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Abstract: Early identification of faults in railway gearboxes is a challenging task in gearbox fault detection. There are 
extensive studies, such as patents and papers have been fully developed for processing vibration signals to obtain 
diagnostic information about gearbox. We have proposed a new technique for detecting faults in the railway gearbox by 
applying the time frequency parameters and genetic algorithm neural network to deal with railway gearbox fault signals. 
In this method, wavelet analysis and empirical mode decomposition (EMD) are carried out on gearbox vibration signals 
for extracting the time-frequency feature parameters. Then genetic algorithm neural network (GNN) is used for the 
classifications of the time-frequency feature parameters. The analysis results show that the effectiveness and the high 
recognition rate in classifying different faults of railway gearboxes. 
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1. INTRODUCTION 

 Gearbox is the most widely used mechanical components 
in railway sector. A sudden fault in the gearbox during 
operation may result in heavy financial loss, therefore, it is 
critical to regularly investigate and check railway gear box 
for avoiding such kind of problems. Different methods have 
been developed for diagnosing and detecting gear box faults. 
One of the widely known technique for diagnosing gearbox 
faults is the vibration-based analysis [1]. 
 Numerous condition monitoring and diagnostics 
methodologies are utilized for identifying the gearbox faults 
[2-7]. However, these methods only provide limited 
effectiveness for diagnosing complicated defects. In fact, 
when gear fault arise, the vibration signals demonstrate non-
stationary behavior. Therefore, to understand the 
characteristics of the fault from the non-stationary vibration 
signals is the crux of the diagnosis of the fault [8]. Empirical 
mode decomposition (EMD) method is based on the local 
characteristic time scale of signal. It can split the 
complicated signal into a number of intrinsic mode functions 
(IMFs). By analysis of every resulting IMF component 
which carries the local characteristic of the signal, the 
characteristic information of the signal can be obtained 
accurately and effectively [9]. At the same time, artificial 
neural networks and genetic algorithms have been 
successfully applied to automated detection and diagnosis of 
gearbox [10-11]. So this paper proposes an approach for  
 

railway gearbox fault detection by using time-frequency 
feature parameters and genetic algorithm neural network. 

2. TIME-DOMAIN FEATURE PARAMETERS 
 The kurtosis factor, margin factor and pulse factor are 
calculated. They are defined as follows: 
 Kurtosis factor: 
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4
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 Margin factor: 
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 Pulse factor: 

x
x
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where ix is ith sampling point of the signal x ; n is the 
number of points in the signal, xrms is the root mean square of 
the signal, xr is the square root of amplitude of the signal, 
and x is the absolute average of the signal. 

3. EMD METHOD AND TIME-FREQUENCY 
DOMAIN FEATURE EXTRACTION 

3.1. EMD Method 

 The EMD method is based on the theory that every signal 
is combination of a series of simple but different intrinsic 
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modes of oscillation. Each linear or non-linear mode will 
consist of equal number of extreme and zero crossings, and 
there is only one extreme between successive zero crossings. 
Every mode must be independent of others. In this manner, 
every signal can be divided into a number of IMFs, and each 
IMF should satisfy the below definitions [12]: 
(1) The number of extrema and the number of zero 

crossings must be either identical or should differ at 
most by one; 

(2) The running mean value of the envelope defined by 
the local maxima and the envelope defined by the 
local minima is zero [13]. 

 An IMF represents a simple oscillatory mode compared 
with the simple harmonic function. By following this 
definition, a signal x(t) can be decomposed as given below 
[14]: 
(1) First of all, segregate all the local extrema, and 

connect the local maxima by a cubic spline line as the 
upper envelope. 

(2) Repeat this process for the local minima for 
producing the lower envelope. The upper and lower 
envelopes must cover all the data between them. 

(3) The mean value of upper and lower envelope is called 
m1 , while the difference between the signal x(t)  and 
m1 is the first component, h1 , i.e. 

 x(t)−m1 = h1   (4) 

 Ideally, if h1 is an IMF, then h1 is the first component 
of x(t) . 

(4) If h1 is not an IMF, h1 is treated as the original signal 
and repeat (1), (2), then 

 h1 −m11 = h11   (5) 

 After repeated sifting, i.e. up to k times, h1k  becomes 
an IMF, that is 

 h1(k−1) −m1k = h1k   (6) 

 Then it is designated as 

 c1 = h1k   (7) 

 The first IMF component is obtained from the 
original data. 1c should contain the finest scale or the 
shortest period component of the signal. 

(5) Separate c1  from x(t) . We get 

 r1 = x(t)− c1   (8) 

 where r1 is treated as the original data and repeat the 
above processes. The second IMF component c2 of 
x(t) can be obtained. Let us repeat the process as 
described above n  times. Then n -IMFs of signal x(t)  
can be obtained. Then, 

 

r1 − c2 = r2   (9) 

   
rn−1 − cn = rn  

 The decomposition process can be stopped when rn a 
monotonic function from which no more IMFs can be 
extracted. By summing up Eqs.(5) and (6), we finally obtain 

x(t)= cj
j=1

n

∑ + rn  (10) 

 Thus, one can achieve a decomposition of the signal into 
n-empirical modes and a residue rn , which is the mean trend 
of x(t) . The IMFs c1 , c2 ,   , cn include different frequency 
bands ranging from high to low. The frequency components 
contained in each frequency band are different and they 
change with the variation of signal x(t) , while rn represents 
the central tendency of signal x(t) . 

3.2. Time-Frequency Domain Feature Extraction 

 The steps of time-frequency domain feature extraction 
are as follows: 

(1) The vibration signals are divided into few IMFs by 
using the EMD method, the first n  IMFs ci (t)，

 i =1,2,3,,n , where the most dominant fault energy 
is selected for extracting the feature. 

(2) Calculate the energy-torque of every small time block 
 The IMF energy-torque is calculated as the following 

equation: 

 Ei = t ci (t)−∞

+∞∫
2
dt  (11) 

 For discrete signals, the energy-torque is calculated as 
the following equation: 

 Ei = (k ⋅ Δt)
k=1

m
∑ ci (k ⋅ Δt)

2   (12) 

 where m is the total number of sampling points, k  is 
the sampling points, Δt  is the sampling period. 
Calculating the energy-torque  E1,E2,  for each 
chosen IMF based on the formula (12). 

(3) Constructing the feature vectorT in the elements of 
the energy-torque. 

 
 
T = [ E1 E2  En ]   (13) 

 When the energy-torque is a larger numerical, 
normalizing T and get the normalized feature vector 
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 The IMF energy-torque is calculated as the following 
equation: 

Ei = ci (t)
2 dt

−∞

+∞∫  (15) 

4. GENETIC NEURAL NETWORK 

 The ability of a neural network for predicting accurate 
outcomes is dependent on the selection of proper weights 
during the neural network training. Because of the 
complicated nature of training neural networks, even simple 
functions can have very complex error surfaces. The nature 
of BP is to converge locally, therefore we can show that 
these solutions are mainly dependent on the initial random 
draw of weights. If these initial weights are located on a 

local grade, which is probable, the BP algorithm will likely 
become trapped in a local solution that may or may not be a 
global solution. This local convergence could present serious 
problems when using neural networks for real-world 
applications [15]. 
 Genetic algorithm has been proposed for training neural 
network for overcoming the local convergence problem for 
nonlinear optimization problems. Genetic algorithm is a 
global search method which searches from one point of 
population to another, focusing on the best solution to that 
point, while sampling the total parameter space constantly. 
 The steps of combination of neural network and genetic 
algorithm as shown in Fig. (1) [16]. 

Start

Initial population

Calculate fitness

Selection

Crossover and Mutation

Is it meeting the 
termination criterion ?

New populations

Stop GA training

BP training

Output the result

End

Yes

No

 
Fig. (1). Framework of training a neural network using genetic algorithm. 
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5. EXPERIMENTAL VALIDATION 

 For verifying the validity of the proposed method, the 
time-frequency feature parameters and genetic algorithm 
neural network is applied to the experimental railway 
gearbox vibration signal analysis. The original vibration 
signals of the railway gearbox are shown in Fig. (2). The 
kurtosis factor, margin factor and pulse factor are calculated. 
Then these signals are split by EMD method as we have 
discussed in the beginning of this paper. The decomposed 
signal by EMD is shown in Fig. (3). After having the IMFs, 
the time-frequency feature parameters are extracted, the 
Table 1 shows the training group, and Table 2 shows the 
testing group. Then GNN is used for the classifications of 
the time-frequency feature parameters. The GNN used for 
 

 
Fig. (2). The time domain of the whole tooth break signal. 

fault diagnosis is a combination of three layers which are (a) 
an input layer, (b) a hidden layer and (c) an output layer, and 
the architecture is 8-6-3. 

 
Fig. (3). Empirical mode decomposition of the whole tooth break 
signal. 

 The fault diagnosis results of the GNN are mentioned in 
Table 3, which establishes that fault diagnosis of a railway 
gearbox is successfully achieved and the three different 
gearbox working conditions are accurately identified. This 
procedure can be applied in the fault diagnosis studies in the 
future when it is further developed. 

CONCLUSION 

 For practical application, it is important that a reliable 
and accurate procedure for detecting the railway gearbox 
faults is developed. For this purpose, a method based on 
time-frequency feature parameters and GNN has been 

Table 1. Sample data of gearbox operation. 
 

 Kurtosis Factor Margin Factor Pulse Factor  E1 E2 E3 E4 E5 Fault Status Fault Vector 

1 3.4283 5.6369 4.7971 0.3311 0.7592 0.5186 0.0918 0.1911 normal  (1 0 0) 

2 3.2145 3.4006 4.4736 0.4170 0.6755 0.5323 0.1204 0.2684 normal  (1 0 0) 

3 3.8868 3.8088 4.7620 0.3048 0.7205 0.5179 0.0920 0.3336 normal  (1 0 0) 

4 3.5846 6.5516 5.4896 0.1028 0.1977 0.3837 0.4581 0.7703 half of tooth break  (0 1 0) 

5 3.4310 4.8642 4.2135 0.1046 0.2379 0.3012 0.5691 0.7196 half of tooth break   (0 1 0) 

6 3.2302 4.6089 3.9670 0.1272 0.2348 0.3080 0.7278 0.5515 half of tooth break  (0 1 0) 

7 3.2422 5.9013 4.9738 0.1171 0.5098 0.5319 0.3207 0.5837 whole of tooth break  (0 0 1) 

8 3.3526 5.2782 4.4863 0.1017 0.5311 0.5458 0.2543 0.5874 whole of tooth break  (0 0 1) 

9 2.9803 5.3420 4.5222 0.1436 0.5150 0.5256 0.3010 0.5893 whole of tooth break  (0 0 1) 

 
Table 2. Testing data. 
 

 Kurtosis Factor Margin Factor Pulse Factor  E1 E2 E3 E4 E5 Fault Status Fault Vector 

1 3.4441 5.8564 5.1786 0.3445 0.7057 0.5250 0.1152 0.3072 normal  (1 0 0) 

2 5.0815 6.5215 6.7372 0.0741 0.1676 0.3217 0.2330 0.8992 half of tooth break  (1 0 0) 

3 3.0189 6.2494 5.3184 0.0615 0.2906 0.6746 0.2480 0.6286 whole of tooth break  (1 0 0) 
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proposed for railway gearbox faults detection in this paper. 
The advantage of the proposed method is that EMD is 
performed on the raw vibration signals, the time-frequency 
feature parameters are extracted, and the genetic algorithm 
neural network is used for the classifications of the time-
frequency feature parameters. The proposed method can 
clearly classify all the three operating conditions of the 
gearboxes. The experimental results have shown that this 
method is effective and feasible for feature extraction and 
fault detection of railway gearboxes. 

CURRENT & FUTURE DEVELOPMENTS 

 This paper proposes diagnosis of railway gearbox faults 
using time-frequency feature parameters and GNN, where in, 
a novel time-frequency analysis and GNN have been used to 
analyze the vibration data obtained from railway gearbox. 
The feasibility and effectiveness of those new approaches 
were validated and illustrated by a case study of fault 
diagnosis on railway gearbox. This paper provides the 
theoretical foundation for fault diagnosis in rotary machines. 

ACKNOWLEDGEMENTS 

 This paper was supported by the National Key 
Technology R&D Program in the 11th Five Year Plan of 
China (2011BAG01B05), The state key laboratory of rail 
traffic control and safety (RCS2010ZZ002), The national 
natural science fund project (51175028), Beijing outstanding 
talent training projects (2010D005017000007), Funding 
project for academic human resources. 

CONFLICT OF INTEREST 

 The authors confirm that this article content has no 
conflict of interest. 

REFERENCES 
[1] Y.G. Lei, M.J. Zuo, Z.J. He, “A multidimensional hybrid intelligent 

method for gear fault diagnosis,” Expert Systems with Applications, 
vol. 37, pp. 1419-1430, 2010. 

[2] Y.L. Dong, “Method for dynamically monitoring health status of 
wind turbine gearbox in real time,” CN Patent 201210215628.4, 
November 7, 2012. 

[3] L.X. Gao, “Fault diagnosis method of blast furnace top gearbox 
through comprehensive analysis,” CN Patent 201210107505.9, 
September 26, 2012. 

[4] X.N. Zhang, “Vibration signal time domain synchronous averaging 
method for variable speed gearbox,” CN Patent 201210123076.4, 
August 15, 2012. 

[5] Z.J. Xu, “Online fault diagnosis prediction method and device 
thereof of automatic gearbox,” CN Patent 201210085868.7, August 
1, 2012. 

[6] W.L. Shang, “Method for analyzing and evaluating measure point 
precision of gearbox in vibration acceleration sensor,” CN Patent 
201110162528.5, December 21, 2011. 

[7] L.C. Ju, “Method for fault diagnosis of wind turbines on basis of 
genetic neural network,” CN Patent 201010200453.0, October 27, 
2010. 

[8] G. Meltzer, N.P. Dien, “Fault diagnosis in gears operating under 
non-stationary rotational speed using polar wavelet amplitude 
maps,” Mech. Syst. Signal Process., vol. 18, no.5, pp. 985-992, 
2004. 

[9] Y. Yang, Y. He, J. Cheng, and D. Yu, “A gear fault diagnosis using 
Hilbert spectrum based on MODWPT and a comparison with EMD 
approach,” Measurement, vol. 42, pp. 542-551, 2009. 

[10] I.A. Abumahfouz, “A comparative study of three artificial neural 
networks for the detection and classification of gear faults,” Int. J. 
Gen. Syst., vol. 34, pp. 261-277, 2005. 

[11] Y.G. Lei, Z.J. He, and Y. Zi, “Fault diagnosis of rotating 
machinery based on multiple ANFIS combination with GAs,” 
Mech. Syst. Signal Process., vol. 21, pp. 2280-2294, 2007. 

[12] N. Huang, S. Shen, “Hilbert-Huang Transform and its Applicat-
ions,” World Scientific, London, 2005. 

[13] S.J. Loutridis. “Damage detection in gear systems using empirical 
mode decomposition,” Eng. Struct., vol. 26, pp. 1833-1841, 2004. 

[14] Y. Dejie, C. Junsheng, and Y. Yu, “Application of EMD method 
and Hilbert spectrum to the fault diagnosis of roller bearings,” 
Mech. Syst. Signal Proces., vol. 19, pp. 259-270, 2005. 

[15] R.S. Sexton, J.N.D. Gupta, “Comparative evaluation of genetic 
algorithm and back propagation for training neural networks,” 
Inform. Sci., vol. 129, pp. 45-59, 2000. 

[16] R. Irani, R. Nasimi. “Evolving neural network using real coded 
genetic algorithm for permeability estimation of the reservoir,” 
Expert Syst. Appl., vol. 38, pp. 9862-9866, 2011. 

 
 

Received: July 25, 2014 Revised: August 4, 2014 Accepted: August 4, 2014 
 
© Yao et al.; Licensee Bentham Open. 
 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ 
by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 
 

Table 3. Testing results of GNN. 
 

Fault Status Ideal Outputs Actual Outputs Testing Results 

normal  (1 0 0)  (1.0231 -0.1052 0.0002) normal 

half of tooth break  (0 1 0)  (-0.1611 1.1091 0.0023) half of tooth break 

whole of tooth break  (0 0 1)  (0.0106 -0.1114 1.0061) whole of tooth break 


