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Abstract: In order to research the mechanism of automotive failure diagnose and to improve, as well as to explore a new 
perspective to a find automotive failure diagnose quickly. This paper is based on the empirical data to analyze Xian’s 
some 4S shop and its self-organized criticality proposed a new suggestion. In this paper, we analyze in depth the data of 
automotive failure running status and diagnose index of different period between 2014, based on the theory of automotive 
failure diagnosed complexity and self-organized criticality, and thus proves the characteristics of power-law under which 
lies the related scale. The result shows us that, automotive failure diagnose system is a dynamical system that’s both 
extensive and dissipative. In addition, when STATUS is under 20 or less and TPI is above 6, the scale of influenced 
districts caused by index in automotive diagnose system and the related frequency fits the law-power distribution, and the 
rising of automotive will reach the state of self-organized criticality, and meets the characteristic of self-organized 
criticality. 
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1. INTRODUCTION 

 With the rapid development of economic and modern-
ization of society, the scale of automobile's production are 
increased widely, and the use of automobile are also 
frequent. Use fault diagnosis system can help automotive 
repair business to diagnose the cause of the malfunction 
quickly and efficiently when the car has faults, and repair the 
faults in time, so as to ensure the safety and reliability of the 
car [1]. Traditionally, a single model of fault diagnosis 
cannot meet the needs of made diagnosis clipping and 
accurate, because of the complexity structure of the car and 
many kinds of faults [2]. Therefore, this paper gives an 
automotive fault diagnosis system based on complex 
network. 
 The extensive study on complex networks are pervading 
sciences and engineering today, from physical, techno-
logical, biological, to social sciences [3-5]. Their impacts on 
engineering and technology, in particular, are prominent and 
their influence is deemed to be far-facing. Familiar complex 
networks include the traffic network, wireless communi-
cation networks, biological neural networks, power grids, 
social relation and scientific cooperation networks and so on. 
Research on fundamental properties and dynamical 
behaviors of various complex networks have become over-
whelming recently. 
 The field of complex networks is indeed developing so 
fast and so wide that most new comers typically feel difficult 
to start their leaning and research on the subject. Although 
there are some well written textbooks and research 
 

monographs that can be adopted for studies by the new 
comers. These references are generally too advanced or too 
board for them to comprehend especially in a relatively short 
period of time [6]. 
 The development of the mathematical graph theory has a 
very slow start after Euler solved the Konigsburg seven-
bridge problem. The first monograph on graph theory was 
published exactly two-hundred years later, in 1936. 
Nevertheless, the theory was developed rather rapidly 
thereafter, and the foundation of the now famous “random 
graph theory” was laid by two Hungarian mathematicians, 
Paul Erdos (1913-1970), As a historical remark, Pual Erdos 
is one of the most distinguished leading mathematician of the 
twentieth century, in the late 1950s, which is considered the 
first rigorous and complete modern graph theory. 

 Erdos and Renyi defined a random graph as N  labelled 
nodes connected by n edges, which are randomly chosen 
from the N N −1( ) / 2  possible edges. A common way to 
generate an ER random graph is to start with N  nodes, from 
which every possible pair of nodes are being connected with 
probability p 0 < p <1( ) . More specifically, to generate an 
ER random network, one may start with N  isolated nodes. 
Pick up every possible pair of nodes, once and once only 
from a total of N N −1( ) / 2  pairs of nodes, and then with 
probability p  connect the pair with an edge. Here, with 
probability p  can be performed as follows: run a 
pseudorandom number generator to generate a “1” with 
probability p ; at any step if the generator yields a “1” then 
connect the pair of nodes by an edge, otherwise if the 
generator yields a “0” then do not connect them. 
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 Since every possible pair of nodes is picked up once, 
there will not be multiple edges between any pair of nodes 
and, moreover, no node has a self-connected edge. 

 It can be easily seen that in such an ER random graph of 
N  nodes, the expectation value of the total number of edges 
will be N N −1( ) p / 2 , which is a random variable because 
p  is so. Consequently, the probability of obtaining a graph 

with N  nodes and M  edges is equal to pM 1− p( )N N−1( )/2−M . 
Erdos and Renyi systematically studied many asymptotic 
properties, as N→∞ , of such graphs and their relations with 
the edge-connectivity probability p . If a graph has a property 
P  with probability 1 as N→∞ , then they consider almost 
every ER random graph has property P . One theory is most 
important and also quite surprising discoveries are that many 
properties of ER random graphs emerge suddenly but not 
gradually, in the sense that for a given edge-connectivity 
probability p , either almost every ER random graph has a 
certain property P  or almost every such graph does not have 
property P . 

2. SMALL WORLD EXPERIMENT MODEL 

2.1. Model Assumptions and Procedures 

 From a statistical point of view, although the network of 
automotive failure diagnose can be computed. They are 
nevertheless too small to be conclusive. Knowing this,, 
trying to carry out a large-scale international experiment to 
verify the hypothesis of small world. We selected some 
targeted automotive, with different brands, 4S shops. Notice 
that in this small world algorithm may destroy the network 
connectivity during the rewiring process, yielding possible 
some unconnected clusters. As a remedy, the small world 
algorithm is as follows: 

(1) Start from a ring shaped network with N  nodes, in 
which each node is connected to its 2K  neighbors, where 
K > 0  is an integer (usually small). 

(2) For every pair of originally unconnected nodes, with 
probability p , add an edge to connect them. 

 In this process, between any pair of nodes there will not 
be multiple edges and node will have self-loops [7]. 

 In the small world network, the case of p = 0  
corresponds to the original ring shaped network while p = 1  
eventually yields a fully connected network. By tuning the 
value of p 0 < p 1( ) , one can obtain a transition from a 
regular sparse network to a regular dense network. From 
small enough values of p , though, the small world models 
are about the same. 

For the small world network model, the clustering coefficient 
is re-defined to be the ratio of the mean number of edges 
among the neighbors of a node and the number of all 
possible edges among the neighbors of the node [8]: 
 
 

CSw =
average number of neighboring edges

total possible number of neighboring edges
 

 Note that this definition differs from the original one only 
by a small amount of orderO 1/ N( ) , as further explained in 
the proof given below. 

2.2. Theoretical Model 

 Theorem 1. For large enough size N , the clustering 
coefficient of the small world network model is given by 

C p( ) = 3 K −1( )
2 2K −1( ) 1− p( )3

 
 For p = 0 , each node has 2K  neighbours, so the number 
of edges among these neighbours is N0 = 3K K −1( ) / 2 , 
while the number of all possible edges among these nodes is 
2K k −1) / 2( ) . Therefore, C 0( ) = 3 K −1( ) / 2(2K −1)( ) . For
p > 0 , two neighbours of node i , which were connected at 
p = 0  are still neighbours of i  and remain being connected 

with probability 1− p( )3 , up to some terms of order 
O 1/ N( ) . Thus, the mean number of edges among the 
neighbours of a node is N0 = (1− p)

3 +O(1 / N ) . 
Consequently, the clustering coefficient is given by
N0 (1− p)

3 /K(2K −1) . 

 Theorem 2. The average path length of the small world 
network model is given by [9] 

L(p) = 2N
K

f (2Np /K )
 

 With 

f (x) = c x <1
ln x / x x >1

⎧
⎨
⎩⎪  

 The average path length of the small world network 
model is also given by [10] 

f (x) ≈ 1
2 x2 + 2x

ar tanh x
x2 + 2x  

 For the network model, with p  fixed, first perform the 
renormalization process and let the number of sites of the 
resultant renormalized network be S. The average path 
length L(p)  is less than 1 and is increasing linearly as S 
gradually increases. But at some threshold value of S*, L(p)  
will become bigger than 1. This leads to a phase transition, 
after which L(p)  will increase only logarithmically. To be 
more precise, consider only the case of K=1, namely, a 
perfect ring, and assume that 0 < p <1  and S* = 1 p , thus 
S*>1. In this case, L(p)  should obey a finite-size scaling  
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law of the form L(p) = Sf S S*( ) = Sf pS( ) . From the 

renormalized network, it can be seen that S = 2N K . 

 Theorem 3. The node degree distribution of the small 
world network model is given by [11] 

Pp k( ) = K
i

⎛
⎝⎜

⎞
⎠⎟
(1− p)i

i=0

min k−K ,K( )

∑ pK−i Kp( )k−K−i

k − K − i( )!exp −Kp( )
 

 For the small world network model, with p = 0 , each 
node has the same connectivity 2K. For the nodes being 
rewired with probability p > 0 , they introduce non-
uniformity to the network while maintaining a fixed average 
path length <k>=2K. Let this non-uniform probability 
distribution of network connectivity be denoted by Pp (k) . 
Since K of the initial 2K connections of each node are left 
unchanged by the construction, the degree of node i  is 
ki = K + ni  with ni ≥ 0 , where ni = ni

1 + ni
2  in which ni

1 ≤ K  
is the number of edges left unchanged and ni

2  is the number 
of edges that have been reconnected to another node from 
node i . Thus, one has [7] 

P1 ni
1( ) = K

ni
1

⎛

⎝
⎜

⎞

⎠
⎟ 1− p( )ni

1

pK−ni
1

 

P2 ni
2( ) = Kp( )ni

2

ni
2 !

exp −Kp( )
 

 And generally, 

Pp k( ) = K
i

⎛
⎝⎜

⎞
⎠⎟i=0

min k−K ,K( )

∑ 1− p( )i pK−i Kp( )k−K−i

k − K − i( )!exp −Kp( )
 

2.3. Empirical Research 

 In the future, vehicles communicate with vehicles though 
wireless communication technology. V2V is a big network 
based on large data. In recent years, along with the rapid 
development of the Internet and the Internet of Things, 
vehicle networking has become a major signal, announcing 
that years have entered into an intelligent era. The rapid 
development and popularization of vehicle networking 
technologies all over the world, has provided the conditions 
and foundations for remote fault diagnosis technology. 
 The engine is the power source of the vehicle with poor 
operating conditions, which results in relatively high failure 
rate. The structure of electronic control engine is more 
complex with more complicated failures and more 
difficulties of fault diagnosis. However, so far, knowledge 
for automotive electronic control engine fault diagnosis is 
often heterogeneous and lacking semantic associations 
between each other. Therefore, there is no universal 
conceptual model that can be commonly understood, which 
results in difficulty to knowledge acquisition, expression, 
sharing and reuse. Experimental procedure and data obtained 
are shown in Tables 1 and 2. 
 

Table 1. Examples of road running status at the moment. 
 

 DAYTAG MINTAG COUNT 

1 2014-10-01 0 2 

2 2014-10-01 1 1 

3 2014-10-01 2 1 

4 2014-10-01 3 1 

5 2014-10-01 4 1 

6 2014-10-01 5 1 

7 2014-10-01 6 4 

8 2014-10-01 7 4 

9 2014-10-01 8 7 

10 2014-10-01 9 1 

 
Table 2. Examples of failure diagnose status at the moment. 
 

 DAYTAG MINTAG COUNT 

1 2014-10-01 0 14 

2 2014-10-01 1 1 

3 2014-10-01 2 10 

4 2014-10-01 3 2 

5 2014-10-01 4 12 

6 2014-10-01 5 1 

7 2014-10-01 6 15 

8 2014-10-01 7 5 

9 2014-10-01 8 18 

10 2014-10-01 9 3 

 
 With MATLAB7.0.1 data-calculation software as the 
assistance, this paper mainly studies the failure diagnosis 
emulation of auto engines, which includes the access to the 
sample set. The design of the network, the pre-treatment of 
information. It also makes a study on the trouble shooting of 
the misfire of an engine with the technology of complex 
network and ELMAN network. A comparison between 
complex network and ELMAN network is made and studied, 
which reaches a conclusion that the error amount of complex 
network is smaller than that of ELMAN network. But due to 
the feedback effect of ELMAN network, its error curve is 
smooth and tends to be a straight line, complex network can 
respond automotive fault diagnostic work fully. This article 
also uses the powerful data calculation functions of 
MATLAB and the powerful interactive features of VB, using 
Active}C technology between VB and MATLAB to achieve 
the seamless integration, completing the development of 
fault diagnosis system, with the help of VB and SQL's 
integration to achieve the fault system database 
modifications and updates. Comparison table of color-failure 
level index range and test group is shown in Tables 3 and 4, 
respectively. 
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 We have tested our strategy with different influencing 
factors concerning randomness of automotive failure 
diagnose network, the network model (Fig. 1) and clustering 
coefficient with failure rate (Figs. 2, 3). 

 
Fig. (1). The process of our strategy of the network N. 

 
Fig. (2). The cluttering coefficient reduction results using our 
strategy, in basic network with node number K=2, 4, 6 respectively, 
when generating the small world network. (S=18, N=1000). 

 To represent and model automotive failure diagnose 
dynamic, a natural way is to put the framework into a 
complex network setting, in which a node represents vehicles 
and an edge represents the interaction between two of them. 
In the comparison of strategy performance between different 
sizes, we conduct some groups (Table 4) of test. But in the 
first group and the fourth group, we set K=2 in all round of 
the test, and in the second and the fifth we set K=4 which is 
varied with N =500, 1000 and 1500, respectively. It is 
interesting that randomly connecting method gives better 
results than the low degree meth of in Fig. (3). 

 

 
Fig. (3). The cluttering coefficient reduction results using our 
strategy, with N=500, 1000, 1500 respectively, when generating the 
small world network, connecting node pairs randomly with one 
node added and our strategy making random connections instead. 
(S=18, K=2). 

Table 4. Test group. 
 

Number Group Name STATUS K TPI 

1 S60-TPI4 60(S60) 2 4(TPI4) 

2 S60-TPI6 60(S60) 4 6(TPI6) 

3 S60-TPI8 60(S60) 6 8(TPI8) 

4 S20-TPI4 20(S20) 2 4(TPI4) 

5 S20-TPI6 20(S20) 4 6(TPI6) 

6 S20-TPI8 20(S20) 6 8(TPI8) 

 

 So a question is raised that whether the connecting 
preferences are helpful to the performance of our strategy. 
To explain this, we conduct another series of tests, as shown 
in Fig. (3), moreover, comparisons are made in three small 
world networks generated with node number N =500, 1000 
and 1500, respectively. We line the results in Fig. (4). 

3. SIMULATION AND RESULTS 

3.1. Simulation 

 To resolve the uncertainty and modelling issues in fault 
diagnosis for vehicles, a fault diagnosis fusion system 
architecture is based on Bayesian network model 
construction is proposed. A fault diagnosis algorithm based 
on Bayesian network constructing is also advanced. This 
fault diagnosis approach handles with the uncertain 
representation and reasoning by exploiting the learning and 
probabilistic; inference abilities of Bayesian network. 
Moreover the provided system can realize the self-adaptation  
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Table 3. Comparison table of color-failure level index range. 
 

Color       

Level No Data Trouble Free Minor Fault Moderate Faults Serious Faults Unable to Travel 

Index — [0, 2] [2, 4] [4, 6] [6, 8] [8, 10] 
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Fig. (4). The repeated tests results using maximum clustering 
coefficient. 

via the fusion of domain prior knowledge and the 
distribution of real time data from the sensor system which is 
successfully applied in vehicle fault diagnosis. Experimental 
results demonstrate that the proposed approach can supply 
the accurate and reliable decision-making support in the fault 
diagnose. We can see the network structure as shown in Fig. 
(5). 

network

station

database

Repair st
ation

 
Fig. (5). Network structure. 

3.2. Results 

 Recalling that in the small world network model, each 
node on the given ring shaped small world network has long 
range edges connecting to the other nodes with a certain 
probability in such a uniform random manner that every 
other node has an equal probability to receive the new edge, 
excluding self-loops and multiple connections. Now, instead 
of assuming that new long range connections are uniformly 
distributed over the whole network, we argue that intuitively 
it would be easier for a new edge to connect to a near 
neighbour than to the remote ones. Therefore assume that the 
connecting probability is reversely proportional to the 

distance between the two nodes. More specifically, we 
obtain the relationship between N  and average path as 
shown in Fig. (6). 

 
Fig. (6). The relationship of N and average path. 

 Next, we notice that during the growth of the small world 
model, the degree k  of a node is also changing according to 
the following law [12]: 

k = t
ti  

where k  is the degree of node i  at time t  and ti  is the 
instant at which node i  is being added into the network. 
This growth rate of the node degrees in the small world 
model implies that the order of a node is bigger than its 
degree. In real life, however, this is not always true. 

(1) Growth: start from a small world network of size m0 ≥1  
and introduce one new node to the existing network each 
time, and with probability p  this node given a fitness value. 

(2) Preferential Attachment: the new node is connected to m  
existing nodes, each is according to the probability of 
connecting to node i  of degree k  with fitness value. 

 We calculate the relationship between k and p k( )  as 
shown in Fig. (7), in which we can see the linear relationship 
between them. 

 The model proposed above is simulated in the section. In 
light of the complexity of computing the k  and p k( )  of a 
network, we first use just one basic network to evaluate the 
availability of our model (see Tables 5 and 6), as well as 
some discussion factors of model. 

 A small world random network with 500 nodes is 
generated as the initial network for the first step in the tests. 
We report the distribution function between k  and p k( )  in 
Table 5. Similarly, more rounding tests are conducted on the 
basis network using different K and S, results for these three 
groups of test are shown in Table 6. 
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Fig. (7). The relationship of k and p(k). 

Table 5. Three Sets of Statistical Results about S60-TPI6, 
S60-TPI4 and S20-TPI4. 

 

 Correlation  
Coefficient Variance Distribution  

Function 

S60-TPI6 0.6496 68.99 y= –1.458x  + 13.66 

S60-TPI6 0.6438 32.7 y= –1.056x  + 10.36 

S60-TPI4 0.7599 61.13 y= –1.877x  + 15.81 

S60-TPI4 0.6488 69.45 y= –1.046x  + 13.68 

S60-TPI4 0.5857 25.92 y= –0.8078x  + 10.66 

S20-TPI4 0.753 36.84 y= –1.857x  + 13.41 

S20-TPI4 0.7541 36.31 y= –1.868x  + 13.39 

S20-TPI4 0.8051 24.95 y= –1.802x  + 11.07 

 
Table 6. Statistical Results about S20-TPI6. 
 

 Correlation  
Coefficient Variance Distribution Function 

2014.10.01  0.7651 36.08 y= –1.867x  + 13.37 

2014.10.07 0.8081 14.71 y= –1.552x  + 9.953 

2014.10.14 0.7689 33.6 y= –1.824x  + 13.38 

2014.10.21 0.8595 15.34 y= –1.75x  + 10.9 

2014.10.28 0.7781 28.5 y= –1.73x  + 13.28 

2014.11.01 0.8239 20.22 y= –1.737x  + 11.4 

2014.11.08 0.8203 22.68 y= –1.603x  + 12.51 

2014.11.15 0.8863 15.37 y= –1.606x  + 12.33 

CONCLUSION 

 First, this paper analyzes the research status of vehicle 
networking, engineering applications, electronic control engine 

fault diagnosis and develops research content and design route 
for this paper. From view of application, this paper analyzes the 
complex network model, complex network rules, complex 
network structure designs, and the selection rules for initial 
value as well as the diagnostic process. The paper also presents 
the disadvantages of applying complex networks to failure 
diagnosis and its corrective methods. 
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