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Abstract: This paper proposed a novel adaptive neuro-fuzzy inference system (ANFIS), which combines subtract 
clustering, employs adaptive Hamacher T-norm and improves the prediction ability of ANFIS. The expression of multi-
input Hamacher T-norm and its relative feather has been originally given, which supports the operation of the proposed 
system. Empirical study has testified that the proposed model overweighs early work in the aspect of benchmark Box-
Jenkins dataset and may provide a practical way to measure the importance of each rule. 
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1. INTRODUCTION 

 Takagi, Sugeno and Kang established a method  called 
the Takagi-Sugeno-Kang (TSK) method [1-3]. This neural-
network-based fuzzy reasoning scheme is capable of learning 
the membership function of the “IF” part and determining 
the amount of control in the “THEN” part of the inference 
rules. Moreover, it is nicely suited to mathematical analysis 
and usually works well with optimization and adaptive 
techniques. Subsequently, many improved algorithms and 
extensions were developed for the TSK model. In particular, 
the adaptive neuro-fuzzy inference system (ANFIS) is an 
important approach to implement the TSK fuzzy system, 
which has been put forward by Jang in 1993 [4]. However 
among all  the works which have been conducted earlier, 
only Iliadis et al. replaced the algebraic product T-norm with 
other fuzzy T-norms to handle intersection operation [5]. But 
they did not explain the reason why they selected the one. 
Besides, in the case of input dimension increasing, the 
number of rules  increase with the input dimension 
exponentially, which inevitably leads the conventional 
ANFIS structure dimension to disaster. In order to improve 
the online access speed of ANFIS T-S rules for complex 
system, various clustering algorithms have been used to 
construct a new multidimensional structure of ANFIS, which 
combines mechanism of T-S fuzzy inference and clustering 
algorithm from the perspective of knowledge discovery. In 
this paper,  Hamacher T-norm has been selected to tackle the 
intersection operation for two reasons: 

1. Algebraic product T-norm is used widely in ANFIS, 
and when !  equals to 1. The Hamacher T-norm is 
actually an algebraic product T-norm, which means 
that it is not conflicting with the regular ANFIS. 
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2. Hamacher product T-norm, a clustering of fuzzy 
product T-norms, differs depending on ! . So, to 
select the most suitable fuzzy T-norm by changing the 
numberical parameter !  is advisable. Subtract 
clustering, which could obtain the amount and value 
of clustering center, was used to determine the If part 
of each rule, for its wide application in ANFIS center 
determination. 

 The rest of the paper is organized as follows. Section 2 
provides some necessary background information, and the 
proposed system and its essential interference are discussed 
in Section 3. Section 4 presents the simulation results for 
benchmark Box-Jenkins dataset. Finally, the summary of this 
paper is given in Section 5. 

2. BACKGROUND 

 In this section, the basic theory of ANFIS model and 
normalization method which has been used in this 
experiment is introduced. 

2.1. Adaptive Network Based Fuzzy Inference System 
(ANFIS) 

 Both artificial neural network and fuzzy logic are used in 
ANFIS architecture. ANFIS consists of if-then rules and 
couples of input-output. For ANFIS training, learning 
algorithms of neural network are also used. To simplify the 
explanations, the fuzzy inference system under consideration 
is assumed to have two inputs (x and y) and one output (f). 
For a regular ANFIS model, a typical rule set with basic 
fuzzy if-then rules can be expressed as if x is A1  and y is B1 , 
then 

f1 = p1x + q1y + r1   (1)  

where p is linear output parameter. The ANFIS architecture 
with two inputs and one output are  shown in Fig. (1). 
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Fig. (1). The structure of regular ANFIS. 

 This architecture is formed by five layers and nine if-then 
rules: 

 Layer-1: Every node i in this layer is a square node with 
a node function. 

O1,i = µAi
(x),O1,3+ j = µBj

(y)    i, j =1,2   (2)  

where x and y are inputs to node i, and Ai  and Bi  are 
linguistic labels for inputs. In other words, O1,i  is the 
membership function of Ai  and Bi . Usually µAi (x) and µBi

(y) are chosen to be bell-shaped with maximum equaling to 1 
and minimum equaling to 0, such as 

µAi
(x) = exp(!((x ! ai ) / (ci ))

2 )   (3)  

where a i , ci  is the parameter set. These parameters in this 
layer are referred to as premise parameters. 

 Layer-2: Every node in this layer multiplies the incoming 
signals and sends the product out. For instance, 

O2,2(i!1)+ j = µAi
(x)"µBj

(y),i, j =1,2   (4) 

 Each node output represents the firing strength of a rule. 

 Layer-3: Every node in this layer calculates the ratio of 
the rule’s firing strength to the sum of all ruless firing 
strengths: 

 O3,i = !wi = wi / (w1 +w2 +"+w9 ),i =1,2,", 4   (5) 

 Layer-4: Every node i in this layer is a square node with 
a node function 

 O4,i = !wi ! fi = !wi (pi,1x1 + pi,2x2 ),i =1,2,", 4   (6) 

where wi  is the output of layer 3 and pi,1 , pi,2 , pi,3  is the 
parameter set. Parameters in this layer are referred to as 
consequent parameters. 

 Layer-5: The single node in this layer computes the 
overall output as the summation of all incoming signals: 

 
O5,i =! !wi " fi =

!wi " fi
!wi

  (7) 

2.2. Hamacher T-Norm 

 Hamacher T-norm as a kind of T-norm with parameter 
satisfies the boundary conditions, commutativity, 
associativity and monotonicity. The parameter of Hamacher 
T-norm is also monotonous, and its expression is given 
below: 

T! (x, y) =
xy

! + (1" !)(x + y " xy)
  (8) 

where ! >  0. Especially, when !  = 1, Hamacher T-norm 
equals to algebraic product T-norm. 

 It is easy to recognise that algebraic product T-norm is a 
special Hamacher T-norm which has a constant parameter !
. However, employing a constant parameter !  is not always 
appropriate. For any rule, there must be a corresponding 
parameter !  suited for it. It is wise to use back-propagation 
algorithm to determine the corresponding ! . 

3. PROPOSED SYSTEM 

 The output of layer-2 O2,2(i!1)+ j  refers to the result of 

intersection operation between µAi
(x)  and µBj

(y) , which 

means the membership degree that x 1  belongs to Ai  and x 2  
belongs to Bj . It is common to use algebraic product T-norm 
" ! " to deal with the membership degree in intersection 
operation, but as is well-known that algebraic product T-
norm is not proper in any situation. A study shows  that 
algebraic product T-norm is a special Hamacher T-norm 
whose parameter is constant to 1 (8). So modifying the 
parameter to suit to the data pairs is a meaningful way to 
overcome the dilemma. It is not easy to determine the value 
of !  that should be served in Hamacher T-norm to handle 
intersection operation. Iliadis et al.   tried to use other 
constant !  to obtain better performance but not all always 
resulted in good situation [6]. It is a good solution to make 
ANFIS to adaptively select its own !  for each rule. If 
ANFIS could select !  for each rule respectively, according 
to the training data pairs, it is more likely to fit to the 
performance curve and close to the inherent law. Back-
propagation algorithm could be adopted in the process of 
determining the parameter of each rule, but this method 

needs to obtain 
!T" (x, y)

!x
 and 

!T" (x, y)
!"

 which is the 

gradient of T! (x, y) . 

3.1. Multi-Input Hamacher T-Norm 

 Calculating 
!T" (x, y)

!x
 and 

!T" (x, y)
!"

 is easy; ANFIS may 

have more than two inputs and how to calculate their 
gradients is a real problem. More attention should be paid on 
how to calculate their gradients with more than 2 inputs. 
Now the definition of multi-input Hamacher T-norm is given 
below. 



A New ANFIS Model based on Multi-input Hamacher T-Norm and Subtract Clustering The Open Mechanical Engineering Journal, 2014, Volume 8    835 

 T! (An )  is multi-input Hamacher T-norm on An  which 
has n elements, where An  =  {a1,a2,!,an}  and 
!i "N + ,2 # n,0 # ai #1 . T! (An )  = T! (T! (An"1),an ) . 
Especially, when n=2, T! (A2 ) =T! (a1,a2 ) . 

 The definition given above is recursive definition. In 
other words, the meaning of upper layer is corresponding to 
the lower one and the lowest is clarified. To express it 
clearly, a useful tool ! j (An )  has been used. The definition 

and features are given below: ! j (An )  = 
 
c1,!,c j!{1,!,n},c1"!"c j

#
 

 
 
ac1ac2ac3!acj , where n!N + , n ! 2  and j !N , j ! n . 

Especially, ! 0 (An ) =1 . For example, ! 2 (A4 )  = a1 a2 + a1
a3 + a1 a4 + a2 a3 + a2 a4 + a3 a4 . 

 Corollary 1 When j ! n , 

! j (An ) = ! j (An"1)+ an!
j"1(An"1)  

 The proof is given in Appendix A. 

 Corollary 2 When j = n, 

! n (An )  = an!
n"1(An"1)  

 The proof is given in Appendix A. 

 Corollary 3 !"
j (An )
!ak

 = ! j"1(An \ ak ) , where j,k !  N 

and j,k ! n. An \ ak =  {a1,a2,!,ak!1,ak+1,!,an}  

 The proof is given in Appendix A. 

 One evident feature of multi-input Hamacher T-norm is 
the monotonicity with respect to ! . After concise proof, the 
feature and the expression of T! (An )  are confirmed below: 

 Proposition 1 T! (An )  is decreasing with respect to ! . 
Especially, when !i "[1,n +1]  ai ! 1  and ai !  0, T! (An )  
are strictly decreasing with respect to ! . 

 The proof is given in Appendix B. 

Proposition 2 T! (An )=

! n (An )

" n#1 +
j=1

n#1

$" n# j#1(1# ") j ! j (An )#
i=1

n#1

$(1# ")i ! n (An )
 

 The proof is given in Appendix B 

 Proposition 3 
!T" (An )

!"
= !" n (An )Rn

Qn
2 , where 

Qn  = ! n"1 +
i=1

n"1

#! n"i"1(1" !)i $ i (An )"
i=1

n"1

#(1" !)i $ n (An )   

and  

Rn =
(n !1)" n!2 +

i=1

n!1

#" n!i!2 (1! ")i!1[(n !1)! (n !1)" ! i]$ i (An )+

i=1

n!1

#i(1! ")i!1$ n (An )

 

 The proof is given in Appendix B. 

3.2. Hamacher T-Norm and Subtract Clustering 
Based ANFIS 

 The proposed model Fig. (2) differs from regular ANFIS 
in two points: 

1. It makes Hamacher parameter variable and adaptive 
by adopting back-propagation algorithm, and needs to 
calculate the gradient with respect to each parameter 
and input. 

2. It is combined with subtract clustering and employs it 
to determine the amount and value of each rule. 

 
Fig. (2). The structure of ANFIS combined with subtract clustering. 

 As  provided above, the gradient of Hamacher T-norm’s 
parameter and inputs have been achieved by Proposition 3 
and Proposition 4. Different from the regular ANFIS, the 
output of layer-2 for a proposed model which has 3 inputs is 
given below: 

O
2,32 (i!1)+3( j!1)+k

=T" (A3)   (9) 

where A3 = {µAi
(x),µBj

(y),µCk
(z)} . 

 Each rule has same position in regular ANFIS, because 
their !  have been uniformly set to 1, which hammers the 
system to find the most significant rule adaptively. However, 
proposed model’s each rule with different !  in the end can 
lay the foundation for measuring its importance. Both the IF 
part and the THEN part correlate to the  !  and the principle 
of updating !  is to minimize the error, which guarantees 
that updated !  is harmonious to the system. wi  is the 
weight of i th rule and decreases with respect to !  
according to Proposition 1 and Equation (9). It means that 
the less !  leads to larger wi ,  larger  !wi , so the i th rule 
plays a more important role in the proposed model. 

 In addition, this model involves the field that the others 
have never touched upon. This field is attached to the 
improvement in fuzzy reasoning, and it could be combined 
with the improvement both in fuzzy reasoning and in other 
process, because it provides a new methodology for handling 
intersection operation. 

 With the variable and adaptive parameter, the prediction 
ability of proposed model may be improved; the parameter is 
modified according to the gradient and so as to fit to the 
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inherent law. Empirical study is given in the next section, 
which proves that the proposed one overweighs the regular 
ANFIS. 

4. EXPERIMENT 

 Famous Box-Jenkins dataset is the benchmark dataset to 
validate the performance of fitting method. The Box-Jenkins 
dataset represents the CO2  concentration as output, y(t), in 
terms of input gas flow rate, u(t), forming a combustion 
process of a methane air mixture. A number of  works have 
been carried out earlier on fitting Box-Jenkins dataset. 
Among them, 7 input-type has been widely used:(A) u(k-4), 
y(k-1); (B) u(k-3), y(k-1); (C) u(k-3), u(k-4), y(k-1); (D) 
u(k), u(k-1), y(k-1), y(k-2); (E) u(k-1), u(k-2), y(k-1), y(k-2); 
(F) u(k), u(k-1), u(k-2), y(k-1), y(k-2), y(k-3); (G) u(k-1), 
u(k-2), u(k-3), y(k-1), y(k-2), y(k-3). 

 The whole experiment was undertaken in the 
environment of Matlab 7.8.0. The results of proposed model 
and early works are listed in Table 1, where it can be found 
that the proposed model has an outstanding performance. 

Table 1. The results of each model. 
 

Model Input-Type MSE 

PMDE [7] F 0.1247 

PMGA [7] F 0.3508 

TS-GMDH1 [8] G 0.1299 

TS-GMDH2 [8] G 0.2197 

TS-GMDH3 [8] G 0.3310 

Mejias [4] B 0.3129 

Yue [9] A 0.1480 

Yue [9] B 0.1240 

Yue [9] C 0.1030 

Yue [9] F 0.0460 

Yue [9] G 0.0420 

Proposed Model F 0.0325 

Proposed Model G 0.0301 

CONCLUSION 

 Hamacher T-norm is one of the most influential T-norms. 
In this paper,  the feasibility of applying ANFIS 
implemented with Hamacher T-norm is investigated. While 
employing benchmark Box-Jenkins dataset, the proposed 
methods have a more competitive performance in prediction 
accuracy compared to early work. 

 There are two main advantages of the proposed model: 
on one hand, it is the extention of ANFIS in fuzzy reasoning, 
which makes it possible to improve when  implemented with 
other improvement in fuzzification, defuzzification, even 

training method and other optimal algorithms such as GA 
and PSO; on the other hand, it provides a very vital 
parameter !  to infer the importance of each rule, but the 
normal form of inferring and measuring has not been 
proposed. The study of all above expectations is in progress. 
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APPENDIX A. PROOF OF COROLLARY 

 Proof of Corollary 1 When 0 ! j < n , 1! i ! n  

! j (An )  
 

=
c1,!,c j!{1,!,i"1,i+1,!,n},c1#!#c j

$ (ac1ac2ac3!acj )  

 

=
c1,!,c j!{1,!,i"1,i+1,!,n},c1#!#c j

$ (ac1ac2ac3!acj )
 

 

+ai
c1,!,c j!1"{1,!,i!1,i+1,!,n},c1#!#c j!1

$ (ac1ac2ac3!acj!1 )  

= ! j (An \ ai )+ ai!
j"1(An \ ai )  

which completes the proof. 

 Proof of Corollary 2 When j ! n , 

! n (An )   = a1a2a3!an  

 = an (a1a2a3!an )  

= an!
n (An )  

which completes the proof. 

 Proof of Corollary 3 When 0 ! j < n , 1! i ! n  

!" j (An )
!ai

 = !" j (An \ ai )
!ai

+ !(ai"
j#1(An \ ai ))
!ai

 

= ! j"1(An \ ai )  

which completes the proof. 

APPENDIX B. PROOF OF PROPOSITION 

 Proof of Proposition 1 !  !1,!2 "[0,+#]  and !1 < !2 , 
when n = 1, T!1

(A2 ) = T!1
(a1,a2 ) ! T"2

(a1,a2 ) ! T"2
(A2 ) . 

Especially, when a1,a2 ! 1  and a1,a2 !  0, T! (An )  is strictly 
decreasing with respect to ! . The proposition is confirmed. 

 Assuming when n=t-1, the proposition is right too, then 
when n=t, T!1

(At+1)  = T!1
(T!1

(At ),at+1)  ! T"1
(T"2

(At ),at+1)  
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! T"2
(T"2

(At ),at+1)  = T!2
(At+1) . Especially, when 

!i "[0,n +1]  ai ! 1  and ai !  0, T! (An )  strictly decreased 
with respect to ! . 

which completes the proof. 

 Proof of Proposition 2 The proof is given below: 

Let Qn = !
n"1 +

j=1

n"1

#! n" j"1(1" !) j $ j (An )"
i=1

n"1

#(1" !)i $ n (An ) , 

so T! (An ) =
" n (An )
Qn

. 

when n = 2 , 

T! (A2 )  = a1a2
! + (1" !)(a1 + a2 " a1a2 )

 

= a1a2
! + (1" !)(a1 + a2 )+ (! "1)a1a2

 

= ! 2 (A2 )

" 2#1 +
j=1

2#1

$"1# j (1# ") j ! j (A2 )#
i=1

2#1

$(" #1)i ! 2 (A2 )
 

= ! 2 (A2 )
Q2

 

 The proposition is right. 

 Assuming when n = t, the proposition is right too. So, 

T! (At ) =
" t (At )
Qt

.  

T! (At+1) =

! t (At )
Qt

at+1

" + (1# ")(!
t (At )
Qt

+ at+1)# (1# ")at+1
! t (At )
Qt

 

= ! t+1(At+1)
"Qt + (1# ")!

t (At )# (1# ")!
t+1(At+1)+ (1# ")at+1Qt

 

!Qt  = !
j=0

t"1

#! t" j"1(1" !) j $ j (At )+ !
(1" !)t " (1" !)

!
$ t (At )  

=
j=0

t!1

"# t! j (1! #) j $ j (At )+ [(1! #)
t ! (1! #)]$ t (At )  

(1! ")at+1Qt  

=
j=0

t!1

"# t! j!1(1! #) j+1at+1$
j+1!1(At )+

[(1! #)t+1 ! (1! #)2 ]
#

at+1$
t (At )  

=
j=1

t

!" t# j (1# ") j at+1$
j#1(At )+

[(1# ")t+1 # (1# ")2 ]
"

$ t+1(At+1)  

!Qt + (1" !)#
t (At )" (1" !)#

t+1(At+1)+ (1" !)at+1Qt  

= ! t +
j=1

t"1

#! t" j (1" !) j $ j (At )+
j=1

t

#! t" j (1" !) j at+1$
j"1(At )

 

+[(1! ")t ! (1! ")]# t (At )+
[(1! ")t+1 ! (1! ")2 ]

"
at+1#

t+1(At+1)  

+(1! ")# t (At )! (1! ")#
t+1(At+1))  

= ! t +
j=1

t"1

#! t" j (1" !) j ($ j (At )+ an+1$
j"1(At )   

+(1! ")t f (at+1)# t!1, f ($)
t!1 (At )+ (1! ")

t # t (At )! (1! ")#
t+1(At+1)  

+ [(1! ")
t+1 ! (1! ")2 ]
"

# t+1(At+1)  

= ! t +
j=1

t"1

#! t" j (1" !) j $ j (At+1)
 

 +(1! ")t (# t (At+1)! # t (At )+ (1! ")
t # t (At )   

+ (1! ")
t+1 ! (1! ")2 ! " + " 2

"
# t+1(At+1)  

= ! t +
j=1

t"1

#! t" j (1" !) j $ j (At+1)+ (1" !)
t $ t (At+1)+

(1" !)t+1 " (1" !)
!

$ t+1(At+1)
 

= ! t +
j=1

t

"! t# j (1# !) j $ j (At+1)+
(1# !)t+1 # (1# !)

!
$ t+1(At+1)  

= ! t +
j=1

t

"! t# j (1# !) j $ j (At+1)#
i=1

t

"(1# !)i $ t+1(At+1)  

=Qt+1  

So, T! (At+1) =
" t+1

Qt+1

. 

 In conclusion, when n!N + ,  

T! (An ) =
" n (An )

! n#1 +
j=1

n#1

$! n# j#1(1# !) j " j (An )#
i=1

n#1

$(1# !)i " n (An )
 

which completes the proof. 

Proof of Proposition 3 

!Qn

!"
 = (n !1)" n!2 +

i=1

n!1

#(n ! i !1)" n!i!2 (1! ")i $ i (An )! "
n!i!1(1! ")i!1$ iAn  

+
i=1

n!1

"i(1! #)i!1$ n (An )  

= (n !1)" n!2 +
i=1

n!1

#" n!i!2 (1! ")i!1((n !1)! (n !1)" ! i)$ i (An )+
i=1

n!1

#i(1! ")i!1$ n (An )  

= Rn  
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!Tn (An )
!"

=
!"

n (An )
Qn

!#
= !" n (An )Rn

Qn
2 , 

which completes the proof. 
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