a FEM solution using 1600 

quadrilateral elements. Apparently, acceptable results are 

obtained using only 60 modes for the reduction. 

 Next, the response of the viscoelastic plate is studied 

with a viscoelastic parameter 
   

= 0.001  under the uniform 

loads (i) 
   pz = 100H(t)  and (ii) 

   pz = 100sin(50t) . The re-

sults were obtained using 60 modes for reduction of the de-

grees of freedom. Fig. (7) presents the time history of the 

deflection   w(t)  at the center of the plate and the membrane 

force 
  Nx

(t)  at point (1, 2) for load case (i), while Fig. (8) 

presents the time histories of the same quantities for load 

case (ii). The analysis has been performed for various values 

of the order of the fractional derivative model. Since there 

are no available results in the literature or other numerical 

solution methods for the problem at hand, a comparison of 

the results was not possible. The accuracy of the solution 

procedure has been attested by solving the problem for a 

very small value of the order  of the fractional derivative 

and comparing it with the elastic solution with 

    E = (1 + )E . Apparently, from Eq. (2) we deduce that 

    
lim

0
D

c
u(t) = u(t) , therefore on the base of Eqs (1) the ma-

terial becomes elastic with a substitute elastic modulus 

    E = (1 + )E . This comparison is shown in Fig. (9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Viscoelastic plate (
   

= 0.001 ). Time history of the de-

flection   
w(t)  at the center of the plate (a) and membrane force 

  Nx
(t)  at point (1, 2) of plate (b) for various orders of the frac-

tional derivative; 
   pz = 100H(t) . 

 Example 2. Resonance of a viscoelastic square plate 

 The plate of Example 1 is subjected to a uniform trans-

verse load 
   pz = cos( t) . All edges are simply supported. 

Two cases of the inplane boundary conditions were consid-

ered. In case (i) the edges are movable in the plane of the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Elastic plate (
   

= 0 ). Time history of the deflection 

  w(t)  at the center of the plate (a) and the inplane displacement 

  u(t)  at point (1, 2) (b) for elastic material; 
   pz = 100sin(100t) . 
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plate (
   
Nx = Ny = 0 ), while in case (ii) the edges are re-

straint (   u = v = 0 ). It should be noted that the boundary 

conditions in case (i) are of Neumann type and the solution 

is not possible unless the inplane rigid body motion is re-

strained [30]. This is possible by exploiting the known dis-

placement at the boundary points at axes of symmetry. The 

results were obtained using 40 linear modes for reduction.  

 Integrating the equations of motion over a long time is 

the simplest method to study periodic solutions of nonlinear 

systems. The system can converge to an either stable solu-

tion (attractor) by starting from specific initial conditions. 

Even though this method is very general, it is difficult to 

obtain unstable solutions. More accurate methods have been 

introduced such as the harmonic balance method, the Poin-

care map and arc-length methods for periodic solutions [31]. 

 In this investigation we study the nonlinear response of 

the plate over a long time beginning from specific initial 

conditions. Fig. (10) presents the maximum transverse de-

flection at the center of the plate versus the excitation fre-

quency   for various values of the viscoelastic parameters. 

Note that for the viscoelastic plate the maximum deflection 

is taken at the steady state response. It is observed that as the 

excitation frequency approaches the lower natural frequency 

of the plate (
   1

= 53.42 ) the deflection increases and re-

mains bounded due to the viscoelastic behavior of the mate-

rial. Due to the nonlinear character of the problem two stable 

periodic solutions are observed for some values of the exci-

tation frequency. Moreover, a jump phenomenon appears as 

the excitation frequency increases or decreases. The ampli-

tude curves move to the left in case (i) indicating a softening 

character of the system, while in case (ii) the curves move to 

the right indicating a hardening nonlinear behavior. Fig. (11) 

presents the time history of the deflection at the center of the 

plate for the elastic and the viscoelastic material and two 

values of the excitation frequency (
  1

= 56.5 , 
  2

= 55.5 ) 

just before and after the jump. The change of the frequency 

takes place at    t = 4 sec and    t = 20 sec, respectively. Fig. 

(12) presents the two stable solutions for the viscoelastic 

plate (
   

= 1, = 0.001 ) for   = 52  resulting from two 

different initial conditions. The dependence of the maximum 

deflection at the steady state response of the viscoelastic 

plate on the initial central deflection is shown in Fig. (13). 

The first mode shape is taken as initial deflection. 

Example 3. Resonance of a viscoelastic cantilever plate 

 The cantilever plate of Fig. (14) is subjected to a uniform 

transverse load 
   pz = 0.0001k cos( t)  where k  is the ampli-

tude parameter and   the excitation frequency. The thick-

ness of the plate is 
   
h = 0.01m  while the parameters of the 

material are    E = 21 106 N/m2 ,    = 7550 kg/m3 , 

   = 0.3 , 
   

= 0.03 . The results were obtained using 

   N = 255  boundary elements,    M = 131  nodes resulting 

from 205 triangular cells (Fig. 15) and 35 linear modes for 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Viscoelastic plate (
   

= 0.001 ). Time history of the de-

flection   w(t)  at the center of the plate (a) and membrane force 

  Nx
(t)  at point (1, 2) of the plate (b) for various orders of the frac-

tional derivative; 
   pz = 100sin(50t) . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Time history of the deflection   
w(t)  at the center of the 

elastic plate with elastic modulus E, 
    E = (1 + )E  and viscoe-

lastic plate with 
  

= 0.5     = 0.001 ; 
   pz = 100H(t) . 
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Fig. (10). Amplitude-frequency curves for various values of the viscoelastic parameters and for the two cases of the inplane boundary condi-

tions (i) movable (ii) immovable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Time history of deflection at the center of the plate for two values of the excitation frequency (
  1

= 56.5 , 
  2

= 55.5 ): (a) elas-

tic material, (b) viscoelastic material (
   

= 0.2, = 0.01 , case (ii)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). (a) Time history of the deflection at the center of the plate and (b) phase plane of the steady state response of the two stable solu-

tions (
   

= 1, = 0.001 ,   = 52 ). 
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Fig. (13). Influence of initial conditions on the steady state response 

of the viscoelastic plate in example 2 

(
   

= 1, = 0.001 ,   = 52 ). 

 

reduction. Fig. (16) presents the steady state response (trans-

verse deflection at point A) of the plate versus the excitation 

frequency   for various values of the order of the fractional 

derivative for constant amplitude parameter    k = 1 . The 

lower natural frequency of the plate is 
   1

= 3.12 . It is ob-

served that the amplitude curves move to the right indicating 

a hardening nonlinear behaviour of the cantilever plate. For 

   = 0.2  a jump phenomenon appears. Fig. (17) presents the 

response of the plate versus the amplitude parameter k  for 

viscoelastic material with    = 0.2  and for constant fre-

quency excitation   = 3.45 . A hysteretic effect and a jump 

phenomenon appear for increasing and decreasing amplitude 

parameter  k , indicated by the arrows in Fig. (17). The two 

stable solutions that exist in a certain value of the excitation 

frequency (Fig. 16 for   = 0.2 ) or the amplitude parameter 

(Fig. 17) are obtained by changing the initial conditions of 

the plate. Fig. (18) presents the time history of the deflection 

at point A for different initial velocities.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (16). Amplitude-frequency curves for various values of the 

order  of the fractional derivative model (   k = 1 ).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (17). Amplitude of the response of the plate as a function of the 

amplitude parameter  k  of the external excitation 

(  = 3.45 ,   = 0.2 ). 

5. CONCLUSIONS 

 The nonlinear dynamic response of thin viscoelastic 

plates of fractional derivative model has been investigated. 

The plate has an arbitrary shape and is subjected to any type 

of boundary conditions and loading. The membrane inertia 

forces are also taken into account. The solution is achieved 

using the AEM, which converts the coupled nonlinear frac-

tional PDEs describing the response of the viscoelastic plate 

into three uncoupled linear PDEs that can be solved by the 

BEM. The initial value problem of the resulting semi-

discretised nonlinear equations of motion is efficiently 

solved using (a) the Ritz method for the reduction of the 

number of the equations and (b) a new time step integration 

method for fractional differential equations. 

 

 

 

 

 

 

Fig. (14). Boundary conditions of cantilever plate in example3. 

 

 

 

 

 

 

 

 

 

Fig. (15). Boundary and domain discretization of cantilever plate in 
example 3. 
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Fig. (18). Time history of the deflection at point A for different 

initial velocities (  = 3.45 ,    k = 1.3 ,   = 0.2 ). 

 

 Several plates subjected to various loads and boundary 

conditions have been analyzed and the influence of the vis-

coelastic character of the material has been investigated. The 

nonlinear resonance of thin plates subjected to harmonic 

excitation is also studied. Due to nonlinear coupling between 

bending and stretching of the plate a complicated dynamic 

response occurs similar to that of Duffing-type equation with 

cubic and quadratic nonlinearities. It was observed that for 

certain values of the excitation parameters two stable solu-

tions exist which give rise to hysteretic and jump phenom-

ena. The stable periodic solutions are obtained by selecting 

appropriately the initial conditions of the plate. The viscoe-

lastic character of the material reduces the amplitude of the 

vibrations at resonance; the amplitude-frequency curves be-

come wider while jump and hysteretic phenomena may dis-

appear. Finally, it was observed that restraining of the in-

plane displacements along the edges produces a hardening 

nonlinear response, while a softening response occurs for 

movable edges. This finding is in accordance with that re-

ported by other investigators. 

 In closing, the presented solution method offers an effi-

cient computational tool for studying complicated nonlinear 

dynamic problems of viscoelastic plates. It should be empha-

sized that the fractional derivative viscoelastic model with 

   
0 1  allows to control the viscoelastic response of the 

structure; i.e. from pure viscoelastic 
   ( 1)  to pure elastic 

   ( 0) . 

APPENDIX 

Numerical solution of nonlinear FDEs 

 The numerical solution of systems of nonlinear fractional 

differential equations is concisely presented in this Appen-

dix. Detailed description can be found in [23] 

 We consider the system of the  K  nonlinear FDEs 

     F(D
c
u,D

c
u,u) = p(t)         (A1) 

with 
      0 < < 2, t > 0, a

i
, det(a1) 0  

under the initial conditions 

   
u(0) = u0,  if 

 
1        (A2a) 

or 

    
u(0) = u0, u(0) = u0 , if 

   
1 < 2     (A2b) 

 Let     
u = u(t)  be the sought solution of Eq. (A1). Then, if 

the operator 
  
D

c
 is applied to  u  we have 

     Dc
u = q(t), 0 < 2, t > 0        (A3) 

where    
q(t)  is a vector of fictitious sources, which is un-

known in the first instance. Eq. (A3) is the analog equation 

of (A1). It indicates that the solution of Eq. (A1) can be ob-

tained by solving Eq. (A3) with the initial conditions (A2), if 

the    q(t)  is first established. This is achieved by working as 

following. 

 Using the Laplace transform method we obtain the solu-

tion of Eq. (A3) as 

      

u(t) = u0 + [ceil( ) 1]u0t +
1

( )
q( )(t ) 1

d
0

t

   (A4) 

where  ceil()  represents the ceiling function, e.g.   ceil( )  

yields the integer greater or equal to 
 

. The use of this func-

tion permits to realize computationally the proper initial 

conditions prescribed by Eqs (A2). Eq. (A4) is an integral 

equation for 
   q(t) , which can be solved numerically within a 

time interval 
  [0,T ]  as following. The interval   [0,T ]  is di-

vided into  N  equal intervals   t = h ,    h =T / N , in which 

   q(t)  is assumed to vary according to a certain law, e.g. con-

stant, linear etc. In this analysis ( )tq  is assumed to be con-

stant and equal to the mean value in each interval h . Hence, 

Eq. (A4) at instant t nh=  can be written as 

 

 

 

 

 

 

 

Fig. (A1). Discretization of the interval 
  
[0,T ]  into  N  equal inter-

vals    h =T / N . 

 

      

u
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1
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 (A5) 

which after evaluation of the integrals yields 
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u
n

= u0 + [ceil( ) 1]nhu0

+c (n + 1 r) (n r) q
r

m

r =1

n 1

+
c

2
q

n 1 + q
n( )

 (A6) 

where 

    

c =
h

( )
, 
    
q

r

m

=
1

2
(q

r 1 + q
r
)        (A7) 

Eq. (A6) can be further written as 

      

c

2
q

n
+ u

n
= u0 + [ceil( ) 1]nhu0

+c (n + 1 r) (n r) q
r

m

r =1

n 1

+
c

2
q

n 1

  (A8) 

 We now set 

     Dc
u = q(t)           (A9) 

where ( )tq  is another unknown vector. We can establish a 

relation between ( )tq  and ( )tq  by considering the Laplace 

transform of Eqs (A3) and (A9). Thus, we can write 

      
U(s) = u0

1

s

+ [ceil( ) 1]u0

1

s
2

+
1

s

Q(s)   (A10a) 

      
U(s) = u0

1

s

+ [ceil( ) 1]u0

1

s
2

+
1

s

Q(s)   (A10b) 

 Equating the right-hand sides of the above equations we 

have 

      
Q(s) = [ceil( ) ceil( )]( )u0

1

s
2

+
1

s

Q(s) ,  (A11) 

 Taking the inverse Laplace transform of Eq. (A11) we 

obtain 

      

q = [ceil( ) ceil( )]( )u0

t
1

(2 )
+

1

( )

q( )(t ) 1
d

0

t

   (A12) 

 Using the same disctetization of the interval 
  [0,T ]  to 

approximate the integral in Eq. (A12), we obtain 

      

q
n

= [ceil( ) ceil( )]( )n1
du0

+ c (n + 1 r) (n r)
r =1

n

q
r

m
   (A13) 

where 

    

c =
h

( ) ( )
, 

    

d =
h

1

(2 )
, 
    
q

r

m

=
1

2
(q

r 1 + q
r
)  (A14) 

 Eq. (A13) can be further written as 

      

c

2
q

n
+ q

n
= [ceil( ) ceil( )]ndu0

+ c (n + 1 r) (n r) q
r

m

r =1

n 1

+
c

2
q

n 1

   (A15) 

 Applying Eq. (A1) for 
  
t = t

n
 we have 

    
F(q

n
,q

n
,u

n
) = p

n
      (A16) 

 Eqs (A8), (A15) and (A16) are algebraic equations and 

they can be combined and solved successively for 

    n = 1,2,…  to yield the solution 
  
u

n
 and the fractional de-

rivatives 
   
q

n
,q

n
 at instant 

  
t = nh T . For    n = 1 , the value 

  
q

0
 appears in the right hand side of Eqs (A8) and (A15). 

This value can be evaluated as following. 

 Equation (A16) for    t = 0  gives 

   F(q0,q0,u0) = p0          (A17) 

 The above equation includes two unknowns, 
  
q0,q0 . 

These values can be expressed in terms of the known initial 

conditions using the relations below [23]. 

     

q0 = a1

(2 ) 2 21( )

(2 ) 2 21( )
h + a2

1

p0 a3u0( )

q0

(2 )

(2 )

2 21( )

2 21( )
h q0

 if 

   
0 < < 1      (A18a) 

     

q0 = a1

(3 ) 2 22( )

(3 ) 2 22( )
h + a2

1

p0 a3u0( )

q0

(3 )

(3 )

2 22( )

2 22( )
h q0

 if 

   
1 < < 2      (A18b) 

      

q0 =
1

(2 a)
h

1 a 2 21( )u0

q0 = a1
1(p0 a3u0 a2q0)

 if 

   
0 < 1 and 1 < 2     (A18c) 
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