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Abstract:

Background and Objective:

The reductionist approach of neuronal cell culture has been useful for analyses of synaptic signaling. Murine cortical neurons in
culture spontaneously form an ex vivo network capable of transmitting complex signals, and have been useful for analyses of several
fundamental aspects of neuronal development hitherto difficult to clarify in situ. However, these networks lack the ability to receive
and respond to sensory input from the environment as do neurons in vivo.  Establishment of these networks in culture chambers
containing multi-electrode arrays allows recording of synaptic activity as well as stimulation.

Method:

This  article  describes  the  embodiment  of  ex  vivo  neuronal  networks  neurons  in  a  closed-loop  cybernetic  system,  consisting  of
digitized video signals as sensory input and a robot arm as motor output.

Results:

In this system, the neuronal network essentially functions as a simple central nervous system. This embodied network displays the
ability  to  track a  target  in  a  naturalistic  environment.  These  findings  underscore  that  ex vivo  neuronal  networks  can respond to
sensory input and direct motor output.

Conclusion:

These analyses may contribute to optimization of neuronal-computer interfaces for perceptive and locomotive prosthetic applications.
Ex vivo networks display critical alterations in signal patterns following treatment with subcytotoxic concentrations of amyloid-beta.
Future studies including comparison of tracking accuracy of embodied networks prepared from mice harboring key mutations with
those from normal mice, accompanied with exposure to Abeta and/or other neurotoxins, may provide a useful model system for
monitoring subtle impairment of neuronal function as well as normal and abnormal development.

Keywords: Multi-electrode array, Neuronal network, Cortical neuronal culture, Learning, Plasticity, Sensory input, Cybernetics,
Manus robot arm.

1. INTRODUCTION

The advent of culture dishes within which is embedded an array of electrodes has allowed interfacing of cultured
neurons with computer software for recording and stimulation. This robust approach has been utilized to gain major
advances in understanding of synaptogenesis  and  neuronal  signaling [1 - 6], as  well as  gaining  insight  into  factors
 that  promote  these  processes and  underlie or  accelerate  neurodegeneration [7 - 9]. These  Multi-Electrode  Arrays
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(MEA) and the appropriate software have demonstrated that cultured neurons spontaneously undergo synaptogenesis
and establish a functional network capable of transmitting information across multiple neurons.  Over the course of
approximately  1  month,  the  spontaneous  signal  patterns  generated  by  these  ex  vivo  neuronal  networks  undergo
developmental conversion from individual “spikes” to complex bursts that consist of multiple signals [3 - 6, 10 - 15].
This conversion recapitulates the delayed establishment of inhibitory neuronal activity observed in situ [16 - 21].

External stimulation hastens the establishment of a signaling pattern characteristic of mature cultures [2, 3, 12, 22 -
24], confirming that ex vivo networks are capable of responding to external stimulation. Our studies in which networks
were subjected to multiple stimulation regimens using a digitized synaptic  signal  further  demonstrated that  ex vivo
networks altered their signaling patterns in a manner analogous to long-term potentiation in situ [6].

A more robust and “real-world” approach towards activity and responsiveness of ex vivo neuronal networks has
been to interface them with robotics [25, 26]. Herein, we provided ex vivo neuronal networks with sensory input using a
digital video camera, and converting resultant network signaling to impulses capable of operating a robotic arm. The
resultant “embodied” neuronal network therefore represents a simple central nervous system that processes incoming
sensory input and generates corresponding motor output.

2. MATERIALS and METHODS

2.1. Generation of Ex Vivo Neuronal Networks

Dissociated cortical neurons from day 18 C57BL/6 mouse embryos were plated in B27-supplemented Neurobasal
medium (Invitrogen, Carlsbad, CA) on poly-D-lysine/fibronectin-coated “MEA petri dishes” (Multichannel Systems,
Reutlingen, Germany) containing 60 Titanium Nitride electrodes in an 8 by 8 grid arrangement; detailed information on
generation of networks and of the MEAs themselves has been published previously [3 - 6, 27]. Sacrifice of pregnant
females was carried out under procedures approved by our Institutional Animal Care and Use Committee.

2.2. Recording of Network Activity

Signaling was recorded using a MEA-1060-INV amplifier over 30 second intervals and collected via  a DT9814
acquisition  system  and  a  software  program  (“Raptor”)  developed  in  our  laboratory  [3,  4]  (available  at
https://github.com/ mtgjbird/Raptor). Raptor requires the LabView (National Instruments) run-time engine 2013 SP1 or
later http://www.ni.com/download/labview-run-time-engine-2013-sp1/4540/en/. Other appropriate software is available
[1, 28]. Networks were stimulated using a 1sec digitized synaptic signal 1mV in amplitude as in our prior studies [3, 4,
27]. Output was graphed and analyzed in Excel.

After  culturing for  1 month to allow maturation of  networks (confirmed by development  of  spontaneous signal
streams rich in complex bursts [27], networks were segmented into two equivalent halves by slicing across the petri dish
with a scalpel. This segmentation was not essential, but served to generate two independent “hemispheres.” Separation
was confirmed by phase-contrast microscopy Fig. (1) and by confinement of responding signals following stimulation
within  the  half  containing  the  electrode  to  which  the  exogenous  signal  was  delivered  (not  shown).  Networks  were
utilized immediately after segmentation, and therefore there was not sufficient time for regeneration of connections
across the slice.

2.3. Interfacing of Ex Vivo Neuronal Networks with Video Input and Robotic Output

The  complete  software  package,  developed  in  our  laboratory,  and  used  for  real-time  interfacing  our  ex  vivo
neuronal  networks  with  digital  video  input  and  robotic  output  is  available  at  https://github.com/ab3nd/
NeuronRobotInterface.

2.4. Conversion of Video Signals and Stimulation of Neuronal Networks

This was performed by the ROS module, “img_slicer,” developed in our laboratory (available at https://github.com
/ab3nd/NeuronRobotInterface/ tree/master/catkin_ws/src/img_slicer/src).

We utilized a solid red cup as a target object within a defined visual field. Notably, an object of any shape or hue
could be utilized. Video was recorded with a tripod-mounted RGB digital camera. The resulting video was converted
into  HSV  (Hue,  Saturation,  Value),  and  separated  into  hue,  saturation,  and  value  planes,  which  generated  an
accompanying image for each plane. This results in three images, one for each plane. The resultant hue image was
subjected to thresholding to convert all pixels of the desired hue (red, in the example utilized herein) were converted to
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white, and all other pixels were converted to black (e.g., Fig. (2).

Fig. (1). Diagram of the embodied neuronal network.

Fig. (2). A diagrammatic flow of information from the target to the network. Panels present the raw image of the target (a red
cup in this example), the threshold image detected by the camera, the summation of pixels across the image (“Summed pixels”), a
representative image of electrode activity as a result of image input (“Resulting network activity”), and a summation of total activity,
which highlights the difference in activity within the left and right portions of the networks (“Activity delta”). Also presented are
representative screen captures that demonstrate the robot arm tracking the target.
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To monitor movement of the target, the overall image field was separated into five equivalent vertical strips. The
total white pixels in the leftmost 3 strips was then compared with the total in the rightmost 3 strips. If the sum of white
pixels in the leftmost 3 strips was 500 more than the sum in the rightmost 3 strips, stimulation (via a digitized synaptic
signal) [27] was delivered to the right of the network, in order to foster increased activity in the right portion of the
network and vice versa. Accordingly, each difference of 500 pixels was translated into one synaptic signal. Delivery of
synaptic  signals  to  one  half  of  the  segmented  network  increased  the  activity  of  that  segment  Fig.  (2);  delivery  of
sufficient synaptic signals to increase the activity of that half of the network by a sufficient level prompted delivery of
signals to the robot arm as described below.

2.5. Conversion of Neuronal Network Activity to Motion Commands for the Manus Robotic Arm

This was performed by the ROS module, “act_vector,” developed in our laboratory (available at: https://github.com/
ab3nd/NeuronRobotInterface/tree/master/ catkin_ws/src/activation_vector/src).

Each of the 60 channels of the MEA was recorded for 3sec intervals at a rate of 1000 samples/sec. The mean and
standard deviation of signaling on each channel was calculated, with one signal defined a >3x the standard deviation of
that channel.

A 60-element list (one for each channel) of activation values was initialized at zero. When a set of samples arrive,
all the activation values A of each channel n were reduced according to the equation An(ti) = An(ti−1)e−β(ti−ti−1) as described
by Hales et al. 2010. For each channel where a signal is detected, the activation value was incremented by 1. Every 0.2
sec, the list of activation vectors was compared to the predefined “left” (L) and “right” (R) activation vectors by taking
the 60 dimensional Euclidian distance between the current activation vector and the L and R vectors; these are fixed
vectors reflecting increased activity on the L or R sides of the network. If the distance between the L or R activation
vector approximates one of the fixed vectors (indicating that network activity was stronger on either the L or R side), a
corresponding motion command was sent to the Manus robot arm, otherwise a stop command was sent to the Manus
robot arm.

3. RESULTS

A diagram of information flow through the embodied neuronal network is presented in (Fig. 1).

Panel  A describes basic information flow through the components  of  this  system as described in Methods.  The
camera detects the position of the target, and transfers signals to the appropriate half of the segmented network. The
stimulated network transmits motion commands to the arm, and the arm repositions in the direction of the target. This
sequence repeats until the arm is situated directly in front of the target (if the target is stationary) or continues to track
the  target  (if  the  target  is  moving).  A  portion  of  the  segmented  neuronal  network  is  presented;  black  dots  are  the
electrodes.

Panel B depicts the digital camera mounted above the grasping hand of the Manus robot arm.

Representative  results  of  camera  input  and  resultant  network  activity  are  presented  in  Fig.  (2);  as  can  be  seen,
visualization of the target increased network activity according to its localization.

Tracking  of  the  target  by  multiple  representative  networks  is  presented  in  Fig.  (3).  Visual  inspection  of  these
sequences indicates that the robot arm followed the target. Notably, in one of these sequences (network 1), the target
was purposely moved out  of  view of  the  camera,  at  which point  the  robot  arm returned to  0  (the midpoint)  due to
absence of differential signals between the network halves. Tracking resumed when the target was moved back into
view (Fig. 3).

Analyses  of  tracking  in  these  examples  demonstrated  that  the  robot  arm  tracked  the  target  with  considerable
accuracy; the arm remained within the smallest unit measured (<0.25”) for 68 ± 13% of the observation period (Fig. 4).

4. DISCUSSION

We present herein a model with unique positioning of an ex vivo neuronal network to receive digital environmental
input, and to provide responsive output. Since the input corresponds to sensory information, and the output corresponds
to motor activity, the ex vivo network functions as a population of interneurons – i.e., a central nervous system that
processes incoming information and generates an appropriate response. This unique model can be analyzed in detail,
and/or expanded upon to encompass additional functionality.
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Fig. (3). Representative tracking of the target by the robot arm. Mov files of tracking were opened to an identical size, and a
ruler was mounted below the on-screen image, with 0 representing the initial localization of the robot arm. Migration of the target
and arm were quantified over  the indicated time period.  Migration was quantified using distance increments  of  0.25”;  + values
indicate migration to the right, - values indicate migration to the left.

Fig. (4). Average accuracy of tracking. The period of time during which the robot co-localized within the same 0.25” area as the
target, or deviated from the target by various distances, is indicated.

Prior studies demonstrated that these networks display alterations in signaling consistent with long-term potentiation
following  repetitive  stimulation  with  the  same  digitized  synaptic  signal  utilized  herein  [4,  6].  Embodiment  of  the
neuronal network as described herein provides the unique opportunity for future studies of long-term potentiation by
biological neuronal networks in an environmental context. Many studies have resorted to artificial networks, which
provide  an  environment  that  can  readily  and  precisely  be  manipulated,  but  retain  the  limitation  that  they  are  not
comprised of actual neurons. Previous studies have utilized similar ex vivo networks to operate a small model vehicle
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within a closed environment and observed network firing patterns in response to physical barriers [25, 26]. The current
system expands upon this “reactive” earlier embodiment of neuronal networks in our system monitored active tracking
of a target versus passive response.

Setting a threshold for full red pixels allowed us to track the target against a background of mixed coloration that
included an additional non-target object that contained red pixels (the human operator). Use of a solid-color background
that  lacks  non-target  objects  would  lessen/eliminate  a  requirement  for  thresholding,  but  would  impose  an  artificial
situation  that  is  not  reminiscent  of  real-world  dynamics.  With  the  “mixed”  background utilized  herein,  we  did  not
attempt  to  identify  intermediate  threshold  settings,  the  minimum  target  size/shape,  degree  of  additional  non-target
objects with varying degrees of red pixels, and whether or not the target could contain regions of other hues, all of
which would be of interest.

It should be noted that perfect co-localization is not to be anticipated, since the robot responds to net movement of
the target; i.e., the target itself must move a distance of >0.25” in either direction to stimulate corresponding movement
of  the  arm.  Tracking  of  the  arm  could  instead  be  accomplished  by  digital  analyses  of  target  and  arm  movement.
However, this approach involves considerable “stuttering,” due to minor differences in pixel recording. Accordingly,
we considered the most appropriate method for monitoring tracking was instead to record net movement of the arm
within  pre-defined  increments  Fig.  (4).  An  additional  compounding  factor  was  that  endogenous  network  activity
continued during tracking regimens, which prevented stimulation of the robot arm exclusively by exogenously-derived
stimulation.

We have conducted full-range tracking (i.e., full left to full right and back again), as well as maintaining our target
exclusively within the left or right regions, with similar tracking in both cases. In one instance in which we removed the
target from the field of view, the robot arm returned to the center, and resumed tracking when the target was restored
within the field of view (Fig. 4, Network 1).

This is reminiscent of normal brain activity and perception, since synaptic activity persists throughout the brain,
over which sensory input and resultant downstream activity is superimposed.

Similarly,  optimal  tracking was demonstrated by networks  that  displayed similar  levels  of  spontaneous activity
within the left and right domains. Since we converted pixels to our previously-recorded synaptic signal, and did not
amplify  them  above  their  recorded  amplitude,  the  responsiveness  of  the  robot  arm  can  be  diminished  should  the
network display uneven spontaneous activity. In such cases, net movement of the arm favors the side of the network
with greater spontaneous activity.

Organotypic  (slice)  cultures  can  be  established  on  MEAs  [3].  However,  networks  established  from dissociated
neurons as used herein can be maintained for several months (and longer under optimal conditions) [25]. Networks
generated  herein  have  no  architectural  restrictions  during  axonogenesis,  which  therefore  fosters  nearest-neighbor
connections. Future refinements will include the use of nanocages at plating, to provide a degree of directionality to
developing networks. Additional possibilities include establishing of networks from various transgenic mouse models,
as well as adding additional neurons to established networks as a model of neurogenesis.

In the particular  configuration utilized herein,  video input  was derived from the digital  camera mounted on the
Manus robot arm. However, the MEA/computer interface could receive input from any digital camera. “Motor” output
could vary from our use of a robot arm to any mechanical/functional activity with an electronic interface.

Future  studies  could  involve  a  robot-embodied  model  containing  two  neuronal  networks.  The  first  network,
representing  the  central  nervous  system,  will  control  tracking  of  a  target  via  the  Manus  arm  as  above.  Following
successful location of the target, an equivalent number of signals are received by and transmitted from each half of the
network, and the arm therefore ceases movement. When no delta in signals between L and R hemispheres is detected
(e.g.  for  ≥5  sec),  the  second  network  will  be  activated.  Signal  streams  from  the  second  network,  representing  the
peripheral (motor neuron) system, will then direct the Manus arm to reach forward and retrieve the object; note that the
Manus arm has existing programs to support retrieval and object placement. While this represents a simple two-stage
embodiment, it parallels our real-world behavior in that humans locate an object of interest via sensory input and motor
output (orientation of eyes, head and/or body), and only after localization do we stimulate a second set of motor nerves
to initiate object retrieval. Moreover, our recognition of a target occurs over and above a “basal” continuous sensory
input, which is analogous to the continuous spontaneous activity of networks during target recognition herein.
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CONCLUSION

Ultimately,  more  complex structures  than  those  possible  using  individual  neuronal  networks  can  be  developed,
allowing exploration of the basic principles about the formation of higher-level neuronal structures. These analyses may
contribute  to  optimization  of  neuronal-computer  interfaces  for  perceptive  and  locomotive  prosthetic  applications.
Manipulation of inhibitory neuronal activity and initial connectivity may provide insight into perturbations of balance in
excitatory/inhibitory activity that promote seizures and/or perturb motor activity in epilepsy and Parkinson’s disease [4 -
6, 29].  In addition, the inherent potentially-interfering basal activity of an amplitude matching sensory input in our
system may provide a useful system for analyses of conditions such as attention deficit hyperactivity disorder, where
competing sensory and internal distractions can distract an individual from task recognition and completion.

Ex vivo neuronal networks as generated herein display rapid inhibition of complex signal patterns in response to
sub-cytotoxic concentrations of oligomerized Abeta, and that these alterations are synergistically increased by iron and
airborne nanoparticles, yet attenuated by zinc [7 - 9]. Comparison of tracking accuracy of embodied networks prepared
from mice harboring key mutations with those from normal mice, accompanied with exposure to Abeta and/or other
neurotoxins, may be particularly useful for monitoring subtle impairment of neuronal function.
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