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Abstract: In this paper, a nonlinear optimal control approach is proposed to plan the motion of a redundant free-floating 
space manipulator (FFSM) when carrying a heavy payload. Optimal joint trajectories are determined to track a desired 
end-effector path, for which limitations of the manipulator’s load-carrying capacity and tracking accuracy are 
simultaneously considered. In this method, FFSM is described as a nonlinear system using the dynamics equation. The 
integrated performance indicator is proposed as the cost function, which includes tracking error punishment of the end-
effector, joint-torques optimization, total energy improvement and instability avoidance of the base. Then the state-
dependent Riccati equation (SDRE) is established and solved by Taylor series approximation method. The motion 
planning algorithm is presented, subject to multi-constraints. Simulations are performed for a 7-DOF space manipulator 
and the results are discussed to illustrate the effectiveness of the proposed approach. 

Keywords: Free-floating space manipulator, load-carrying capacity,motion planning, optimal control,  trajectory tracking. 

1. INTRODUCTION 

 With the rapid progress of space technology, especially 
the successful application of spacecrafts, space manipulators 
are becoming indispensable for load-carrying operations of 
large structures during on-orbit construction, maintenance 
and service [1, 2]. In the free-floating situation, the payload 
with biggish mass and inertia tensor may not only challenge 
joint’s drive capability capacity, but also can cause 
instability of the base [3]. Considering that load-carrying 
capacity of manipulators always depends on the dynamic 
motion [4], proper joint trajectories are needed to be planned 
for a predefined path of the end-effector when carrying a 
heavy payload. 
 For the purpose of obtaining trajectory tracking strategy 
for FFSM, Chu et al. [5] proposed an adaptive disturbance-
observer-based output feedback control method to 
accomplish robust tracking control of an electrically driven 
free-floating space manipulator. Wang et al. [6] introduced a 
prediction error based adaptive Jacobian controller into task-
space trajectory tracking control for free-floating space 
robots, for which stability results and asymptotic 
convergence of the end-effector motion tracking errors were 
obtained. These studies primarily focused on adjusting the 
manipulators’ motion quickly and stably to satisfy the 
tracking accuracy requirements, without concerning the 
dynamic characteristics of FFSM under the influence of 
payload. Considering the vibration suppression and 
trajectory tracking of a free-floating space rigid-flexible 
coupling manipulator with a rigid payload, the composite 
control approach which met the requirements of two respects  
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was proposed [7], and the grasping force between the end-
effector and the payload was took into account in this study. 
However, when carrying a heavy along the given path (the 
motion of the payload is confirmed), bigger inertia 
forces/torques need to be provided by the end-effector. 
Hence, the limitation of load-carrying capacity for FFSM 
and the trajectory tracking problem are both needed to be 
considered when selecting proper motions of the joints. 
 Considering space manipulator as a dynamic system, Jia 
et al. [8] derived Riccati equation to solve trajectory tracking 
problem of a fixed-base flexible space manipulator with 
large payloads, the dynamics equation of which can be 
linearized [9]. Nonlinear control methods were also 
employed: Korayem et al. [10] formulated maximum 
payload path planning problem as a two-point boundary 
value problem, the optimal joint trajectories of a two-link 
mobile manipulator to track a given end-effector path were 
determined; Similar method was adopted to solve optimal 
trajectory planning problem of a flexible cable-suspended 
manipulator [11]; A nonlinear optimal feedback control law 
(which was solved using generalized Hamilton-Jacobi-
Bellman differential equations) was designed to find the 
maximum load-carrying capacity and corresponding motion 
of a Puma robot [12]. These studies were carried out for 
certain ground manipulators, and the dynamics equations 
were easily established in analytical form. However, for 
FFSM, the dynamic equation becomes more complicated and 
nonlinear in the free-floating situation, and the tracking 
accuracy is not only related to the current joint states but also 
influenced by the previous joint movements [13]. Moreover, 
only the constraints of joint actuator capacity and tracking 
accuracy were emphasized in the mentioned studies. When 
carrying a heavy payload, instability of the base and greater 
energy consumption [14] absolutely cannot be ignored. 
Considering that the nonlinear optimal control using SDRE 
is an efficient approach for the motion planning problem of 
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manipulator systems which have a large number of DOF and 
multiple objects [15, 16], it is employed in this paper. 
 In this paper, determining the optimal joint trajectories of 
FFSM is solved by using SDRE. In Section 2, the dynamics 
equation is formed and rewritten to describe the nonlinear 
system. Section 3 formulates motion planning as a nonlinear 
optimal control problem and establishes the state-dependant 
Riccati equation. Taylor series approximation method is 
employed in Section 4, and the motion planning algorithm 
concerning multi-constraints is explained. Section 5 shows 
the simulation results of a 7-DOF space manipulator with a 
heavy payload. Section 6 presents the conclusions of this 
study. 

2. MODELLING OF FFSM WITH A PAYLOAD 

 As shown in Fig. (1), the system is composed of n + 2  
rigid bodies, adjacent bodies are connected by revolute 
joints, and the payload is attached to the end-effector. 
 The symbols are defined as follows: 

I∑ : inertial frame, which is the reference system if not 
specifically indicated; 

b∑ : the base frame of the system; 

k∑ : the k th link frame of the manipulator; 

E∑ : the end-effector frame of the manipulator; 

Jk : joint k  of the manipulator; 

Ck : mass center of link k ; 

 pk : vector from k∑  to Ck ; 

mk : mass of link k ; 

 Ik : inertia tensor of link k  with respect to its mass center; 

 xe : pose (position and orientation) of the end-effector, 

   xe = [ve
T ,ω e

T ]T ∈R6 ; 

 xb : pose of the base,  I yz ; 

 qk : joint angle of joint k ,   q = [q1 ,q2 ,,qn ]
T ∈Rn ; 

 The general dynamics equation of free-floating space 
manipulators can be expressed in the following form: 
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where  Hm  denotes inertia matrix of the manipulator,  Hb  
denotes inertia matrix of the base and  Hbm  denotes the 
coupled inertia matrix;  cb ∈R

6×1  and  cm ∈Rn×1  denote 
velocity dependent nonlinear term for the base and the 
manipulator, respectively. Link  n  and payload can be 
treated as a single composite rigid body, the mass and inertia 

tensor of which can be easily obtained to compute inertia 
matrices. 
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Fig. (1). Simplified model of the system. 

 In free-floating situation, the external forces/torques on 
the base  Fb  and the end-effector  Fe  are assumed zero, 
motion of the system is governed by only joint torques, and 
hence the momenta of the system are constant. Then we 
have: 

  H b xb + H bm q = 0   (2) 

 The kinematics equation of free-floating space 
manipulators can be written as [17]: 

  xe = Jb xb + Jm q   (3) 

where   Jb ∈R
6  and   Jm ∈R6  denote Jacobian matrix of the 

base and the manipulator, respectively. According to Eq. (2) 
and Eq. (3), we can obtain that: 

  xb = Jbm q, xe = J float q   (4) 

where   Jbm = −H b
−1H bm ∈R6×n denotes the relationship 

between joint angular velocity and base velocity, and 

 J float = Jm + JbJbm ∈R6×n  denotes the generalized Jacobian 
matrix of the system. 

 Separate Eq. (1) and Eliminate   xb , we can obtain: 

   H
*q + c*(q, q) = τ m   (5) 

where   H
* = Hm − H bm

T H b
-1H bm  is the generalized inertial 

tensor;   c
* = cm − H bm

T H b
-1cb  is the velocity-dependent term, 

which is the function of q  and  q . 

3. PROBLEM FORMULATION OF OPTIMAL 
MOTION PLANNING 

 Consider FFSM as a nonlinear dynamic system and 
define  X = [X1,X2 ] = [q, q]∈R

2n×1  as the state vector. 
According to Eq. (5) we have: 

 
X1 = X2, X2 = [H

∗(q)]−1[τ m − c
∗(q, q)]   (6) 
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 Then the dynamics equation is expressed as the following 
form of state equation: 

  

X = f [X(t),u(t),t] = f [X(t)]+ B[X(t)]u(t)
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where     u(t) = [u1(t),,un(t)] = τ m ∈Rn×1 denotes the control 
vector. 

 We define   Xq_des ∈R2n  as desired state of the joints, the 
state error is: 

 e(t) = Xq_des(t)− X(t)   (8) 

 Considering limitations of load-carrying capacity and 
tracking accuracy, the following integrated performance 
indicator is given as cost function: 

    
J = [eTQe + uTRu + xb

TS xb]t0

t f

∫ dt   (9) 

 This cost function is a dynamic index which consists of 
three parts: the first part reflects the punishment for pose 
tracking error of the end-effector; the second part is introduced 
to balance joint torque optimization with improvement of total 
energy involved during the load-carrying process; the third part 
is considered for instability of the base.   Q(t)∈R2n and 

  S(t)∈R6 are both positive semi-definite matrices, while 

  R(t)∈Rn  is positive definite. Q , R  and S  are diagonal 
weighting matrices, whose corresponding elements are large 
when certain boundaries of the constraints are nearly to be 
reached, and small otherwise. 
 Considering that motion of the base is caused by joint 
movement in the free-floating situation, which means that the 
state of the base is related to state vector. In state space, we find 
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 Define   Ŝ(X) = C(X)S(t)C(X)∈R6 , then the cost 
function becomes: 

  

J = F[X(t),u(t),t]dt
t0

t f

∫
F = eT(t)Q(t)e(t)+ uT(t)R(t)u(t)+ XTŜ(X)X

⎧
⎨
⎪

⎩⎪
  (11) 

 Considering the nonlinearity and strong coupling of the 
dynamics equations, the state-dependent Riccati equation is 
applied to solve the mentioned nonlinear optimal control 
problem. It was proved that the optimal control law can be 
derived as follows [18]: 

  u(t) = −R−1(t)BT[X(t)]λ(t)   (12) 

where  λ ∈R2n  is the costate vector, Considering that 

 f [X(t)]  is a nonlinear function of X , we define: 

f (X) = A(X)X   (13) 

 Similarly, we have: 

λ = K(X)X   (14) 

 K(X)  is the unique solution of SDRE, which is formed 
as follows: 

 KA + ATK − KBR−1BK +Q + Ŝ = 0   (15) 

4. SOLVE OPTIMAL CONTROL PROBLEM USING 
SDRE 

 Exact solution of SDRE is very difficult to solve 
analytically for any but the simplest systems [19]. In order to 
obtain the numerical solution of SDRE, Taylor series 
approximation method is introduced in this section. 

4.1. Taylor Series Approximation Method 

 Considering that A(X) , B(X)  and Ŝ(X)  are state-

dependent, they are rewritten in the following form:  

A(X) = A0 + εΔA(X)
B(X) = B0 + εΔB(X)

Ŝ(X) = Ŝ0 + εΔŜ(X)

  (16) 

where A0 , B0 and Ŝ0  denote the constant part, ΔA(X) , 

ΔB(X)  and ΔŜ(X)  denote variable part, ε  is temporary 
variable. 

K(X)  can be regarded as expansion of a Taylor series as 
follows: 

  

K(X,ε ) = ε nLn(X) = K(X) ε=0 +
∂[K(X)]

∂εn=0

∞

∑ ε=0 ε

+ ∂2[K(X)]
∂ε 2 ε=0

ε 2

2
+

 (17) 

 Substitute Eq. (16) and Eq. (17) into SDRE, then match 
terms involving the same powers of ε , the iterative 
equations can be obtained: 
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L0ΔA(X)+ ΔA(X)TL0 + L1(A0 − B0R

−1B0
TL0 )

+(A0
T − L0B0R

−1B0
T )L1 − L0[B0R

−1ΔB(X)T

+ΔB(X)R−1B0
T ]+ L0ΔŜ(X) = 0
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 (18) 



Motion Planning of Space Manipulator Carrying a Heavy Payload The Open Mechanical Engineering Journal, 2015, Volume 9    995 

 According to the state equation, A(X)  can be expressed 
as: 
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 and specify ΔA(X)  as: 

 
ΔA(X) = fi(X)(ΔAi )C

i=1

j

∑   (20) 

where   f1(X), f1(X),, f j (X) are different nonlinear terms of 

A(X) ,  (ΔAi )C denotes constant matrix. Similarly, we 
specify: 
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 Using two terms of SDRE, we have: 
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 According to Eq.(18), L0  and θ7 (0)  can be easily 
obtained by computing the following equations: 
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i )C (A0 − B0R
−1B0

TL0 )+ (A0
T − L0B0R

−1B0
T )(LA

i )C
+L0 (ΔAi )C + (ΔAi )C

T L0 = 0(i = 1,2,,n1)
(LB

i )C (A0 − B0R
−1B0

TL0 )+ (A0
T − L0B0R

−1B0
T )(LB

i )C
−L0[(ΔBi )C R
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 Finally, the optimal control law is ( ε = 1 ): 

 uN (X) = −R−1BT (L0 + L1)X   (24) 

4.2. Algorithm Flow of Motion Planning 

 In order to track desired pose of the end-effector in task 
space, the state of the end-effector is needed to be tracked in 
state space. Using Eq. (4), we have: 

  

xe(t + Δt) = xe(t)+ xe(t)Δt

= fkine[xb(t),q(t)]+ J float (t) q(t)Δt
  (25) 

where  fkine  is defined as the forward kinematics function. 
According to Eq. (4), pose of base can be formulated as 

  
xb(t) = {Jbm[q(t)] q(t)}dt

0

t

∫ , then Eq. (25) can be rewritten as 

the form of transfer function: 

  xe(t + Δt) = Fkine[q(t), q(t)]   (26) 

where  Fkine  denotes the corresponding function of  fkine  in 
state space. Then state transition equation is: 

 Xe(t) = Fkine[X(t - Δt)]   (27) 

 Eq. (27) indicates that  Xe(t)  is determined by 

  X(t0 ),X(t0 + Δt),,X(t) . We define  Xε_des ∈R
6  as the 

desired state of the end-effector. To make sure that the 
FFSM can carry the heavy along the predefined trajectory 
within sufficient accuracy, the following constraint is given 
by: 

E(t) ≤ δ e

E(t) = Xe_des (t)− Xe(t) = [x, y,z,α ,β,γ ]
T

⎧
⎨
⎪

⎩⎪
 (28) 

where  δ e  denotes allowable tracking error of the end-
effector. According to this, the elements   Qii(i = 1,2,,n)  of 
the weight matrix Q  are needed to be adjusted when Eq. 
(28) is not satisfied. 

 Another main constraint which must be considered 
during load-carrying process is instability of the base. Define 
positive rational numbers  ω bα

max ,  ω bβ
max  and  ω bγ

max  as the 
limitations of the base angular velocity, then the weight 
matrix S  is decided as follows: 

 

S44 = ξS / ω bα
max −max ω bα (t){ }( )

S55 = ξS / ω bβ
max −max ω bβ (t){ }( )

S66 = ξS / ω bγ
max −max ω bγ (t){ }( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

  (29) 

 Considering the limitation of joint torque, the weight 
matrix R  is time-varying, which can be given as: 

 Rii(t) = ξR / min{[u(t)− ui
min ]2,[ui

max − ui(t)]
2}   (30) 

where  ξS  and  ξR  are both weighting coefficients. 
 The optimal motion for FFSM when carrying a heavy 
payload is determined using the algorithm as shown in Fig. 
(2). The proper desired trajectory is selected to meet the 
load-carrying requirement, and then the nonlinear optimal 
control is applied. The obtained optimal control law is used 
to compute the actual state trajectory. The motion planning 
can be finally solved if the constraints are satisfied, or else 
the weight matrices are needed to be adjusted, subject to 
tracking accuracy of the end-effector, drive capability of the 
joints and attitude stability of the base. 

5. SIMULATION RESULTS 

 In this case study, a seven link space manipulator 
mounted on a base is considered,   a3 = a4 = 5.8m , 
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  d1 = d7 = 1.2m ,  d2 = d3 = d5 = d6 = 0.53m ,  d4 = 0.52m . Joint 
frames according to DH method are shown in Fig. (3) and 
the relative parameters are listed in Tables 1 and 2. Pose of 

1∑ is   [−0.2m,0m,2m,0,0,0]with respect to b∑ as shown 
in Fig. (3). 
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Fig. (2). Flow chart of motion planning algorithm. 
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Fig. (3). 7-DOF free-floating space manipulator. 

 Simulations are performed to find optimal motions of the 
7-DOF FFSM when tracking a given trajectory of the end-
effector in task space. Desired trajectory of the end-effector 
is shown in Fig. (4) and the corresponding joint trajectories 
are given in Fig. (5). Initial pose of the base is assumed as 

  xb (t0 ) = [0,0,0,0,0,0]
T ; total time of load-carrying process is 

120s; initial joint angles are set as 

 qini = [−20
,0,−10,−140,110,155, 70] ; parameters of the 

heavy payload are set as:   mload = 2.5e + 04kg , 

  Ixx = Izz = 6.34e + 05kg.m2 ,   I yy = 6.36e + 04kg.m2 ; the 

absolute angular velocity of the base is limited as   1
 s ; 

δε = 2.5 ×10
−3 . 

 Using the optimal control algorithm proposed in Section 
4, the tracking errors of the end-effector are computed 
according to Eq. (28) and plotted in Fig. (6). Maximum 
position/orientation error of end-effector are 0.0167 m and 
1.078 , respectively. 

   
E(t)

max
= 2.1224    ×10

−3(t ∈[t0,t f ])
satisfies the constrain condition. Finally absolute 
position/orientation error of the end-effector is

  [0.0039m,0,0040m,0,0170m,0.3926,0.4061 ,  ,0.2086
] , 

the deviations are acceptable. 
Table 1. D-H parameters of the 7-DOF FFSM. 
 

Link i θi (°)  di (m)   ai-1 (m) α i−1 (°) 

1 θ1(0)    d1  0 90 

2 θ2 (90)    d2  0 -90 

3 θ3(0)  0  a3  0 

4 θ4 (0)    d3 + d4 + d5   a4  0 

5 θ5 (0)  0 0 90 

6 θ6 (−90)    d6  0 -90 

7 θ7 (0)    d7  0 0 

 

 
Fig. (4). Desired/actual trajectory of end-effector. 

 By computing the dynamics equation of the 7-DOF 
FFSM, the joint torques are obtained when executing desired 
and actual path, respectively. As shown in Fig. (7), when 
carrying the heavy payload along the desired path, the 
maximum value of joint torques is 413.26 N.m. By contrast, 
maximum torque decreased by about 15 percent when 
carrying the heavy payload along the actual optimal path 
(354.73 N.m, as shown in Fig. 8). Besides that, in order to  
illustrate effectiveness of the propose algorithm in improving 
total energy involved during the load-carrying process, the 
following index is introduced to measure the energy 
consumption of the space manipulator system [20]: 
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E = [ qi(t)τ i(t)]

2 dt
t0

t f

∫
i=1

n

∑   (31) 

 
Fig. (5). Desired trajectories of the joints. 

(a) Position errors 

 
(b) Orientation errors 

 Based on this, through the computation and comparison, 
we find out that  Eactual = 82.01%Edesired . Using the optimal 
control method, the total energy decreased by about 18 
percent. Fig. (9) shows the base angular velocities, which 
illustrates that angular velocity limits of the base is satisfied. 
Meanwhile,  τ i (t f ) = 0  and 

  
max{ q(t f )} = 0.0931

 s , self-

motion of manipulator at the final state is very small, which 
facilitates the practical control. 

 
Fig. (6). Tracking errors of the end-effector. 

 
Fig. (7). Joint torques (along desired trajectories). 

CONCLUSION 

 In this paper, the free-floating space manipulator is 
considered as a nonlinear system, and motion planning 
problem is solved using nonlinear optimal control method. In 
the proposed approach, improvement of joint torques and 
total energy involved in the trajectory tracking process are 
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Table 2. Dynamics parameters of 7-DOF space manipulator. 
 

Parameters Base Link1 Link2 Link3 Link 4 Link 5 Link 6 Link 7 

Mass/(kg) 7.5e+04 30 30 70 75 30 30 40 

 
i pi /(m) 

0 0 -0.265 2.9 2.7 0 0 0 

0 -0.265 0 0 0 0 0 0 

0 0 0 0 0.5 0.265 0.265 0.6 

 Ik/(kg.m2) 

 Ixx  7.5e+04 0.98 0.57 1.32 1.91 0.98 0.98 5.18 

 I yy  7.5e+04 0.57 0.98 197.2 243.4 0.98 0.98 5.18 

 Izz  7.5e+04 0.98 0.98 197.2 242.9 0.57 0.57 0.75 
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considered for limitation of load-carrying capacity. In order 
to track the predefined path in task space and achieve the  
 

 
Fig. (8). Joint torques (along actual trajectories). 

 
Fig. (9). Angular velocities of the base. 

goal of avoiding instability of the base, both tracking 
accuracy of the end-effector pose and angular velocity 
control are included in the cost function. SDRE is derived, 
and optimal control law is obtained by using Taylor series 
approximation method, which is adopted to overcome the 
difficulties in obtaining solution of complicated nonlinear 
system. The optimal motion planning algorithm is finally 
proposed. In the simulation experiment of a 7-DOF FFSM, 
maximum value of joint torques and total energy of the 
system declined by no less than 15%, while the constraints of 
tracking accuracy and base movement are satisfied. The 
results demonstrate validity and practicability of the 
presented algorithm. 
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