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Abstract: From the mechanical standpoint, wiper blades may be thought of as belonging to a category of systems in which some
components are forced to slide with friction over each other or over some rough surface. Such systems, which are in widespread use
in all areas of modern engineering, exhibit complex dynamic behavior, even when only a small number of degrees of freedom are
involved. In this paper we reconsider a well-known, simple mechanical model in which a rigid block connected to a linear spring is
free to slide over a rough surface.  The surface moves according to a prescribed sinusoidal law. The model,  despite its  apparent
simplicity, proves to be quite useful for studying the main dynamic features of such systems. In particular, herein the equations of
motion are solved analytically and the exact sequence of sticking and sliding phases found. The influence on the solution of three
dimensionless parameters chosen to describe the system is investigated, and some early indications provided on the set of possible
long-term system responses. Lastly, a first evaluation of the different limit cycles for the block’s motion is illustrated.
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1. INTRODUCTION

Windshield wiper systems are fundamental, albeit simple devices, nowadays mounted on all motor vehicles. Despite
their simplicity, they play a key role in safety by ensuring that visibility is maintained at acceptable levels throughout a
wide range of climatic and environmental conditions.

Under ordinary conditions wiper systems generally function flawlessly and relatively unobtrusively. However, in
some particular cases undesired vibrations may develop and be disturbing for the driver, such as the chattering and
squeaking that may occur, for example in the presence of dirt or dust deposited on the windshield, or for some values of
the contact pressure between the rubber and the screen, or for some particular values of blade stiffness or windshield
curvature.

Over recent decades, a number of studies have been conducted on the dynamics of wiper blades in order to improve
or  optimize their  performance and investigate  any conditions  that  may disrupt  their  proper,  smooth functioning.  In
broad terms, the body of relevant literature on the topic may be subdivided into two main categories. The first category
is represented by numerical studies, usually performed by means of finite element models of the entire wiping system or
parts thereof (among the many examples, see Chevennement-Roux et al. [1]. The second research approach, to which
the present paper belongs, is conducted via simplified models which regard the wiping system or parts thereof as a
mechanical system with a small number of degrees of freedom. The equations of motion can be solved analytically or
numerically with much less computational effort than FEM analysis. With no aim to provide an exhaustive literature
survey, we cite, by way of example, the 2DOF model representing the entire wiper system, including the two blades,
described in Suzuki and Yasuda [2], and that representing the rubber lip contained in Lencioni et al. [3].

In reality, simplified wiper system models are but a particular example of the mechanical  models developed  for the
more  general case of  systems  containing components that are  forced to slide  with friction over other components   or

* Address correspondence to this author at the Division of Structural Engineering, Department of Civil and Industrial Engineering, University of Pisa,
Largo Lazzarino 2, 56122 Pisa, Italy; Tel: +39 050 2218210; Fax: +39 050 2218201; E-mail: s.bennati@ing.unipi.it

DOI: 10.2174/1874155X01610010051

http://benthamopen.com
http://crossmark.crossref.org/dialog/?doi=10.2174/1874129001610010051&domain=pdf
http://www.benthamopen.com/TOMEJ/
http://dx.doi.org/10.2174/1874129001610010051
mailto:s.bennati@ing.unipi.it


52   The Open Mechanical Engineering Journal, 2016, Volume 10 Barsotti et al.

over an external surface, which may be either fixed or moving. Systems of the sort, which include brakes, turbines
blades, digging buckets, and drill strings, exhibit quite complex dynamic behavior due to the nonlinearity induced by
friction, even when only a small number of degrees of freedom are involved.

Over the last century particular attention has been devoted to the basic case of a single degree of freedom system
subjected to friction forces. The first studies focusing on systems of this kind are contained in the fundamental work by
Den Hartog [4], after which the same problem has been considered by many other researchers. Although the full list of
contributions  is  too  lengthy  to  cite  here,  some particularly  relevant  work  on  the  issues  at  hand  include,  by  way of
example, the study of Parnes [5], in which a single degree of freedom model is used to represent the contact between the
soil and a buried pipe during a seismic event, the work of Marui and Kato [6], which addresses the dynamics of an
excited single degree of freedom system through the introduction of the “stopping region of motion”, that of Shaw [7]
in  which the results  of  Den Hartog are  extended to  the case that  the static  friction coefficient  is  different  from the
dynamic one, that of Hong and Liu [8], which illustrates some analytical solutions for a mass-spring system subjected to
harmonic forces and free to slide over a fixed plane with friction, Andreaus and Casini [9], which instead analyzes the
dynamics of a friction oscillator subjected to both ground base motion and a driving force and, more recently, Gibert et
al. [10], which analyses the stick-slip dynamics in ultrasonic additive manufacturing, and Butikov [11], which studies
the free and forced oscillations of a torsion spring pendulum damped by viscous and dry friction.

The present work reconsiders a well-known simple model that enables providing an elementary description of the
dynamic response of systems like those described in the foregoing. The model, which is illustrated in section 2, regards
a rigid block connected to an elastic spring; the block is free to slide over a rough surface that moves according to a
sinusoidal law. A suitably modified version of Coulomb’s friction law describes the contact between the block and the
underlying surface.

A description of the different types of motion that the system can undergo is provided in section 3. We focus our
attention  on  the  role  played  by  three  dimensionless  parameters:  the  ratio  between  the  oscillation  frequency  of  the
surface  and  the  natural  frequency  of  the  mass-spring  system;  the  ratio  between  the  kinetic  and  static  friction
coefficients, and the ratio between the maximum amplitude of the surface oscillations and the maximum distance of the
block  from  the  origin,  which  would  correspond  to  it  being  in  a  state  of  static  equilibrium  (if  the  surface  were
motionless). The same section illustrates an example application regarding a wiper blade cross-section.

Lastly,  in  section 4,  we investigate some of  the different  limit  cycles  -  corresponding to continuous sticking or
sliding - that the system may actually undergo. We aim at showing that once the main system parameters are fixed, it is
possible  to  foresee  some  features  of  the  possible  long  term  responses.  In  this  regard,  by  using  the  simple  model
described herein, we draw up a map that seems able to provide useful indications on potential long term responses of
the system. The preliminary results deduced in this way, although by no means exhaustive, can then be compared with
some of the analytical and numerical results available in the literature.

2. THE MECHANICAL MODEL

The mechanical problem addressed here concerns the motion of the wiper blade shown schematically in Fig. (1).
The wiper  blade,  which is  the component  of  the wiper  system that  actually  sweeps across  the windshield in  motor
vehicles, is composed of a slender metallic element (the vertebra) in contact with the underlying surface (the screen)
through a very deformable rubber layer. The wiper blade is connected to a metallic beam (the arm), which is in turn
connected to an electric engine that provides the torque needed to move the blade across the screen.

Fig. (1). (a) schematic representation of a wiper system; (b) cross section of the wiper blade.
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Finding the exact solution to the aforementioned dynamic problem is quite difficult. The blade is an elastic element
with an infinite number of degrees of freedom, and it  undergoes large displacements.  Moreover, a nonlinear visco-
elastic  layer  is  in  contact  with  the  screen.  Lastly,  friction  and  unilateral  contact  conditions  add  two  more  relevant
nonlinearities to the problem.

Here, without searching for the exact solution to this problem, we aim to investigate some of the main features of
the dynamic response of a wiper blade by means of a simple model. To this end, let us consider the single degree-of-
freedom system represented in Fig. (2), which has been the object of some preliminary studies by the authors in [12].
Here, the wiper blade is schematized, as a first rough approximation, as a rigid block with mass m attached to a spring
with elastic constant k. The other end of the spring is connected to a given fixed point F. The block is pushed down in
contact  with  an  underlying  rigid  rough  surface  by  a  force  P.  We choose  to  describe  the  system’s  motion  from the
perspective of an observer on the vertebra. Thus, in order to account for the relative motion between the wiper blade
and the screen, we assume that the underlying surface is moving according to a prescribed law. We set the origin of our
reference system at point O,  where  is the initial length of the unstrained spring. Lastly, we indicate by x(t) the
position of the block’s center of gravity with respect to O.

Fig. (2). (a) Wiper blade cross section; (b) The corresponding single degree of freedom system.

On the moving surface, we consider point B, located directly beneath the origin O at t = 0. We assume that at any
time the position, xb, of this point is described by the harmonic law xb = Asinωbt, where A (for simplicity’s sake assumed
to be positive) and ωb are the amplitude and the angular frequency of the surface’s motion, respectively.

2.1. A Modified Version of Coulomb’s Friction Law

The  friction  law  used  in  this  model  is  a  suitably  modified  version  of  Coulomb’s  original  formulation.  As  is
customary,  the  static  and  dynamic  friction  coefficients  are  indicated  by  µs  and  µk,  respectively.  The  friction  force
applied to the block by the surface, Fa, is determined according to the following relations. Denoting ẋrel = ẋ-ẋb as the
relative velocity between the block and the surface, we set Fa = -Fk ẋrel / |ẋrel|, where Fk = µk (mg + P), when ẋrel ≠ 0 (g is
the acceleration of gravity), while |Fa| ≤ Fs = µs (mg + P) if the block is sticking to the surface.

From a strictly formal point of view, according to the standard version of Coulomb’s law, as soon as a sliding phase
ends, the magnitude of the friction force |Fa| could raise instantaneously up to the maximum static value Fs from the
very first instant of sticking. This is naturally an idealization. In actual fact, when the block stops sliding, i.e., from the
moment ẋrel = 0, it will take a (usually very) short time to reestablish contact conditions, which correspond to static
friction between the block and the surface (in this regard, see, for example, the experimental studies of Sampson et al.
[13]. Thus, accounting for this aspect calls for allowing for a gradual change in the friction force from the dynamic to
the static value at the beginning of each sticking phase of the block.

Now, in order to account for the aforementioned feature in a relatively simple, approximate way, we assume that the
friction force obeys the following rules:

in any sliding phase, the friction force is equal to the kinematic value;
at the beginning of any sticking phase, the friction force cannot exceed the kinematic value;
at any given time within any sticking phase, the friction force cannot exceed the static value.
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In other words, at any given time , the adopted friction law may be expressed as:

(1)

As will be shown in the following, relation (1) enables deciding whether a new sticking phase for the block may
actually start during its motion. To this end, we determine the value of the friction force, Fa, that should be exerted on
the block under sticking condition, and we check whether the necessary condition |Fa| < Fk is fulfilled at the onset of the
sticking phase (a more detailed explanation of this is given in section 3.2).

3. DESCRIPTION OF THE MOTION

In the following, we assume that observation of the block’s motion begins at a given initial time t0 . We indicate by
x0 = x(t0 ) and ẋ0 = ẋ(t0 ) the initial position and velocity, respectively. In the general case, the motion of the system will
be made up of a sequence of sticking phases, during which the block follows the motion of the surface, and sliding
phases, during which the mass moves with respect to the surface. From a formal point of view, the equation of motion
may be written as

(2)

where Fa is the non-smooth friction force according to (1). Broadly speaking, any sticking phase following a sliding
phase will begin at a given time  if both the block and the surface have the same velocity, and if the magnitude of the
friction force that the surface exerts on the block at t =  is lower than the kinetic friction force, i.e., if |Fa ( )| < Fk.
Depending on the values of the main system parameters, the sticking phase may last indefinitely. In such case, |Fa| will
remain lower than the maximum static value Fs for any t ≥ .

Vice versa, any sliding phase following a sticking phase may begin at a given time t =  only if the magnitude of
the reactive force that the surface exerts on the block reaches the maximum static friction value, i.e., if |Fa ( )| = Fk.
Sliding of the block actually begins if a friction force larger than Fs would be required to ensure sticking for t > .
Under appropriate conditions, the sliding phase may also last indefinitely. Nevertheless, when a sliding phase ends, the
relative velocity between the block and the surface is nil. In the next sections, both the sticking and the sliding phases
will  be  analyzed  in  detail,  and  particular  attention  will  be  dedicated  to  some  of  the  limit  cycles  corresponding  to
continuous sliding or sticking.

It is worth noting that, by performing the change of variable

xrel (t) = x (t) - xb (t),

the equation of motion becomes equivalent to that of the long-studied, well-known mechanical system addressed by
Den Hartog [4] and, among many others, Shaw [7], Hong and Liu [8], Csernák and Stépán [14], composed of a block
subjected to a harmonic load and free to slide with friction over a rigid fixed surface. The equation of motion for such a
system reads [10]

mẍrel + kxrel = Fa (ẍrel) - po sin (ωb t), (3)

where the load amplitude is:

po = mAω2 (1 - Ω2), (4)

and where  is the natural frequency of the system, while Ω = ωb / ω is the frequency ratio. For given
values of A, ω and ωb, the above relation enables assessing the corresponding value of p 0.

Although the two alternative mathematical descriptions are equivalent, there are at least two reasons for preferring
(2) over (3) as the equation of motion for the mechanical model of the wiper blade. The first is a matter of convenience:
if  equation  (3)  is  used,  the  magnitude  of  the  equivalent  harmonic  load  (4)  depends  on  both  the  amplitude  and  the
frequency  of  the  surface  oscillations.  Thus,  the  two  main  parameters  describing  the  input  in  our  system would  be

{
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intermingled. This observation suggests that direct study of the dynamics of the system we aim to investigate, in which
the block is set down in contact with an underlying moving surface, is facilitated by using (2) rather than (3).

The second, but no less important, reason is that relation (4) does not represent a one-to-one correspondence in the
relevant case in which Ω = 1. In such a case, in fact, the amplitude p 0 of the equivalent harmonic load would be equal to
zero irrespective of the amplitude A of the surface oscillations. Consequently, by using the equivalent harmonically
loaded system (3), the relevant phenomenon called resonant locking (i.e., the mass oscillates as if it were attached to the
surface),  recently  highlighted  by  Chatterjee  [15],  would  be  hindered.  On  the  contrary,  such  phenomenon  emerges
clearly by considering the surface motion directly, as we have chosen to do.

In  other  terms,  the  two  alternative  formulations  of  the  problem  at  hand,  although  formally  equivalent,  are  not
equivalent in terms of the clarity and readability of the results obtainable. We will return on this issue later on.

3.1. The Sticking Phase

Let us assume that the block starts sticking to the surface, and let us indicate with t1 the start time of the sticking
phase. At t = t1, the relative velocity between the block and the surface is zero, and the law of motion for the block
during the sticking phase is:

x (t) = A sin (ωb t) + C,     t ≥ t1, (5)

where C is the constant relative position between the block and point B of the surface.

The block will stick to the surface until the magnitude of the force exchanged between it and the surface reaches the
maximum static friction value, Fs. This condition is expressed by:

|mẍ (t) + kx (t)| ≤ Fs, (6)

from which, by making use of (5), we obtain:

|α (1 - Ω2) sinωb t + λ| ≤ 1, (7)

where  α  =  A  /  xs,  λ  =  C  /  xs,  xs  =  Fs  /  k,  and  Ω =ωb  /  ω  is  the  frequency ratio, in  which   is  the  natural
frequency  of  the  mass-spring  system.  Equation  (7)  allows  for  determining  the  pairs  (α,  Ω)  and  the  values  of  the
dimensionless  initial  position  of  the  block,  λ,  which  correspond  to  a  block  sticking  to  the  surface  during  its  entire
motion. We thus obtain:

(8)

In graphical terms, this condition corresponds to the region of the three-dimensional space (α, λ, Ω) bounded from
above by the limit surface α = f (Ω, λ).

The  points  beneath  the  surface,  whose  coordinates  satisfy  (8),  represent  those  systems  whose  motion  will  be
characterized by continuous sticking for t ≥ t1. Conversely, the points above the surface represent those systems that
will, sooner or later, undergo at least one sliding phase. Lastly, the points belonging to the surface are bifurcation points
corresponding to systems for which relative motions of different kind are possible. In this case, the block may either
keep sticking to the surface indefinitely or going through a sequence of sliding and sticking phases.

It is a simple matter to check that the maximum value for α that satisfies (8) for fixed Ω is obtained for λ = 0. Thus,
in the (Ω, α) plane, the curve α = 1 / |1 - Ω2| = f 0(Ω) (Fig. 3) enables distinguishing the systems for which the block may
undergo endless sticking motion (region under the curve) from those systems for which such motion is impossible.
More precisely, when the point with coordinates α and Ω is beneath the curve, i.e.,

α < fo (Ω), (9)

there exists at least one set of initial conditions such that the block keeps sticking from the beginning; contrariwise,
when the point is above the curve, the block will undergo at least one sliding phase during its motion.

It is worth noting that for given values of α and λ (with |λ| < 1), if Ω belongs to the interval comprised between the
values:

 𝜔 = √𝑘/𝑚  

𝛼 < 𝑓(Ω, 𝜆), where 𝑓(Ω, 𝜆) =
1−|𝜆|

|1−Ω2|
 and |𝜆| < 1. 
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(10)

(i.e., if the condition Ωc1 ≤ Ω ≤ Ωc2 is satisfied), motion without any slippage becomes possible for the block. In the
particular case in which Ω = 1, this kind of motion is possible regardless of the value of α. Thus, if the system’s natural
frequency and that of the surface oscillations are equal, there is at least one set of initial conditions for which the block
sticks to the surface as if it were attached to it, regardless of the amplitude of the oscillations. This is what Chatterjee
[15] has termed resonant locking.

Whenever the force that the surface exerts on the block reaches the maximum static friction value, a sliding phase
may take place. In these cases, by using eqn. (6), we can evaluate the corresponding time, t2, by solving:

(11)

This equation holds regardless of the initial time, t1, of the sticking phase, and has two solutions:

(12a,b)

It can be proved that of the two solutions, the appropriate one to consider will depend on the value of α |1 - Ω2|, and
the sign of cosωbt1 (details are given in Appendix A). In other words, the proper end time, t2, for the generic sticking
phase can be determined according to the following sticking end-time criterion.

• If λ = 0, then

- if (1 - Ω2) cosωbt1 > 0, t2 is determined according to (12a);

- if (1 - Ω2) cosωbt1 < 0, t2 is determined according to (12b).

• If λ > 0 and if α|1 - Ω2| < 1 + λ, t2 is determined according to (12a).

• If λ > 0 and if α|1 - Ω2| ≥ 1 + λ, then

- if (1 - Ω2) cosωbt1 > 0, t2 is determined according to (12a);

- if (1 - Ω2) cosωbt1 < 0, t2 is determined according to (12b).

• If λ < 0 and if α|1 - Ω2| < 1 - λ, t2 is determined according to (12b).

• If λ < 0 and if α|1 - Ω2| ≥ 1 - λ, then

- if (1 - Ω2) cosωbt1 > 0, t2 is determined according to (12a);

- if (1 - Ω2) cosωbt1 < 0, t2 is determined according to (12b).

3.2. The Sliding Phase

Let us assume that at some given instant t = t3 the block is sliding over the surface. The block’s equation of motion
in the sliding phase reads:

mẍ + kx = ±Fk. (13)

where the sign depends on that of the relative velocity, ẋrel = ẋ-ẋb. during the sliding phase. Integration of Equation. (13)
yields the law of motion:

x (t) = c1 cosωt + c2 sinωt ± xk. (14)

where xk = ηxs, and η = µk / µs.

Ω𝑐1 = {
√1 −

1−|𝜆|

𝛼
(𝛼 > 1 − |𝜆|),

0 (𝛼 ≤ 1 − |𝜆|),
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1−|𝜆|

𝛼
,
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Fig. (3). The (Ω, α) regions where endless sticking is possible and where it is not.

In  many  cases,  however,  the  sliding  phase  of  the  block’s  motion  starts  at  the  end  of  a  sticking  phase.  In  this
situation, the start time of the sliding phase coincides with the solution to (12a) or (12b), i.e. t3 = t2, and the relative
velocity at the beginning of the sliding phase is zero, ẋrel(t3) = 0. Thus, the sign of the friction force is undetermined, and
a criterion for determining the sign of the force at the onset of the sliding phase is needed. It is a relatively simple matter
to verify that (relative velocity sign criterion):

If t2 is determined according to (12a), the relative velocity at the onset of sliding will be negative, and the right-
hand side of (13) is +Fk;
If t2 is determined according to (12b), the relative velocity will be positive, and the right-hand side of (13) is -Fk.

The necessary condition for a sliding phase to stop at instant t4 is that the relative velocity between the block and the
surface become zero, ẋ(t4) = ẋb(t4).  However, a sticking phase may actually begin at instant t4  only if the additional
condition |mẍ (t4) + kx(t4)| ≤ Fk is fulfilled, that is if:

| -αΩ2 sin (ωb t4) + x4 / xs| ≤ η ≤ 1, (15)

where x4 = x(t4), which ensures that at the beginning of a sticking phase the magnitude of the force exchanged between
the block and the surface is lower than the kinematic friction force, Fk.

If relation (15) is not satisfied, the force that the surface exerts on the block at t = t4 would be greater than Fk, or at
least equal to it. In this case, a sticking phase cannot begin, and the block will continue sliding over the surface.

4. SOME REMARKS ABOUT LIMIT CYCLES

Limit cycles are periodic solutions to the equation of motion characterized by a net balance between the amounts of
energy dissipated by and supplied to the mass-spring system over each period. Different types of limit cycles may be
observed for systems similar to those considered here ([8], [16]).

By following the evolution of the system starting from different initial  conditions,  and by considering different
values of the main system parameters (i.e., α, Ω and η), it can be seen that the trajectories tend towards a periodic trend.
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In particular,  after an initial transient phase, they approach limit cycles,  where the block keeps sliding indefinitely,
others where it keeps sticking, and yet others where it alternately slides and stick. In this section, we concentrate our
attention on the limit cycles of the same period as the surface’s oscillations, corresponding to pure sliding and pure
sticking.

4.1. Sticking Limit Cycles

It  is  straightforward  to  conclude  that,  if  sticking  condition  (9)  is  fulfilled,  periodic  solutions  to  the  equation  of
motion  characterized  by  continuous  sticking  to  the  surface  become  possible.  All  these  periodic  solutions  may  be
expressed as

(16)

where the λ parameter represents the dimensionless initial position of the block, which in turn must verify the limitation

|λ| ≤ 1 - α |1 - Ω2|. (17)

It is worth observing that, when α = 1 / |1 - Ω2|, λ = 0 is the only value that satisfies (17), and the corresponding
systems are in a limit condition.

The continuous sticking periodic solutions illustrated above may also represent possible limit cycles (if any) for
systems whose parameters α and Ω do fulfill condition (9). Nevertheless, it cannot be excluded a priori that other limit
cycles, for example limit cycles represented by alternating sticking and sliding phases, may become possible for such
systems.  Actually,  stick-slip  limit  cycles  may  be  numerically  determined  by  suitably  fine-tuning  the  system’s
parameters. We will return to this point in the following, where we will show that by choosing suitable values of α, Ω
and η, the same system may even exhibit different limit cycles depending on the particular initial conditions.

4.2. Sliding Limit Cycles

Let us consider a block that by hypothesis is undergoing periodic motion. Let us assume that the block slides over
the surface, without ever sticking to it, and that the period of motion coincides with that of the oscillating surface, Tb =
2π / ωb. According to the results of [17], it is straightforward to conclude that the block’s trajectory in the (t, x) plane is
symmetrical,  except for the particular cases corresponding to Ω = 1 /  n  (n,  2,3, ).  Thus, we restrict our attention to
symmetrical motion with respect to the point (Tb / 2, 0) on the time axis, at which the block oscillates around the origin.
Restricting our attention to the single period covering the time interval [0, Tb], we set:

x (t) = -x (t + Tb / 2),
x (0) = x (Tb / 2) = x (Tb) = 0.

(18)

Moreover, with reference to the same time interval, we write the law of motion of the surface as xb(t) = Asin(ωbt +
ϕ), where the angle ϕ accounts for the phase shift between the harmonic oscillation of the block and the surface.

Due to the assumed symmetry properties of the trajectory, the component of the friction force in the direction of the
x axis will be equal to +Fk over one half of the period and to -Fk over the other half. By accounting for conditions (18)
and by referring to Eqn. (14), the block’s trajectory in the time interval during which, for example, the friction force
component is positive, can be expressed as:

(19)

An analogous expression for the other half period (where the friction force component is equal to -Fk) can be easily
obtained.

We can further determine the phase angle ϕ by imposing that the velocity of the surface be equal to that of the block
at the beginning of any half-period (i.e., by setting ẋrel(0) = ẋrel(Tb / 2) = ẋrel(Tb) = 0), thus yielding:

(20)

𝑥

𝑥𝑠
= 𝛼sinΩ𝑡 + 𝜆, 

𝑥(𝑡) = 𝑥𝑘(1 − cos𝜔𝑡) − 𝑥𝑘  
sin𝜋/Ω

1+cos𝜋/Ω
sin𝜔𝑡. 

cos𝜙 = −
𝜂 sin𝜋/Ω

𝛼Ω (1+cos𝜋/Ω)
. 
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The periodic motion described by Eqn. (19) may actually take place if the phase angle ϕ satisfies (20). Moreover, at
the beginning of any half-period, when the relative velocity is zero, the sticking condition (15) must not be fulfilled.
Therefore, by taking into account that for t = 0, Tb / 2, Tb…, the position occupied by the block is x = 0, we obtain the
following additional condition for the validity of the periodic solution we are considering:

(21)

By  using  both  (20)  and  (21),  we  can  eliminate  the  phase  angle  ϕ.  Thus,  it  is  possible  to  reduce  to  one  single
condition expressed in terms of the system parameters α, Ω and η:

(22)

Expressions analogous to (22) have been obtained by Hong and Liu [8] and Csernák and Stépán [14] by considering
a harmonically loaded system free to slide over a fixed rough surface, although minor differences can be recognized
between the friction law accounted for in these works and that introduced here. Lastly, as was recently evidenced by
Butikov [11], expression (20) is not valid if 1 / Ω is an odd integer, while an infinite number of non-symmetrical limit
cycles, plus the symmetrical one, are possible in the particular case in which 1 / Ω is an even integer.

4.3. Limit Cycles a Given System May Attain: Some Considerations

As has already been pointed out, the motion of the system can be determined if the adopted values of the system’s
main parameters, α, Ω and η, are chosen, together with some given initial conditions. Consequently, it is reasonable to
assume that setting the values of said parameters should also enable determining the long-term response of the system.
In other words, if α, Ω and η were known, it should be possible to predict the system’s evolution and the existence of
some limit cycle to which the system potentially tends as well.

Here, with no claim to providing a full solution to the issue described above, we wish to demonstrate that the two
inequalities  (9)  and  (22)  enable  making  some  predictions  about  the  periodic  solutions  (i.e.,  continuous  sliding,
continuous sticking, alternating sticking and sliding) that may actually be observed in a given system. That is, we will
show that if the parameters describing the system, α, Ω and η, are assigned, it is possible to forecast some features of its
corresponding long-term response.

For given η, the limitations expressed by the aforementioned two inequalities can be effectively represented in the
(Ω, α) plane. By way of example, Fig. (4) shows the partition of the (Ω, α) plane generated by inequalities (9) and (22)
for η = 0.85 and η = 0.2, respectively. Our analysis will be limited to sliding, sticking, and stick-slip limit cycles.

The points whose coordinates satisfy (22) are those above the g  0  curve.  Instead,  the points below the f  0  curve,
already represented in Fig. (3), correspond to the systems that allow continuous sticking, according to inequality (9).
The two sets of points may be disjoined (Fig. 4a) or not (Fig. 4b), depending on the value of η. More precisely, such an
intersection is not empty when η  falls below the threshold value  = 0.8264.

Each region drawn in Fig. (4) corresponds to different possible long-term responses for the system. In particular, if
the point corresponding to a given system belongs to region 1, steady sticking is allowed, but continuous sliding is not
possible at all whatever the initial conditions may be. On the contrary, continuous sliding is allowed (but steady sticking
is not) in region 2.

In the systems whose corresponding points fall in region 4, that is, at the intersection between 1 and 2 (in case it is
not  empty),  both  steady  sticking  and  continuous  sliding  become  possible.  For  such  systems,  the  specific  initial
conditions  determine  the  kind  of  long  term  response  the  system  actually  undergoes.  On  the  contrary,  in  region  3,
external to both region 1 and 2, neither the continuous sliding nor the continuous sticking periodic solution is reachable
for the system. In the latter case, limit cycles comprised of an alternating sticking and sliding phases are without doubt
possible.

The large number of numerical simulations performed, omitted here for the sake of brevity, seem to confirm such
predictions. It is worth stressing that the analyses performed so far cannot exclude the presence of stick-slip periodic
solutions  in  the  other  three  regions  as  well.  Thus,  within  region  4,  no  conclusions  can  be  drawn  from the  present

|sin𝜙| ≥
𝜂

𝛼Ω2
. 

�̅�

𝛼 ≥ 𝑔0(Ω, 𝜂), where 𝑔0(Ω, 𝜂) =
𝜂

Ω2
√1 + Ω2

1−cos𝜋/Ω

1+cos𝜋/Ω
. 
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analysis.

Fig. (4). Partition of the (Ω, α) plane showing possible long-term system responses for (a) η=0.85, and (b) η=0.2.

It should be noted in passing that the overall picture represented in Fig. (4) could not have been obtained if the
system had been studied via the equivalent harmonic load technique. One main novelty of the present study, as already
noted in section 3, consists in its highlighting the resonance locking phenomenon, which is made clearly visible by
directly accounting for the surface oscillations. In this regard, it is enough to point out that when Ω is equal to unity, the
block sticks to the surface regardless of the value of α. Thus, in such case the amplitude of the oscillations of the block
is not infinite, as may be erroneously concluded using some approaches based on harmonically loaded systems, but
coincides with that of the surface.

It is interesting to note that the partition of the (Ω, α) plane described above appears to be in full agreement with
some numerical results on harmonically loaded systems, such as those illustrated in [14], where stick-slip motion is
revealed  numerically  when  the  magnitude  of  the  harmonic  load  is  increased  above  some  threshold  value.  The
appearance of such stick-slip motion may be easily and exactly predicted for within the same range of parameter values,
with no need to resort to numerical solutions, by simply checking whether the representative point of the system lies
within region 3 of Fig. (4) or not.

Direct  analysis  of  the  system  free  to  slide  over  a  moving  surface  also  furnishes  a  simple  explanation  for  the
progressive growth of the number of sticking phases as Ω goes to zero. It is a simple matter to see that, in such a case,
the surface motion tends towards uniform linear motion with constant velocity, and therefore the system approaches the
behavior of a simple stick-slip oscillator [18].

It  is  worth  noting  that  for  small  η  (Fig.  4a),  region  3  on  the  right-hand  side  of  the  (Ω,  α)  domain  disappears.
Moreover,  region 4 appears (i.e.,  there are systems that  may evolve towards any one of the three possible kinds of
responses), and the border between the slip and stick-slip regions for Ω < 1 becomes more jagged. This might suggest
that chaotic responses are likely to be observed in such cases, a suggestion that is in very good agreement with the
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results obtained by Gibert et al. [10].

Clearly  the  above-illustrated  appraisal  of  the  system’s  long-term  response  is  by  no  means  conclusive.  Further
studies are needed to carry out an exhaustive examination of all possible periodic solutions and their corresponding
limitations as well. Nevertheless, the first results illustrated here seem promising, and the partition of the (Ω, α) plane,
though still requiring completion, provides some first basic indications.

5. AN APPLICATION EXAMPLE: THE POSSIBLE MOTION OF A WIPER BLADE

The literature contains quite a large body of works proposing either numerical or semi-analytical solutions to the
equation  of  motion  of  systems  like  those  considered  here.  Numerical  solution  procedures  are  widely  adopted  and
reported on. By way of example, we cite the works of Leine et al. [19], and Stein et al. [20], which follow different
approaches to simulating single-degree-of-freedom systems subjected to friction.

The alternative strategy, which we follow here, is represented by semi-analytical solutions. It consists of assembling
the analytical expressions for the equations of motion that hold in the sticking and the sliding phases. Examples of such
a solution strategy can be found in the works by Shaw [7], and more recently, Gibert et al. [10], amongst others.

To illustrate our solution method, let us consider by way of example the start time of any given sticking phase (point
a, Fig. 5). If the block alternatively slides and sticks, the solution procedure is organized as follows (if the block slides
or sticks indefinitely, the modifications to the procedure are straightforward).

We determine the start time of the next slip phase, tb, corresponding to point b by means of Eqn. (12a) or (12b)1.
In the [ta, tb] interval, we describe the (sticking) motion via Eqn. (5).2.
We determine the direction of the friction force at time tb by using the relative velocity sign criterion.3.
We determine  the  time  tc  corresponding  to  point  c  by  solving  the  transcendent  equation  ẋrel  =  0,  and  check4.
condition (15).
In the [tb, tc] interval, we describe the (sliding) motion via Eqn. (14).5.
The procedure then repeats points 1 - 5, starting with point c.6.

We  choose  a  set  of  parameter  values  which  can  be  considered  representative  of  a  section  of  a  wiper  blade,  as
described by Bodai and Goda [21]. In particular, m = 4.7 × 10-4 kg is the mass of the block, k = 200 N/m is the spring
constant,  µs  =  0.6  is  the  static  friction  coefficient,  η  =  2/3  is  the  ratio  between  the  dynamic  and  static  friction
coefficients, P = 0.7 N is the applied load, α = 111.4 is the dimensionless amplitude of the surface oscillations, and
lastly Ω = 0.007 is the frequency ratio.

Fig. (6) shows a plot of the block’s absolute displacement, together with that relative to the surface, during one
period. High-frequency oscillations superposed on that of the surface are clearly identifiable in Fig. (6b), which shows
an enlargement of the block’s absolute displacement. The diagram of the absolute velocity of the block and surface,
plotted in Fig. (7a), as well as the phase diagram shown in Fig. (7b), reveal that the block’s motion tends to become
periodic  after  an  initial  transient  phase.  In  particular,  a  high-frequency  stick-slip  alternation  with  slowly  varying
amplitude is observed. The numerical  results are fully consistent with the theoretical  predictions represented in the
diagrams plotted in Fig. (4).

The  frequency  content  of  signal  x(t),  illustrated  in  Fig.  (8),  clearly  shows  that  the  dominant  frequency  nearly
coincides with that of the oscillations of the moving surface. Together with many minor peaks, a second major peak in
the diagram corresponds to the natural frequency of the mass-spring system. These peaks can be explained by observing
that the frequency of the alternations of the stick and slip phases varies over a single period of the surface’s oscillation.
The signal x(t), properly scaled, also represents that of the reactive elastic force. Recalling that, in our scheme, this force
corresponds to that exchanged between the rubber lip and the vertebra, these results seem to suggest that high-frequency
vibrations  are  likely  to  be  transmitted  to  the  vertebra  and the  other  components  of  the  wiper  system as  well.  Such
vibrations may in some cases lead to the onset of the dynamic instabilities (such as chattering or fishtailing) that are
sometimes  observed  in  wiper  systems.  On  the  other  hand,  note  that  the  frequency  content  of  the  contact  force
exchanged between the block and the surface (i.e., the rubber lip and the screen, in our scheme) contains but a single
peak in correspondence to the frequency of the surface’s oscillations.



62   The Open Mechanical Engineering Journal, 2016, Volume 10 Barsotti et al.

Fig. (5). Sketch of a typical portion of the block’s motion.

Fig. (6). (a) Absolute and relative position of the block, absolute position of the surface; (b) absolute position of the block (magnified
1000 times).

Fig. (7). (a) Absolute velocity of the block and velocity of the surface. (b) Phase trajectory of the block in the (x,ẋ) plane.
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Fig. (8). Frequency spectrum of signal x(t).

In this paper we have studied the dynamic response of wiper systems viewed as an assemblage of elements that can
slide one over the other in the presence of significant friction. In particular, we have studied a first elementary model in
which a rigid block connected to an elastic spring is free to slide over a rough surface moving according to a sinusoidal
law of motion. The contact between the block and the surface is described by a suitably modified version of Coulomb’s
law. The modification enables accounting for the short time usually needed to restore static contact condition after a
sliding phase.

Although the system dynamics proves to be highly nonlinear overall, due to the nonlinear friction law used, the
equations of motion for the block can be easily solved in each phase. The exact sequence of sticking and sliding phases,
starting with given initial conditions, can be predicted by means of two simple criteria that allow for determining the
onset or the end time of a sliding phase, and the sign of the friction force at the beginning of a sliding phase as well. The
results  obtained  for  an  application  case  concerning  a  wiper  blade  enable  highlighting  the  high-frequency stick-slip
motion of the rubber lip together with the frequency content of the forces exchanged between the rubber lip and the
vertebra, as well as between the rubber lip and the screen.

We have moreover discussed the influence on the solution of three dimensionless parameters chosen to characterize
the  system:  the  ratio  Ω  between  the  surface  oscillation  frequency  and  the  system’s  natural  frequency,  the  ratio  η
between  the  kinetic  and  the  static  friction  coefficients,  and  the  ratio  α  between  the  maximum  surface  oscillation
amplitude and the maximum distance of the block from the origin, which corresponds to it being in a state of static
equilibrium.

Some typical limit cycles corresponding to continuous sliding or sticking have then been analyzed. In particular, we
have detailed the conditions necessary to ensure the existence of such limit  cycles,  and analyzed some of the limit
cycles that can actually be attained by the system. We have shown that, for given η, the (Ω, α) plane can be partitioned
into different regions, each corresponding to a different dynamic system response. According to the results, once the
main system parameters α,  Ω and η  are fixed, it is possible to foresee some basic features of its possible long-term
responses.  In  particular,  we  have  determined  the  cases  for  which  continuous  sticking  (or,  alternatively,  period-one

CONCLUSION
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sliding) can be excluded, and, instead, those for which only steady stick-slip motions are to be expected.

The analysis of stick-slip systems performed by directly accounting for the moving surface, as described herein,
seems to be an effective strategy for achieving a better understanding of the main features of the dynamic response of
such systems. Such a modeling strategy may also represent a rational framework for enabling more direct interpretation
of the results  than that  obtainable by means of the alternative approach (i.e.,  by considering a harmonically loaded
system).

The Sticking End Time Criterion

The criterion adopted for determining the sticking end time may be explained by means of the diagrams plotted in
Fig. (9). We refer, for the sake of simplicity, to the case where λ > 0 and the sticking start time is zero.

The sticking phase ends when one of the two equalities (12a) or (12b) becomes true. Graphically, such criterion
corresponds to determining the (first) instant at which the plot of the function of time α(1 - Ω2)sinωbt + λ exits from the
strip bounded by the straight lines with ordinates ±1.

Basically, two cases must be considered depending on whether or not α |1 - Ω2| is smaller than 1 + λ. In the first
case, by looking at the left-hand diagram of Fig. (9), it is straightforward to conclude that within a single period there is
only one possibility left  (the colored circle labeled A  on the diagram), and the end time is determined according to
(12a). On the other hand, in the second case, two points meet the requirements (B and C, right hand of the figure). The
choice between the two is made according to the sign of the first derivative (i.e., the sign of (1 - Ω2)cosωbt). The correct
choice will be point B or C (i.e., the solution to (12a) or (12b), depending on whether said sign is positive or negative,
respectively. Fully analogous considerations apply to the other cases listed in the criterion in section 3.1.

Fig. (9). The sticking end time criterion.
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