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Abstract: Interleukin 6 (IL-6) is a typical pleiotropic cytokine that modulates a variety of physiological events in verte-

brates, including cell proliferation, differentiation, survival, and apoptosis, among other functions. IL-6 plays roles in the 

immune, the endocrine, the nervous, and the hematopoietic systems, in bone metabolism, regulation of blood pressure and 

inflammation. IL-6 exerts its effects on different tissues and organ systems. Many cell types are reported to produce IL-6: 

T cells, B cells, polymorphonuclear cells, eosinophils, monocyte/macrophages, mast cells, dendritic cells, chondrocytes, 

osteoblasts, endothelial cells, skeletal and smooth muscle cells, islet cells, thyroid cells, fibroblasts, mesangial cells, 

keratinocytes, microglial cells, astrocytes, oligodendrocytes, adipose tissue and certain tumor cells. Here, we review the 

participation of the IL-6 in the neuroimmunoendocrine network. The specific targeting of the IL-6 pathway can be a 

promising new approach for the treatment and prevention of neurodegenerative disorders in humans as well as improving 

the autoinflammatory process both systemically and locally.  
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INTRODUCTION 

 The immune and neuroendocrine systems are integrated 
by a network in which hormones and neuropeptides 
modulate immune function and immune responses triggered 
by neuroendocrine changes. These systems function together 
to maintain homeostasis [1]. Two of the main components of 
this network are the hypothalamic-pituitary-adrenocortical 
(HPA) axis [2] and the hypothalamic-pituitary-gonadal axis 
(HPG) [3].  

 Interactions between the immune system and both HPA 
and HPG axes are characterized by their activation and ini-
tiation of the stress response, which, in turn, has immuno-
modulating activities [4, 5] that are important in preventing 
excessive immune responses. Furthermore, the function of 
both axes is implicated in adaptation and maintenance of 
homeostasis during critical illness and viral, bacterial, para-
sitic and autoimmune diseases [6-8].  

 In this complex network, interleukin-6 (IL-6) plays key 
roles in modulating the HPA-HPG axes response at central 
and peripheral levels. An important aspect of cell communi-
cation that has emerged as a result of studying neuro-
endocrine-immune interactions is the redundancy of the use 
of some chemical messengers. As an example, neurotrophins 
are chemical messengers first identified and characterized in 
the nervous system. Members of this family protein are also  
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expressed and secreted by immune and endocrine cells, hav-
ing immunological and endocrinological functions [9-11]. 

  Thus, the lack of exclusivity of the use of some cellular 
messengers by specific organic systems might be a rule, 
rather than an exception. Although strong evidence supports 
that 1) neurons, endocrine and immune cells produce hor-
mones and 2) neural, endocrine and immune cells synthesize 
and secrete neuroactive messengers. It remains somewhat 
controversial whether IL-6 can indeed be produced by neural 
cell lineages and modulate neural functioning locally. Hence, 
in the following paragraphs, we will review and discuss 
some of the information available on 1) IL-6 production, 
sensitivity and signal transduction in neural cell lineages, 2) 
IL-6 morphological and physiological actions during neural 
development, regeneration, communication, aging and be-
havior, 3) IL-6 participation during neuroinflammation and 
neurodegeneration and 4) IL-6 role in endocrine cells. 

IL-6 STRUCTURE AND IMMUNE FUNCTION 

 IL-6 is a typical pleiotropic cytokine that modulates a 
variety of physiological events in vertebrates, such as cell 
proliferation, differentiation, survival, and apoptosis. IL-6 
plays roles in the immune, the endocrine, the nervous and the 
hematopoietic systems, and on bone metabolism [12-15]. 
Many immune cell types are reported to produce IL-6 includ-
ing T cells, B cells, polymorphonuclear cells, eosinophils, 
monocyte/macrophages, mast cells and dendritic cells. Other 
cell types known to produce IL-6 are chondrocytes, os-
teoblasts, endothelial cells, skeletal and smooth muscle cells, 
islet cells, thyroid cells, fibroblasts, mesangial cells, kerati-
nocytes, certain tumour cells, adipose tissue cells, microglial 
cells and astrocytes. IL-6 has been implicated in the pathol-
ogy of different diseases including multiple myeloma, rheu-
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matoid arthritis, Castleman disease, AIDS, mesangial prolif-
erative glomerulonephritis, psoriasis, Kaposi`s sarcoma, sep-
sis and osteoporosis [16-27]. 

 The IL-6 gene is located at chromosome 7p21 [28] and 5 
[29] in the human and mouse genomes, respectively. The 
genes for human, mouse and rat IL-6 have been cloned and 
sequenced, and all contain four introns and five exons [30-
32]. The deduced amino acid sequence of human IL-6 (hIL-
6) consists of 212 amino acids with 27 of them as a signal 
peptide, and two sites of potential N-glycosylation. Its mo-
lecular weight ranges from 21 to 30 kDa with isoelectric 
point at 5.4 [33]. hIL-6 tridimensional structure shows a 
four-helix bundle: two pairs of antiparallel-helices with up-
up-down-down orientation [34] whose folding is conserved 
among cytokine family members. The mouse IL-6 protein is 
a refolded 185 amino acid polypeptide, 42% homologous to 
the human form and contains several potential O- glycosyla-
tion sites instead of the N- glycosylation site [35].  

 IL-6 is involved in the regulation of both type-1 and type 
2 helper T-cell responses (Th1/Th2 responses), and acts on B 
cells to promote immunoglobulin (Ig) production [15]. IL-6 
has the ability to stimulate B-cell differentiation, activate 
thymocytes and T-cells for differentiation, activate macro-
phages, stimulate hepatocytes to produce acute-phase pro-
teins, and activate natural killer (NK) cells [36-41]. IL-6 also 
possesses anti-inflammatory properties [42]. Mouse IL-6 
also acts on B cells activated with anti-Ig or dextran sulfate 
[43]. In T cells IL-6 confers significant effects on prolifera-
tion, survival, and Th1/Th2 responses. IL-6 also affects the 

differentiation of professional antigen-presenting cells such 
as macrophages and dendritic cells [44, 45]. 

LOCAL AVAILABILITY OF IL-6 IN THE NERVOUS 
SYSTEM: CELL SOURCES AND TARGETS  

a). IL-6 Cell Sources 

 For many years astrocytes were considered to provide 
structural support to neuronal networks and to constitute part 
of the cellular elements that induce and form the blood-brain 
barrier. Only recently, we have realized that astrocytes play a 
variety of different roles in the developing and mature brain. 
As an example, it is now known that they express different 
voltage- and ligand-gated ion channels [46], as well as me-
tabotropic receptors [47], which opens the possibility that 
astrocytes might also participate in neural information proc-
essing. In addition to their neural-related functions, astro-
cytes play an immunological role as antigen-presenting cells 
[48]. They, in fact, help in orchestrating brain immunologi-
cal responses. In doing so, astrocytes produce cytokines and 
chemokines that attract different types of immunological 
cells and promote/facilitate their crossing of the blood-brain 
barrier during inflammatory responses [49]. What it is more 
remarkable though, is that astrocytes have the ability to pro-
duce and secrete cytokines constitutively, suggesting that 
these messengers may modulate normal neural functioning. 
Accordingly, primary astrocyte cultures obtained from mice 
synthesize IL-6 when exposed to tumor necrosis factor alpha 
(TNF- ), IL-1 , and interferon-gamma (IFN- ), but they do 
so more importantly after incubation with neuromodulators 
such as substance P, vasoactive intestinal polypeptide and 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Structural model of signaling of the IL-6-IL-6 receptor complex in the central nervous system.  

Upon binding, IL-6-IL-6R complex activates the JAK/STAT3 pathway and the MAPK cascade, which induces specific gene expression, 

resulting in a specific neuronal function. The structures for vIL-6/gp130, gp80, STAT3 and SHP2 are represented, as well as the molecular 

models of a JAK2 kinase domain and SOCS1.  
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histamine [50, 51]. It has also been shown that IL-6 regulates 
its own expression in cultured astrocytes, likely through 
autocrine mechanisms [52].  

 The idea that neurons may produce IL-6 has only been 
accepted very recently. The resistance to this idea probably 
reflected the dominance of the long-held view that brain is a 
privileged site in which immunological surveillance is 
greatly restricted because of the difficulty of immune cells to 
enter the nervous system. It was believed that, if immune 
cells gained access to the brain, they would produce irre-
versible damage to neuronal connections. Recent experimen-
tal evidence has proved both concepts wrong. Hence, studies 
conducted in vitro documented that cultured neurons from 
sympathetic and sensory ganglia express IL-6 mRNA and 
synthesize IL-6 [53-56]. Neuronal production of IL-6 is in-
creased following N-methyl-D-aspartate (NMDA)-mediated 
glutamatergic depolarization. This effect is abolished after 
selectively blocking L-type voltage-dependent Ca2+ chan-
nels, and by inhibiting calmodulin and/or Ca2+/calmoduline 
protein kinases [57]. 

b). Neural IL-6 Targets 

 To sustain that cytokines constitutively produced by neu-
ral cell lineages indeed play important roles in modulating 
neuronal functions, it is required not only to show their pro-
duction within the brain itself, but to demonstrate the pres-
ence of receptors at proper targets. In accordance, IL-6 and 
IL-1 receptors have been detected in various neuronal popu-
lations along the peripheral and central nervous system 
(CNS) structures [58, 59]. Although IL-6 exerts its function 
mainly through its binding to its specific membrane receptor, 
it has been recently described that it is able to function as an 
agonist to cells lacking the membrane receptor but instead 
expressing the membrane bound subunit gp130. In this case, 
IL-6 binds to a soluble form of its receptor (sIL-6R) and this 
complex (IL-6/sIL-6R) associates to gp130 leading to intra-
cellular signaling, a process named trans-signaling [60].  

 IL-6/IL-6 receptor complex has short-term effects on 
synaptic transmission and plasticity that are thought to be 
mediated by the activation of intracellular protein kinases. 
The effects of IL-6 on the expression of paired pulse facilita-
tion (PPF), post-tetanic potentiation (PTP), and long-term 
potentiation (LTP) in the CA1 region of the hippocampus are 
mediated via the activation of the signal transducer and acti-
vator of transcription-3 (STAT3), the mitogen-activated pro-
tein kinase ERK (MAPK/ERK), and the stress-activated pro-
tein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK). 
Pheochromocytoma PC12 cells exposed to IL-6 develop 
neuritic processes and sodium inward currents following c-
fos activation (Fig. 1) [61]. Transgenic overexpression of IL-
6 decreases the rate of proliferation of neuronal precursors in 
the dentate gyrus of young adult transgenic mice. These mice 
also showed a deficiency in the number of surviving and 
differentiated granule cells [62]. IL-6 family of proteins are 
powerful signals to induce neural stem cell differentiation 
[12] and improve the postnatal survival of cultured mesen-
cephalic catecholaminergic and septal cholinergic neurons.  

IL-6 and Neural Regeneration 

 Although the prevailing view is that cytokines, especially 
those considered as pro-inflammatory, promote the forma-

tion of glial scars, thus interfering with regenerative proc-
esses in the nervous system, important evidence supports 
that at least some of them are capable of facilitating regen-
eration of neural tissue [63, 64]. This last statement seems to 
be true for both the peripheral and central pathways. IL-6 
and other structurally related cytokines such as IL-11, IL-17, 
leukaemia inhibitory factor (LIF) and cilliary neurotrophic 
factor (CNTF) have shown effects on haematopoietic and 
nervous systems. These neuropoeitic cytokines signal 
through the gp130 receptor. Their signaling has been associ-
ated to normal development and adult brain, as well as in the 
response to brain injury and disease [65]. Interleukin-6 plays 
an important role in peripheral nerve regeneration. This cy-
tokine activates Janus kinase/STAT3 signaling in spinal mi-
croglia as a response to a peripheral injury, and this trans-
duction pathway participates in development of pain associ-
ated with nerve alteration [66]. IL-6 activates STAT3 in 
Schwann cells. The IL-6/STAT3 signaling in primary 
Schwann cells induce the gene expression of glial fibrillary 
acidic protein (GFAP), which is known to be required for the 
proper regeneration of the injured nerves, while in IL-6-
deficient mice GFAP induction in the sciatic nerves after 
injury is significantly delayed [67]. IL-6 upregulates several 
genes involved in both neural differentiation and regenera-
tion in the peripheral glia [68, 69] which could be the mecha-
nism by which it participates in regeneration.  

 It is interesting to mention that mice deficient in IL-6 
show impaired somatosensory function and delayed regen-
eration of peripheral sensory nerves. However, the effects of 
chronic IL-6 exposure on neuronal function in the CNS are 
largely unknown, but could include the loss of cerebellar 
Purkinje neurons [70]. For instance, extracellular recordings 
from cerebellar slices revealed that the mean firing rate of 
spontaneously active Purkinje neurons is significantly re-
duced in slices from IL-6 transgenic mice compared to con-
trol mice. In addition, a significantly greater proportion of 
Purkinje neurons from transgenic IL-6 mice slices exhibited 
an oscillatory pattern of spontaneous firing than Purkinje 
neurons in control slices. However, the inhibitory period 
following the complex spike (climbing fiber pause) was sig-
nificantly longer in slices from transgenic mice. Purkinje 
neurons also express high levels of both the IL-6 receptor 
and its intracellular signaling subunit, gp130, indicating that 
IL-6 could act directly on Purkinje neurons to alter their 
physiological properties [70]. This cytokine also exerts tro-
phic action on various neuronal populations in the CNS. The 
in vitro trophic effects of IL-6 have been studied in two well-
characterized populations of cranial sensory neurons 
throughout embryonic development. Cutaneous sensory neu-
rons of the trigeminal ganglion, showed an early, transient 
survival response to IL-6 in the late fetal period. This evi-
dence indicates that populations of sensory neurons display 
different developmental patterns of cytokine responsiveness, 
and show that embryonic trigeminal neurons pass through 
several phases of differing neurotrophic factor survival re-
quirements [63]. Furthermore, by using intracellular record-
ing and calcium imaging techniques, it has been shown that 
chronic IL-6 exposure affects the physiological properties of 
cerebellar Purkinje neurons in primary culture [55]. Two 
weeks of exposure to IL-6 resulted in altered electrophysi-
ological properties of Purkinje neurons, including a signifi-
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cant reduction in action potential generation, an increase in 
input resistance, and an enhanced electrical response to the 
ionotropic glutamate receptor agonist, -amino-3-hydroxy-
5-methylisoxazole-4-propionic acid (AMPA). These effects 
were mediated by the IL-6 receptor and gp130. Partial 
chemical lesions of substantia nigra pars compacta follow-
ing 6-hydroxy-dopamine administration led to a sprouting of 
fibers from the remaining dopaminergic neurons. Also, 
chronic haloperidol treatment, a D2 receptor antagonist, in-
duces sprouting of axons from dopaminergic neurons of the 
Substantia nigra. Both responses were found greatly attenu-
ated in IL-6 knock-out mice, thus suggesting that IL-6 con-
trol the normal arborization and possible regeneration of the 
nigro-striatal pathway [55].  

PHYSIOLOGICAL ACTIONS OF IL-6 IN THE CNS 

a). IL-6 Regulation of Excitatory and Inhibitory Trans-
mission 

 In the mature brain, neurons communicate predominantly 
through chemical synapses. These synapses are placed in 
specific sites of the neurons, such that synapse localization 
defines the final configuration of the neuronal circuits and 
the way the information passes through them. Information 
flows through these circuits by means of electrochemical 
codes that are translated into patterns of neurotransmitter 
release. Hence, the regulation of the generation of electro-
chemical codes and/or of the release of neurotransmitters 
both constitutes effective manners to modulate information 
processing by neuronal assemblies. Furthermore, glutamic 
and gamma-amino butyric (GABA) acids are neurotransmit-
ters that, in general terms, facilitate or difficult the transmis-
sion of information through synapses. A delicate balance 
between the excitatory actions associated with glutamate and 
the inhibitory actions related with GABA, determines 

whether information will finally flow along neuronal circuits 
[55, 71]. Most of the work aimed at characterizing cytokine 
effects on neuronal synaptic communication has shown that 
they modulate GABA and glutamate-mediated neuronal 
transmission. Low doses of kainic acid induced severe tonic-
clonic seizures and death in GFAP-IL-6 transgenic mice. 
Moreover, this strain of mice was also significantly more 
sensitive to NMDA but not to pilocarpine-induced seizures 
where seen. Kainic acid uptake in the brain of the GFAP-IL6 
mice was higher in the cerebellum than in other regions [72]. 
Kainic acid binding in the brain of GFAP-IL-6 mice had a 
similar distribution and density as in wild type controls. In 
the hippocampus of GFAP-IL-6 mice that survived low 
doses of kainic acid, there was no change in the extent of 
either neurodegeneration or astrocytosis due to degenerative 
changes in GABA and parvalbumin-positive neurons in the 
hippocampus, which progressed to the loss of these cells [49].  

 IL-6 has been also shown to potentiate evoked GABA 
release from mediobasal hypothalamic explants and posterior 
pituitaries in culture. This effect is mediated by prostagland-
ins and is abolished by indomethacin [73].  

 The effects of IL-6 on neuronal functioning are not re-
stricted to the CNS. For instance, IL-6 inhibits nociceptive 
fiber responses to heat both in vivo and in vitro. Similarly, 
IL-6 administered systemically to anesthetized rats, with or 
without neuropathic pain, inhibits all naturally evoked neu-
ronal responses, but, interestingly, only animals with nerve 
ligation showed heat responses, while intraplantar IL-6 injec-
tion lead to thermal hypoalgesia in rats [74, 75].  

b). IL-6 Effects on Behavioral States 

 The effects of IL-6 on neural functioning have not only 
been analyzed at the level of cellular communication. The 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Proposed neuroimmunological interactions that occur in higher vertebrates.  

In physiological conditions there is a crosstalk between the neurological and the immune systems of the host. External stimuli, such as infec-

tions, results in a TH1/TH2 systemic cytokine production of the immune response. Also, the central nervous system (CNS) is able to actively 

induce the expression of cytokines, which may affect the CNS function. 
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most powerful demonstration that cytokines indeed modulate 
behavior comes from the fact that intraventricular admini-
stration of proinflammatory cytokines, such as IL-6, induces 
sickness behavior by acting on the amygdalar complex. Nev-
ertheless, the behavioral effect of IL-6 is not restricted to 
behaviors associated to immunological functions, since it 
regulates functions as important as learning and memory. IL-
6 administration reduced scopolamine-induced amnesia 
without affecting neurotransmitter level, as monitored by 
passive avoidance [76].  

 Even when IL-1  is thought to be a potent mediator of 
sickness behaviors, it is known that IL-1 potentiates the ac-
tions of IL-6, suggesting that most of the effects attributable 
to IL-6 are on its own, and not by IL-1. Also, it is though 
that IL-1 induces the IL-6 release in endocrine and neural 
tissue, thus indicating that many of the effects that have been 
attributed to IL-1 indeed belong to IL-6. Accordingly, pri-
mary astrocyte cultures, obtained from mouse, synthesize IL-
6 when exposed to IL-1 , but they do so more importantly 
after incubation with neuromodulators such as substance P, 
vasoactive intestinal polypeptide and histamine [51, 77, 78]. 
It has also been shown that IL-6 and IL-1  regulate their 
own expression, likely through autocrine mechanisms, in 
cultured astrocytes. Furthermore, to sustain that cytokines 
constitutively produced by neural cell lineages indeed play 
important roles in modulating neuronal functions, it is re-
quired not only to show their production within the brain 
itself, but to demonstrate the presence of receptors at proper 
targets. In accordance, IL-6 and IL-1 receptors have been 
detected in various neuronal populations along the peripheral 
and CNS structures [78-80].  

c). IL-6 Effects on Sleep 

 The interactions between nervous and immune systems 
have been found to play an important role on sleep. At the 
central level, cytokines such as IL-6, IL-1 and TNF-  have 
been shown to exert regulatory functions on sleep [81]. Par-
ticularly, IL-6 presents a circadian secretion pattern with an 
increase during sleep [82, 83], while sleep deprivation in-
creases plasma IL-6 levels [84] suggesting a possible partici-
pation on the physiological functions of sleep such as con-
solidation of memory. Intranasal administration of IL-6 im-
proves sleep-related emotional memory consolidation in 
healthy men while it does not affect other types of memory 
this effect is mediated by the interactions of the cytokine to 
both its membrane receptor and its soluble isoform [85]. 

The Role of IL-6 in Aging, Inflammation and Neurode- 
generation in the CNS 

 It is widely held that neurodegenerative diseases are ac-
companied by inflammation, possibly resulting from accu-
mulation of diverse molecules in the brain. The paradigm 
implies that molecules proper of the inflammatory immune 
response mediate the damage produced to neurons as a result 
of the inflammatory process by the host’s immune system. 
This paradigm in neurodegenerative diseases has been 
around for a long time and in spite of thoughtful recommen-
dations against simplification, it is rarely questioned. It could 
be a matter of debate the association with many diseases and 
with mortality trends in humans. It is also involved in 
broader subjects, including evolution of reproduction, deci-

sion making of the host, social hierarchy, mating behavior 
and the energy costs of infection and of the immune re-
sponse. However, current evidence so far conflicted with 
these observations, found in the literature that no evidence 
(other than the synthesis of cytokine mediators of inflamma-
tion) suggests that inflammation indeed exists in the diseased 
brain. Thus, in the following paragraphs we will try to sum-
marize what is known about pro-inflammatory IL-6 effects 
and their role in the diseased brain. 

 Inflammatory processes that occur within the CNS can 
produce illness-induced behaviors which include fever, sleep 
and the development of allodynia and hyperalgesia. IL-6 
appears to participate in the process of aging in the brain. 
Evidences have shown that IL-6 is augmented in the brain of 
aged humans and rodents [86, 87]. This increase might re-
flect the decrease of steroid hormone levels and of their im-
muno-supressing actions, both associated with aging. 
Changes in the expression of Sp1, Sp3 and Sp4 transcription 
factors also occur in the aged brain. These factors downregu-
late NF- B expression, thus favoring inflammatory condi-
tions in the elder [88, 89]. Interestingly, the elevation of IL-6 
has been documented in the brain suffering neurodegenera-
tive diseases, such as Alzheimer disease [90-92], dementia 
[93], multiple sclerosis [94] and mayor depression [95] and 
this circumstance has led to the idea that maintaining the 
balance between pro-inflammatory and non-inflammatory 
cytokines determines, to some extent, the outcome of CNS 
injuries or neurodegeneration [96-100]. High IL-6 peripheral 
levels have been correlated to hippocampal degeneration as 
well as impairment in memory [101]. 

 The discovery that several proinflammatory cytokines act 
as endogenous pyrogens and that other cytokines can act as 
antipyretic agents provided a link between the immune and 
the CNS and stimulated the study of the central actions of 
cytokines. IL-6 has been most investigated for their pyro-
genic or antipyretic actions [102-106]. The experimental 
evidence demonstrating the role of these secreted proteins in 
modulating the fever response is as follows: 1) association 
between IL-6 levels in serum, cerebrospinal fluid, and fever; 
2) presence of IL-6 receptors in various cell types in the 
brain and demonstration of the effects of the pharmacologi-
cal application of cytokines and of their neutralizing antibod-
ies on the fever response; 3) fever studies on IL-6 and IL-6 
receptor- transgenic models.  

 Studies on the peripheral and the central action of cytoki-
nes demonstrated that peripheral IL-6 can communicate with 
the brain in several ways, including stimulation of afferent 
neuronal pathways and induction of the synthesis of a non-
cytokine pyrogen, i.e. PGE2, in endothelial cells in the pe-
riphery and in the brain. IL-6 synthesized in the periphery 
may act by crossing the blood brain barrier and acting di-
rectly via neuronal IL-6 receptors [107]. The mechanisms 
that ultimately mediate the central action of IL-6 on the tem-
perature-sensitive neurons in the preoptic hypothalamic re-
gion involved in thermoregulation, directly or via second 
mediators, remain to be fully elucidated (Fig. 2).  

 Lipopolysaccharide (LPS), causes the release of IL-6 
from immune cells, that can reach the brain by several 
routes. Furthermore, IL-6 is induced in neurons within the 
brain by systemic injection of LPS. Then, IL-6 determines 
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the pattern of hypothalamic-pituitary secretion that charac-
terizes infection. It has been shown that IL-6 induces an ac-
tivation of both microglia and astrocytes in different brain 
regions of the same hemisphere [108]. Also, treatment of 
astrocyte cultures with IL-6 significantly altered the astro-
cyte functions and ultrastructure, findings that suggests that 
LPS affects astrocyte function and structure via the release 
of proinflammatory cytokines [109].  

 It has been shown that IL-6 is chronically expressed at 
elevated levels within the CNS in many neurological disor-
ders and may contribute to the hystopathological, patho-
physiological, and cognitive deficits associated with such 
disorders. Therefore, chronic IL-6 exposure can disrupt nor-
mal CNS function and thereby contribute to the pathophysi-
ology associated with many neurological diseases. The in-
duction of IL-6 by lesion, infection or experimentation, in-
duced a marked and dose-dependent decrease in the expres-
sion of PTP and LTP that was counteracted by the simulta-
neous treatment with the tyrosine kinase inhibitor laven-
dustin A (LavA), but did not significantly affect PPF [61]. 
The IL-6-induced inhibition of PTP and LTP was accompa-
nied by a simulation of STAT3 tyrosine phosphorylation and 
an inhibition of MAPK/ERK dual phosphorylation, in the 
absence of changes in the state of activation of SAPK/JNK, 
in the same fashion as in the activated immune system [61], 
indicating that the tyrosine kinases and MAPK/ERK are in-
volved in hippocampal synaptic plasticity and may represent 
preferential intracellular targets for the actions of IL-6 in the 
adult nervous system. Previous experiments in which a strain 
of transgenic mice with the GFAP promoter driven-astrocyte 
production of IL-6 was used to determine whether the pre-
existing production of these cytokines in vivo might modu-
late the sensitivity of neurons to exocytotoxic agents, and it 
was suggested that pre-existing IL-6 production and inflam-
mation in the CNS not only causes spontaneous neurodegen-
eration but also synergizes with other neurotoxic insults to 
induce more severe acute functional neurological impairment 
[49].  

ENDOCRINE EFFECTS OF IL-6 

 The endocrine effects of this cytokine have been exten-
sively demonstrated. For instance, it has been shown to 
stimulate the secretion of LH and FSH in cultured pituitary 
cells [110], and to stimulate the release of prolactin from the 
anterior pituitary gland [111]. On the other hand, IL-6 inhib-
its FSH-stimulated progesterone production by rat granulosa 
cells in vitro [112]. In some reports, the IL-6 activity has 
been shown to be an important factor that affects the activity 
of P-450 aromatase, mainly in estrogen-dependent breast 
cancer cells [113, 114]. IL-6 has been suggested to be capa-
ble of performing those immunoendocrinological interac-
tions that lead to the feminization process in the cysticercotic 
male mice because of its effect on P450 aromatase. IL-6 ex-
pression is involved in the paracrine control of testicular 
function, and the fact that FSH could be involved in the in-
duction of IL-6 expression in the testes of infected male mice 
is supported by previous studies in human Sertoli cells, in 
which FSH only stimulated IL-6 production by Sertoli cell-
enriched preparations, but increased the release of both IL-1 
and IL-6 in germ cell-depleted Sertoli cell cultures [115]. In 
addition, LPS and latex beads enhanced the production of 

IL-6 by Sertoli cell cultures, whereas human chorionic go-
nadotropin and LPS enhanced the release of IL-6 by Leydig 
cells [115]. The molecular mechanisms of testicular aro-
matase activation induced by IL-6 are not clear, but could 
involve its regulation by a distal promoter, namely promoter 
I.4, as has been shown for other steroidogenic tissues [116]. 
The stimulation of expression in adipose stromal cells by IL-
6 is mediated via the JAK-STAT3 signaling pathway and a 
GAS element upstream of promoter I.4.82. IL-6 has been 
shown to enhance the secretion of adrenocorticotropic hor-
mone (ACTH) through the stimulation of the production of 
hypothalamic corticotropin-releasing hormone (CRH), which 
produces heightened HPA activity characterized by increases 
in cortisol, to be reported elevated in major depression.  

CONCLUDING REMARKS 

 The present literature search revealed an extremely com-
plex NIE-network involving many molecules and IL-6 that 
foresees potent interactions in events generally attributed to 
the exclusive operation of single systems in response to sim-
ple precepts (reproduction, defense). So much plasticity and 
multifunctionality in a network are not without a risk. Loss 
of control could lead to the loss of tolerance and autoimmu-
nity, to be involved in the immune compromise of aging, 
and/or in the physiopathology of some infections in which 
inflammation is a prominent effector of pathology. Also, the 
NIE network could connect IL-6 with diseases that seem 
distant from the immunologic and endocrinologic domains, 
such as arterial hypertension, cystcercosis and cancer.  

 New neuroscience data rapidly accumulating in the past 
years call for radical revision of many long-established and 
widely accepted paradigms. This paper reviews some data 
leading to new concepts of the life and functions of neurons. 
The adult brain contains stem cells that are the source of the 
precursors for all the main types of brain cells: neurons, as-
trocytes, and oligodendroglia. These cells can substitute the 
deteriorating elements in the adult and even in the old brain. 
The neurons happen to be highly resistant to lesions in their 
processes as well as to anoxia, and inhibitory neurons are 
shown to be especially stable in some pathological condi-
tions. Changes in the afferent input result in various types of 
rapid compensatory morphological and functional reorgani-
zations at different levels. Thus, the previous fatalistic view 
of the nervous system is now substituted for an optimistic 
one, which considers various possibilities of prolongation 
and restoration of normal functioning of the brain. Simulta-
neously, our concepts of the neuron have drastically 
changed. A unitary neuron may operate by several neuro-
transmitting substances; their synaptic influences upon den-
drites may evoke the active propagation of calcium and so-
dium spikes, their axons may differentially release transmit-
ter substances depending on the parameters of excitation. All 
neuronal functions are helped and controlled by astroglia, 
which participate in the synthesis of transmitters and protect 
the neurons from exocytotoxic death. In addition to synaptic 
interactions between neurons, there exist other types of 
communications, such as volume conduction of transmitters 
after their spillover from the excited synapses and non-
synaptic (varicose) zones, as well as exchange of molecules 
and ions through the gap junctions. A complex picture of 
interneuronal communications with multiple synaptic, pre-
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synaptic, and parasynaptic interactions is further complicated 
by the intimate participation of cytokines in these processes. 
The mutual regulatory influences between neurotransmitters, 
neurotrophic, and neuroimmune systems show that in normal 
conditions they are all working in concert. This increase in 
the number of factors that determine the final result of inter-
actions between neurons adds new difficulties to the devel-
opment of theoretical concepts or simulation of brain func-
tions. Finally, the development of drugs specifically targeted 
against IL-6 may be useful in the prevention of plaque for-
mation, myocardial infarction and restenosis. Based on the 
literature data, blocking the effect of IL-6 in humans may 
probably improve lupus by interacting with the autoinflam-
matory process both systemically and locally. The specific 
targeting of the complex IL-6/sIL-6R pathway will be a 
promising new approach for the treatment of autoimmune, 
parasitic and neurodegenerative diseases. 

 Even when it could be hard to think that IL-6 alone has 
all the effects in the central, endocrine, and immune systems 
by itself, other proinflammatory cytokines could create re-
dundancy in the system and work together to elicit several of 
the discussed effects that are attributed to IL-6.  
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