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Abstract: This work deals with the application of the micromechanical Gurson-Tvergaard (GT) model to the 
determination of the residual strength of analuminumflat stiffened panel (2024 T3) with a central through crack, by means 
of finite element simulations. The load condition is represented by a monotonic traction along the direction orthogonal to 
the crack plane. The used Finite Element code is WARP 3D®, which allows simulating ductile damage propagation by 
considering the GT model. 

Numerical results have been compared with experimental ones available in literature. In the second part of the work, a 
home madeprocedurefounded on the SDI (Stochastic Design Improvement) technique is presented and applied to the 
improvement of the residual strength properties of the considered panel. 
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INTRODUCTION 

 The availability of prediction numerical tools for the 
determination of the R-curve of cracked structure improves 
the capabilities of the designers to deeply investigate on the 
residual strength properties of such structures. 

 Within this work, a micromechanical approach has been 
followed, by considering a numerical model that is able to 
explain the characteristic material behaviour from the crack 
onset up to the final failure of the considered component, 
without suffering any dependence on the current geometry. 

 Ductile fracture arises in many ferrous and non-ferrous 
alloys through the nucleation of cavities produced by the fragile 
breaking or decohesion of inclusions [1, 2]. When such cavities 
begin to grow in size, they cause local severe stress-strain fields 
in the surroundings of small inclusions, thereby nucleating 
small-scale cavities which participate to the final phase of the 
coalescence process and therefore to the macroscopic crack 
growth. The process of cavity growth is well understood and the 
relative models are quite advanced [3, 4], while the mechanism 
of nucleation and coalescence, as well as the associated 
micromechanics, are less understood even if some papers 
provide a good description of such mechanisms [5, 6]. It is clear 
that improving the understanding of the above mechanisms and 
of their effects on failure modes and fracture resistance will 
result in a better ease to develop micromechanical prediction 
tools for the analysis of real components which behave in the 
nonlinear fracture mechanics field1. 
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 Among the most promising models introduced in recent 
years the one proposed by Gurson-Tvergaard (GT) links the 
propagation of a crack to the nucleation and growth of 
micro-voids in the material and then is able to connect the 
micromechanical characteristics of the component under 
study to crack initiation and propagation up to a macroscopic 
scale, such model works very well with many metal alloys 
but not with composites materials whose damages 
mechanisms are governed by different concepts [7]. 

 The three stages of nucleation, growth and coalescence of 
micro-voids are well-established results of metallographic 
observation for polycrystalline metals at ductile failure. The 
simulation of these microstructural damage processes has 
been considered in various micromechanical and macro 
mechanicalapproaches in the literature. 

 A macro mechanical model can be obtained by statistical 
average of microscopic quantities by a homogenization 
process. 

 The Gurson model [8], which derived a macroscopic 
yield function and an associated constitutive flow law for an 
ideally plastic matrix containing a certain volume fraction of 
spherical voids, is a well-known analytical approach to this 
problem. 

 Empirical modifications of this approach have been 
proposed to improve the prediction at low fraction of volume 
void [9] and to provide a better representation of final void 
coalescence [10]. 

 In this work this model has been selected, and by means 
of experimental observations and numerical procedures the 
characteristic parameters have been determined [11, 12]. 

 Once calibrated and validated the numerical propagation 
model, it has been applied to the FE model of a stiffened 
aeronautical panel [13], made of aluminium alloy; the aim is 



Residual Strength Improvement of an Aluminium Alloy Cracked Panel The Open Mechanical Engineering Journal, 2013, Volume 7    91 

to optimize residual strength of such panel in presence of 
cracks. 

 Commonly, optimization methods [14, 15] aim to 
minimize one or more functions under assigned boundary 
conditions and by considering possible ranges of variability 
of the design variables’ values; other structural 
parametersdifferent from design variables are considered as 
constant. This procedure is not able to consider the 
variability of the parameters which randomly influence both 
the manufacturing process and the service conditions and 
which, in turn, influences the variability of the performance 
of the product [16]; therefore a special design methodology, 
based on probabilistic concepts, is necessary, as well as 
practical designtools such as to make possible to deeply 
investigateon the probabilistic aspects involved in the design 
process [17]. This approachallowsobtaining a robust design, 
that is a design insensitive to all variations of the main 
variables, or, what is the same, a design whose statistics are 
characterized by the smallest standard deviation, as a 
function of the statistics of input [18]. 

 This approach can be also linked to another very relevant 
question; the result of an experimental test carried on an 
assigned structure is the consequence of the particular and 
real values of all design variables, whose density functions 
are supposed to be known: when we try to correlate the test 
results to a numerical simulation procedure, we want in 
effect to assess, all other aspects stated, which are the values 
that the design variables had in the real structure tested in 
that particular experiment. 

 Based on the “stochastic design improvement” (SDI) 
technique [19], a homemade procedure, which is able to 
perform a preliminary robust design of a complex structural 
component, has been proposed andapplied to the 
improvement of the residual strength of a cracked stiffened 
panel [20]. Numerical results have been comparedwith 
experimental results from literature [21], with the aim to 
validate them. 

DESCRIPTION OF THE HOME MADE SDI 
PROCEDURE 

 Both the design aspects focused in the previous section 
can be effectively dealt by means of an SDI (Stochastic 
Design Improvement) process, which is carried out by 
developing several Monte Carlo (MC) series of trials (runs) 
as well as of the analysis of the intermediate results. 

 That procedure is in fact an iterative one, both for the 
generally non-linear behaviour of the structure and because it 
often happens that the quality level can be expressed more 
efficiently through the variation coefficients and not by 
variances, which therefore can vary in the assumed 
displacement. 

 A method which is usually very effective is to find in the 
cloud pertaining to Monte-Carlo first set the trial which 
gives the nearest result to the target and to centre there a new 
set of experiments and so on, until a convergence is obtained 
which is expressed in terms of a distance, admitting that the 
shape of the cloud of results will not change substantially 
passing from initial to target values of the results, but will be 

only displaced, and that the amplitude of the required 
displacement can be forecast through a close analysis of the 
points which are in the same cloud. 

 It is also clear that the assumption about the invariance of 
the cloud can be maintained just in order to carry out the 
multivariate regression which is needed to perform a new 
step but that subsequently a new and more correct evaluation 
of the cloud is needed;in order to save time, the same 
evaluation can be carried out every k steps, but of course, as 
k increases, the step amplitude has to be correspondently 
decreased. 

 It is also immediate that the displacement of the cloud is 
obtained by changing the mean (nominal) values of the 
design variables, as in the now available version of the 
method all statistical distributions are assumed to be 
uniform, to avoid the crowding of results around the mode 
value. It is also pointed out that sometimes the process could 
fail to perform its task because of some physical 
(engineering) limit, but in any case SDI allows quickly 
appreciating the feasibility of a specific design, therefore 
making its improvement easier. From a practical point of 
view, the user specifies the value that assigned selected 
output variable has to reach and the procedure determines 
those values of the project variables which make the mean of 
the objective variable equal to that of the target. Therefore, 
the user defines, according to the requirements of the 
problem, a set of control variables, with an uniform 
statistical distribution, that is their natural variability, within 
which they can vary, observing the corresponding physical 
(engineering) limits. In the case of a single output variable, 
the procedure evaluates the Euclidean or Mahalanobis 
distance of the objective variable from the target after each 
trial. 

 Then, it is possible to find the trials for which the 
distance between the values of the objective variables from 
those of the target ones reached the minimum value: 
subsequently each project variable is redefined according to 
a new uniform distribution with a mean value equal to that 
used in such “best” trial. The limits of natural variability are 
accordingly moved of the same quantity of the mean to 
define the same amplitude of the physical variability. Once 
the design variables have been redefined a new run starts; the 
iterative process stops when the assigned number of shots is 
achieved. 

 The analysis can also stop when the distance from the 
target reaches a given value, according to a planned criterion. 
In the most cases, it is desirable to control in real time the 
state of the analysis, with the purpose to realize if a 
satisfactory condition has been obtained. 

TEST CASE 

 The procedure described above has been applied on a flat 
cracked stiffened panel (Fig. 1). 

 The full panel is constituted by a skin made of Al alloy 
2024 T3 LT, divided in three bays by four stiffeners made of 
Al alloy 7075 T5 L (see Table 1). The longitudinal size 
(along the applied displacement) of the panel is 1830 mm, 
the transversal size is 1190 mm and the nominal thickness is 
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1.27 mm; the stiffeners are 2.04 mm high and 45 mm width. 
The stiffeners were connected to the skin by 4.0 mm 
diameter rivets (protruding head type), and a continuous 
rivet pattern was used [22-24]. Each stiffener was connected 
to the skin by two rows of rivets in the longitudinal direction. 
The distance between the stringers is 340 mm (Fig. 1). Many 
aspects are involved in the mechanical joints as referred by 
the authors in [25] and [26]; in the proposed model the 
stiffeners have been considered rigidly connected to the skin, 
as results of some preliminary analyses by which it has been 
carried out that in the selected damage configuration the 
modelling approach of the connection between the skin and 
the stringers didn’t influence the full panel residual strength. 
Table 1. Material Properties 
 

Material E [MPa] σy [MPa] σu [MPa] Δult [%] 

2024 T3 LT 71200 366 482 18 

7075 T5 L 67100 525 579 16 

 

 
Fig. (1). Flat stiffened panel. 

 Three different cracked panels have been considered with 
a central lead through crack equal to 120, 150 and 170 mm 
respectively. The full panels were tested [21] by considering 
a test machine with a maximum traction load capacity of 
1000 kN. A double-bridge load cell was mounted at the rod 

of the actuator. The applied loads were controlled by a 
typical closed-loop servo system. The stiffened panel was 
clamped to the testing machine frames by 29 pins per side 
(20 mm diameter, Fig. 2); the stress field around pins does 
not reach the bearing strength of the stiffener material. Fig. 
(2) shows a panel scheme as mounted in the testing frame. 
Tensile rods were used to prevent horizontal deflection of 
the frame during loading with care given to the assembly 
process [27]. The residual strength tests were done under 
displacement control to make the crack statically grow 
beyond the point of maximum load. During the residual 
strength test, the displacement was gradually increased until 
failure of the panel. 

 
Fig. (2). Testing machine scheme. 

 A finite element model of the panel has been developed 
and analysed, by considering the same boundary condition of 
the experimental test. The numerical model, developed by 
using the WARP 3D® FE code, consists of no. 8400 8-noded 
3-dof solid elements and 11450 nodes; only an eighth of the 
whole structure has been analysed due to the three symmetry 
planes. Isotropic hardening behaviour has been considered 
for the material according to the mechanical characteristics 
reported in Table 1. Crack dimensions and positions were the 
same of experimental test. 

 The elements linked to the nodes belonging to the crack 
plane were modelled by considering a material model based 
on the Gurson-Tvergaard (GT) model, as implemented in the 
used code; the GT model is one of the most suitable among 
the various models based on micro structural aspects 
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proposed for the description of the crack propagation 
phenomena in ductile materials. 

 Each of these elements represents a material unit cell 
containing an initial cavity fraction; as the stress-train state 
increases the volumetric fraction of the cavities decreases, 
according to the GT model, and when the critical value of 
cavity fraction is reached, the phenomenon of coalescence 
starts. From the numerical side, when the coalescence of the 
cavity starts, the brick elements reduce their ability to model 
the applied load. Such constitutive model needs a calibration 
phase as reported in the following paragraph. 

NUMERICAL CALIBRATION OF THE GT MODEL 
PARAMETERS 

 As generally stated, the Gurson-Tvergaard (GT) model 
[8, 9] consists of the following expression (1): 
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where σm is the hydrostatic pressure, σ is the equivalent Von 
Mises stress, σ0 is the yielding stress of the material, f is the 
actual void volume fraction (f = f0 at t = 0), q1, q2 and q3 are 
the Tvergaard correction factors. The void volume fraction 
rate, df, consists of two terms, dfnucleation and dfgrowth, which 
represent respectively linked to the nucleation and the 
growth of voids. Once reached a certain value of f, say fc, it 
is assumed that void coalescence starts, and subsequently a 
macroscopic crack appearsdue to the complete “failure” of 
the material ligaments between voids. From a numerical 
standpoint, adjacent to the crack growth plane 
“computational cells” are modelled, in which an algorithms 
based on the GT expression (1) is implemented; these 
“computational cells” are numerically characterized by the 
same parameters of the GT expression (1). By considering 
one finite element for each computational cell, it follows that 
the numerical calibration of the GT model parameters and 
then of the computational cell dimension governs the mesh 
size [28, 29]. By means of a fitting procedure of numerical 
results with experimental ones, nine parameters need to be 
calibrated to fully characterize the computational cell in the 
sense explained above: the three Tvergaard correction 
parameters (q1, q2 q3); the three parameters associated with 
the strain normal distribution (mean value, ε n, standard 
deviation, SN, and the volume fraction of void nucleating 
particles, fN), which are assumed to govern the strain induced 
voids nucleation rate on the basis of the following 
expressions (2): 
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where ! p  is the equivalent plastic strain, D0 is the initial 
size of the computational cell and f0 is the initial volume 
cavity fraction which can reach its critical value fc. Another 
purely numerical parameter, λ, has been considered, which 

governs the release model for element forces after the void 
volume fraction reaches the critical value [30]. 

 Once the critical damage state is reached, at any load step 
the residual internal forces applied to nodes of the 
considered element at crack tip, γ, is given by γ = 1.0 – [(D*-
D0*)/λD0], where the D0* is the average deformed cell height 
normal to the crack plane when f is equal to fc, D* is the 
actual deformed cell height and λD0 represents the allowable 
elongation of the cell size from the critical condition up to 
the final cell collapse (γ = 0), with respect to the undeformed 
cell height2 [30]. In any case, beside these parameters, the 
mechanical properties of the base material (Young modulus, 
E, Poisson ratio, ν, yielding stress, σ0, strain hardening, n), or 
its stress-strain relationship (σ-ε curve), must be known. 

 The material considered in the proposed investigation is 
an aluminium alloy 2024 T3 (Table 1). 

 The fitting of Tvergaard’s parameters was performed, on 
the bas of the information available for this material 
regarding its mechanical properties, by comparing the 
behaviour of two different numerical models for different 
opportunely selected boundary conditions; the achieved 
values are q1 = 1.33; q2 = 0.956 and q3 = 1.77, which 
confirms the usual assumption q3=q1

2. The nucleation 
phenomena has not been considered in this phase of fitting 
process and the fc value has been used only to determine the 
last point of comparison between the stress-strain curves of 
the two models without any influence on the fitting process. 

 The second phase of the calibration process of GT model 
parameters consists in the determination of the nucleation 
(εN, SN, fN) and macro-mechanical (D0, f0, fc) parameters. 
Both a metallographic analysis [11] and an experimental R-
curve of the material under examination [21, 31, 32], are 
necessary in order to successfully develop the second phase 
of the calibration process. From the metallographic analysis, 
the defect distribution in the base material can be carried out, 
which is necessary to choose a first attempt value of the 
computational cell size, D0, and of the initial void volume 
fraction, f0, to be used in the calibration process. As it is 
possible to observe from the data recorded in Table 2 [11], 
particles or dispersoids are found, which, as it is known, 
areone of the causes for void nucleation and therefore can be 
considered as initial void volume fraction (f0 = 2.1%). The 
average distance between the two biggest (> 10 µm) particles 
is 82.89 µm, which should be approximately the size of the 
computational cell. 

 It must be said that the dimensions of the computational 
cell influence the accuracy of the results, and clearly when 
smaller is it, better is the numerical-experimental agreement 
of the results; but if the user wants to analyse full scale 
structure or big component, a too small size of the 
computational cell cannot allow a wisdom approach to the 
analysis due to the increasing of the computational time; 
therefore, on the basis of the results reported in [33] and of 
numerical calculations performed by the authors in order to 
asses those results, a computational cell size D0 = 100 µm 

                                                
2The part of the article has been previously published in World Academy of 
Science, Engineering and Technology 73 2013 
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has been considered. In order to calibrate f0 and fc 
parameters, numerical data have been fitted to the 
experimental ones represented by the R-curve of a central 
cracked plate under remote traction [21], whose dimensions 
are 500 mm x 500 mm, with a thickness of 1.28 mm and an 
initial crack size of 99.6 mm (Fig. 3); the obtained final 
values are respectively 0.025 and 0.12. 

 In the same phase of parameters calibration, εN, SN and fN 
values have been determined, obtaining ε N = 0.09, SN = 
0.045 and fN = 0.11. The advantage in the use of such a kind 
of specimen instead of a compact test specimen to 
characterize experimentally the material toughness is to 
provide an easier transferring of the evaluated parameters to 
the considered full scale components [3], avoiding the 
difficulties due to the yielding scale at crack tip3 [34-36]. 

 
Fig. (3). Fitting parameters panel. 

STIFFENED PANEL: EXPERIMENTAL TEST AND 
NUMERICAL SIMULATIONS 

 By considering the values carried out by the calibration 
process of the GT parameters described in the previous 
section, the R-Curve of the cracked stiffened panel described 
                                                
3The part of the article has been previously published in World Academy of 
Science, Engineering and Technology 73 2013. 

in Fig. (1) has been numerically determined, in the same 
boundary conditions of the experimental tests and in 
presence of just one crack in the middle bay of initial size a0 
respectively equal to 120, 150 and 170 mm. In Figs. (4-6) the 
comparisons between numerical and experimental results 
have been shown; as expected, the numerical results obtained 
are in good agreement with the experimental ones as proof of 
the relevance of the model adopted. 

 
Fig. (4). Stresscomparisonfor an initial crack length of 120 mm. 

 
Fig. (5). Stress comparisonfor an initial crack length of 150 mm. 

 The same full-scale damaged panel has been used to 
perform a Stochastic Design Improvement. A through crack 
20 mm long set in middle of a bay has been considered. 

Table 2. Results From Metallographic Analysis 
 

Eqvdiam 
[µm] 

Vol 
Fraction 

Vol Fraction 
(st dv) 

Nearest 
Neighbour [µm] 

Nearest Neighbour 
(st dv) [µm] 

Min Separation 
Distance [µm] 

Min Separation 
Distance (st dv) [µm] 

Av. Size of 
Particles in Size 

Categ 

All Sizes 2,10 0,40 8,58 5,37 5,78 5,30 2,38 

1:2 0,18 0,06 15,62 10,78 14,05 11,03 1,46 

2:3 0,29 0,07 20,95 13,07 18,27 13,33 2,47 

3:4 0,33 0,09 28,23 17,69 24,54 18,17 3,44 

4:6 0,49 0,14 26,38 14,85 20,82 15,02 4,85 

6:8 0,35 0,15 43,01 25,19 35,00 25,76 6,84 

8:10 0,22 0,15 69,60 42,43 59,25 43,54 8,85 

10+ 0,24 0,24 82,89 54,35 67,90 55,79 12,09 
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Fig. (6). Stress comparisonfor an initial crack length of 170 mm. 

 Only two design variables, stringer’s pitch and height, 
have been chosen in order to obtain a flexible procedure and 
most reliable results. Previous work shows [37] an 
unsatisfactory number of test applications used to assess 
results of numerical model, so in the current paper more 
comparison data with other experimental results have been 
added. Table 3 shows the details of the design variables. 
Table 3. Design Variables (% Respect to Initial Value) 
 

Design  
Variables 

Initial  
Value  
[mm]

Natural  
Variability  

[mm] 

Lower  
Engineering  

Bound 
[mm] 

Upper 
 Engineering 

 Bound  
[mm] 

Stringer pitch 340 20 (6%)  306 (90%)  374 (110%) 

Stringer height 2.06 0.5 (24%) 1.03 (50%) 3.09 (200%) 

 

 The procedure can be considered completed when the 
maximum value of the residual strength curve reaches an 
increasing of 18% (probability of success greater than 0.85). 

RESULTS AND DISCUSSION 

 In order to successfully complete the application of the 
proposed SDI procedure on the selected test-case, no. 7 sets 
of trials (runs) have been executed; each run constituted by 
no. 36 shots. At the end, more then 250 numerical analyses 
have been performed. In a second phase of the procedure it 
has been necessary to execute a supplementary MC test with 
the aim to assess the results carried out with a poor number 
of shots per run. A MC statistical analysis has been 
performed by means of 387 trials reaching a very 
satisfactory result. 

 Figs. (7, 8) show the maximum value of the residual 
stress curve for the two design variables within their 
engineering variability. 

 Fig. (9) shows the maximum value of the residual stress 
curve for each shot; the solid horizontal line represents the 
initial value of such maximum value (104,5 kN) while the 
dashed line represents the target of the maximum value of 
the R-curve (123,3 kN). As it possible to observe during the 
6th run, 31 numerical evaluations overcome the target value 
and reach a percentage of success greater then the requested 

one (0.85). In the same figure two vertical dashed lines 
highlight the trials belonging to the 6th run. 

 
Fig. (7). Design variable vs output variable. 

 
Fig. (8). Design variable vs output variable. 

Fig. (9). Output variable vs shots per run. 

 The design variables within such run assume the 
following mean values:Stringer Pitch = 316 mm, Stringer 
Height = 2.94 mm. 

 At this point it is necessary to perform an extended MC 
analysis on the base of the results coming from the 6th run. 
A total of 387 numerical executions have been performed 
and Fig. (10) shows that 333 trials give a maximum value of 
the R-curve that overcome the target value. The percentage 
of success is than 86%. 

 The comparison between the sixth run and the extended 
MC analysis (Fig. 11) gives good statistical results in terms 
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of mean values that are respectively 125,1 kN and 126,8 kN 
(+1.38%). 

 Fig. (12) shows the R-curve for the best shot of each run; 
the reference maximum value of the R-curve is 104,5 kN 
while the requested target (123,3 kN) has been reached after 
6 runs with a probability of success equal to 86%; the 
seventh run gives a probability of success (92%) greater than 
the requested one for the present procedure. 

 
Fig. (10). Output var. vs shots - extended MC. 

 
Fig. (11). Mean of output variable vs shots. 

 
Fig. (12). Mean of output variable vs shots. 

CONCLUSIONS 

 The application of the proposed SDI procedure to 
improve the residual strength of a full scale flat stiffened 
cracked panel made of aluminium alloy gave good results 
even though the selected test case was very complex.

 A great starting point, for the success of the whole 
procedure, is represented by the good numerical-
experimental correlation stated in the first part of the work. 

 The achievement of such result represents a great 
advantage for this kind of applications also constitutes a 
guarantee that the final results of the SDI procedure are 
reliable. 

 Actually, the used numerical Gurson-Tvergaard 
micromechanical damage model, in the form implemented in 
the algorithms of the WARP3D® FE code, worked very well 
to predict the R-curve of the test case, after calibrating its 
parameters by means of a numerical-experimental 
correlation of the results. 
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