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Abstract: Mammals have developed an endogenous circadian clock located in the suprachiasmatic nuclei (SCN) of the 

anterior hypothalamus that responds to the environmental light-dark cycle. Similar clocks are found in peripheral tissues, 

such as the liver and adipose tissue, regulating cellular and physiological functions. The circadian clock has been reported 

to regulate metabolism and energy homeostasis, including lipogenic and adipogenic pathways. This is achieved by 

mediating the expression and/or activity of certain metabolic enzymes and transport systems. In return, enzymes and 

transcription activators interact with and affect the core clock mechanism. Animals with clock gene mutations that disrupt 

cellular rhythmicity have provided evidence to the relationship between the circadian clock and metabolic homeostasis. In 

addition, clinical studies in obese patients accentuate the link between the circadian clock and metabolism. This review 

will focus on the inter-connection between the circadian clock and metabolism with implications for body weight and how 

the circadian clock is influenced by hormones that regulate metabolism. 
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INTRODUCTION 

 The biological clock regulates the expression and/or 
activity of enzymes and hormones involved in metabolism. 
In turn, metabolic factors and some nutrients feed back to 
entrain circadian clocks. Moreover, disruption of circadian 
rhythms leads to metabolic disorders. This review will 
summarize recent findings concerning the relationship 
between metabolism and circadian rhythms in mammals 
with implications for body weight. Regulation of circadian 
rhythms may help combat obesity which has become a 
serious public health problem. 

CIRCADIAN RHYTHMS 

 Rotation of earth around its axis imparts light and dark 
cycles. Organisms on earth evolved to predict these cycles 
and restrict their activity to either the night or day, being 
nocturnal or diurnal, respectively. By developing an 
endogenous circadian (circa - about and dies - day) clock, 
which is entrained to external stimuli, organisms on earth 
ensure that physiological processes are performed at the 
optimal time during the circadian cycle [1]. In mammals, 
most of the physiological and behavioral systems, such as 
sleep-wake cycle, cardiovascular activity, endocrine system, 
blood pressure, body temperature, renal activity, 
gastrointestinal tract activity, hepatic metabolism, are 
regulated by the circadian clock [1, 2].  

THE CENTRAL BIOLOGICAL CLOCK 

 In mammals, the central circadian clock is located in the 
hypothalamic suprachiasmatic nuclei (SCN). The SCN clock  
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is composed of single-cell circadian oscillators, which are 
synchronized and generate coordinated circadian outputs that 
regulate rhythms in the periphery [3-6]. Similar clock 
oscillators have been found in peripheral tissues, such as the 
liver, intestine, retina, adipose tissue, etc. [2, 7-9] (Fig. 1). 
Complete destruction of SCN neurons abolishes circadian 
rhythmicity in the periphery, as it leads to loss of synchrony 
among individual cells and damping of the rhythm at the 
population level [10, 11]. 

 As the endogenous rhythms in the SCN are appro-
ximately 24 h, it is necessary

 
to entrain the circadian 

pacemaker each day to the external light-dark cycle to 
prevent drifting out of phase. Light, a potent synchronizer 
for the SCN [12], is perceived by the retina and the signal is 
transmitted via the retinohypothalamic tract (RHT) to the 
SCN [2, 13, 14]. In response, the SCN sends signals to 
peripheral oscillators to maintain rhythmicity in these 
tissues. The SCN accomplishes this task via neuronal 
connections or circulating humoral factors [15] (Fig. 1). 
Although the mechanisms are not fully understood, several 
humoral factors expressed cyclically by the SCN, such as 
transforming growth factor  (TGF ) [16], prokineticin 2 
(PK2) [17], and cardiotrophin-like cytokine (CLC) [18], 
have been shown to inhibit nocturnal locomotor activity 
when injected intracerebroventricularly. Indeed, all these 
factors peak during the daily period of locomotor 
quiescence. In turn, SCN rhythms can be altered by neuronal 
and endocrine inputs [19] (see below).  

 In each peripheral tissue, the fraction of cyclically 
expressed transcripts ranges between 5-20% of the total 
population and the vast majority of these genes are tissue-
specific [1, 9, 20-26]. These findings emphasize the 
circadian control over a large portion of the transcriptomes in 
peripheral tissues. For a peripheral tissue, such as the liver, 
signals from the central SCN clock or the local endogenous 
clock may control rhythmic gene expression [27, 28]. 
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SCN EFFERENTS 

 SCN fibers have been shown to terminate in and around 
the arcuate nucleus (ARC), in the ventromedial 
hypothalamus (VMH), and in the ventral part of the lateral 
hypothalamus (LH), suggesting an interaction with areas 
involved in food intake and organization of activity [29] 
(Fig. 2). However, the SCN provides its most intense output 
to the subparaventricular zone (SPZ) and dorsomedial 
hypothalamus (DMH) [30, 31]. The SPZ and DMH project 
to other regions in the brain, including the paraventricular 
nucleus (PVN), the LH, ventrolateral preoptic nucleus 
(VLPO), and medial preoptic area (MPOA) that regulate 
corticosteroid release, wakefulness/feeding, sleep, and 
thermoregulation, respectively (Fig. 2). Destruction of the 
ventral SPZ (vSPZ) reduces circadian rhythms of sleep-
wakefulness and locomotor activity, but has little effect on 
circadian regulation of body temperature [32]. Conversely, 
degeneration of the dorsal SPZ (dSPZ) disrupts circadian 
regulation of body temperature with minimal effect on sleep-
wakefulness and locomotor activity [32]. Ablation of DMH 
cell bodies, which are innervated by SCN and SPZ neurons, 
results in severe impairment of circadian-regulated sleep-
wakefulness, locomotor activity, corticosteroid secretion, 
and feeding [33]. Thus, DMH and VMH constitute a 
gateway between the SCN master pacemaker and brain 
centers involved in feeding regulation and organization of 
activity [34] (Fig. 2).  

 The SCN can control energy homeostasis by providing 
its output to pre-autonomic neurons located in the ventral 
and dorsal borders of the PVN which are connected to the 
parasympathetic and sympathetic systems [35, 36]. Studies 
have shown that many inter-neurons, which project from the 
SCN to the PVN, contain -aminobutyric acid (GABA) as 
neurotransmitter and inhibit the PVN [37, 38]. The SCN uses 
outputs via the PVN to control glucose metabolism in the 
liver and via the MPOA to control lipid metabolism in 
adipose tissue [39-41]. Thus, the SCN is capable of 

controlling peripheral tissues not only by the secretion of 
humoral signals but also by affecting the two branches of the 
autonomic nervous system, i.e., the sympathetic and 
parasympathetic systems. 

SCN AFFERENTS 

 From the sites where visceral sympathetic (the dorsal 
horn) and parasympathetic information enters the brain (the 
nucleus tractus solitarius (NTS)), no direct projections are 
known to reach the SCN. Autonomic information is 
transmitted first to the PVN and then to the SCN. Gastrin-
releasing peptide, a mediator of both feeding and locomotor 
activity, mediates light-like resetting of the SCN [42]. 
Peptide tyrosine-tyrosine (PYY3-36) has also been shown to 
correlate with alterations to wakefulness and sleep 
architecture [43]. The effect of these gut-derived 
polypeptides on the SCN is presumably mediated via vagal 
afferents that travel through the autonomic nervous system to 
the SCN.  

 This seems to be different for areas free of the blood–
brain barrier (circumventricular organs) that can directly 
sense metabolites and hormones in the blood stream. The 
ventromedial ARC (vmARC) is considered the site where 
information from the circulation can reach the hypothalamus, 
either via its connection with the circumventricular median 
eminence (ME) or through hormones that cross the blood 
brain barrier and bind to its membrane-bound receptors. The 
dense reciprocal interaction between the vmARC and the 
SCN provides the anatomical basis for the link between 
circulating metabolic information and the SCN [29]. This 
anatomical connection between vmARC and SCN may form 
the basis upon which the SCN is informed about circulating 
hormones and the vmARC about the time of the day (Fig. 2).  

 Leptin can be the bridge between energy homeostasis and 
circadian control, due to its circadian oscillation and 
expression of its receptor in several hypothalamic regions. 
Receptors for leptin and ghrelin are present on SCN cells 
[29, 44, 45], so it is possible that these hormones bind 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Control of the circadian clock over peripheral tissues. Light resets the suprachiasmatic nuclei (SCN) via the retinohypothalamic tract 

(RHT). The SCN then dictates entrainment of peripheral tissues and physiological system via humoral factors or autonomic innervation. As a 

result, tissue specific hormone expression and secretion and metabolic pathways exhibit circadian oscillation. 
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directly to SCN neurons, similarly to their effect on 
NPY/AgRP-neurons in the ARC. Activation of ventromedial 
ARC (vmARC) neurons by systemic administration of the 
ghrelin mimetic GH-releasing peptide-6 combined with SCN 
tracing showed that vmARC neurons transmit feeding-
related signals to the SCN [29]. Administration of ghrelin to 
SCN slices or SCN explants in vitro caused phase shifts in 
gene expression. However, administration of ghrelin to wild-
type mice only caused phase shifts after 30 h of food 
deprivation, whereas intraperitoneal injection of ghrelin did 
not cause phase shifts in wild-type mice fed ad libitum [46]. 
Thus, it is still not clear whether ghrelin and leptin affect the 
SCN directly or through their effect on the ARC, which is 
then relayed to the SCN (Fig. 2). 

 Thus, there are three possible pathways by which 
metabolic information may reach the SCN: 1) the 
sympathetic and parasympathetic branches of the autonomic 
nervous system; 2) hormones that cross the blood brain 
barrier; 3) neuronal connection with other nuclei that receive 
information through connections with circumventricular 
organs. 

THE MOLECULAR CIRCADIAN CLOCK 

 The circadian clock in mammals is an intracellular 
mechanism sharing the same molecular components in SCN 
neurons and peripheral cells [47]. Generation of circadian 
rhythms is dependent on the concerted co-expression of 

specific clock genes, which exhibit a 24-h oscillation in 
cells. Many clock gene products function as transcription 
factors, which possess PAS (PER, ARNT, SIM) and basic 
helix-loop-helix (bHLH) domains involved in protein-
protein and protein-DNA interactions, respectively. These 
factors ultimately activate or repress their own expression 
and, thus, constitute a self-sustained transcriptional feedback 
loop. Changes in subcellular localization, concentration, 
posttranslational modifications (phosphorylation, acetyla-
tion, deacetylation, SUMOylation), and delays between 
transcription and translation lead to the approximate 24-h 
cycle [1, 2, 48, 49].  

 In mammals, the first clock gene identified, encodes the 
transcription factor circadian locomotor output cycles kaput 
(CLOCK) [50], which dimerizes with brain and muscle-
Arnt-like 1 (BMAL1) to activate transcription (Fig. 3). 
CLOCK and BMAL1, two PAS-bHLH transcription factors, 
can activate transcription upon binding to E-box (5’- 
CACGTG -3’) and E-box-like promoter sequences [2]. 
BMAL1 can also dimerize with other CLOCK homologs, 
such as neuronal PAS domain protein 2 (NPAS2), to activate 
transcription and sustain rhythmicity [51, 52]. PERIOD 
(PER1, PER2, and PER3) and two CRYPTOCHROME 
(CRY1 and CRY2) proteins operate as negative regulators 
and inhibit CLOCK:BMAL1-mediated transcription [6, 53, 
54] (Fig. 3). Recent studies have demonstrated that CLOCK 
has histone acetyltransferase activity [55, 56]. Indeed, cyclic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). SCN afferents and efferents. The SCN sends neuronal connections mainly to the ARC and SPZ (blue arrows). Hormones and 

nutrients may affect the ARC directly. The ARC controls expression of orexins and MCH in LH. The SPZ innervates the DMH, which, in 

turn, innervates PVN, MPOA, VLPO, and LH. AgRP, agouti-related protein; ARC, Arcuate nucleus; DMH, dorsomedial hypothalamus; LH, 

lateral hypothalamus; MCH, melanin concentrating hormone; MPOA, medial preoptic area; NPY, neuropeptide Y; ORX, orexins; POMC, 

proopiomelanocortin; PVN, paraventricular nucleus; SCN, suprachiasmatic nuclei; SPZ, subparaventricular zone; VLPO, 

ventrolateralpreoptic area; VMH, ventromedial hypothalamus. 
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histone acetylation and methylation have been observed on 
the promoters of several clock genes [56-60]. In addition to 
the aforementioned factors, several other proteins are crucial 
in order to sustain clock function. Casein kinase I 
epsilon (CKI ) is thought to phosphorylate the PER proteins 
and, thereby, enhance their instability and degradation [48, 
61-63]. CKI  also phosphorylates and partially activates 
BMAL1 [64].  

EFFECT OF THE BIOLOGICAL CLOCK ON  
METABOLISM 

 Hypothalamic orexigenic neuropeptides, such as 
neuropeptide Y (NPY) and Agouti-related protein (AgRP), 
and anorexigenic neuropeptides, such as proopiomelanocor-
tin (POMC), are expressed according to a pronounced 
diurnal rhythm [65]. Many hormones involved in metabo-
lism, such as insulin, glucagon, adiponectin, corticosterone, 
leptin, and ghrelin, have been shown to exhibit circadian 
oscillation [66]. Leptin, an adipocyte-derived circulating 
hormone that acts at specific receptors in the hypothalamus 
to suppress appetite and increase metabolism, is extremely 
important in obesity. Leptin exhibits striking circadian 
patterns in both gene expression and protein secretion, with 
peaks during the sleep phase in humans [67]. Neither feeding 
time nor adrenalectomy affects the rhythmicity of leptin 
release. However, ablation of the SCN has been shown to 
eliminate leptin circadian rhythmicity in rodents, suggesting 
that the central circadian clock regulates leptin expression 
[68]. In addition, SCN-lesioned rats, as opposed to intact 
animals, showed no elevation in plasma free fatty acids after 

intraperitoneal administration of leptin, suggesting a role for 
SCN in leptin function [69]. 

 In addition to the endocrine control, the circadian clock 
has been reported to regulate metabolism and energy 
homeostasis in peripheral tissues [66, 70]. This is achieved 
by mediating the expression and/or activity of certain 
enzymes and transport systems [71, 72] involved in the 
different metabolic pathways, such as cholesterol 
metabolism, drug and toxin metabolism, the citric acid cycle, 
and glucose metabolism [34, 73-76]. Recently, a comprehen-
sive survey of nuclear receptor mRNA profiles in white and 
brown adipose tissue, liver, and skeletal muscle in mice 
revealed that ~50% of the known nuclear receptors exhibit 
rhythmic expression [77]. As these receptors sense various 
lipids, vitamins, and fat-soluble hormones, they serve as 
direct link between nutrient-sensing pathways and the 
circadian control of gene expression. Similarly, glucose 
uptake and the concentration of adenosine triphosphate 
(ATP) in the brain and peripheral tissues have been found to 
fluctuate around the circadian cycle [41, 74, 78]. Lesion of 
rat SCN abolishes diurnal variations in whole body glucose 
homeostasis [79], altering rhythms in glucose utilization 
rates and endogenous hepatic glucose production.  

EFFECT OF METABOLISM ON CIRCADIAN 
RHYTHMS 

 Adenosine monophosphate (AMP)-activated protein 
kinase (AMPK), an important low energy sensor, has been 
found to phosphorylate Ser-389 of CKI , resulting in 
increased CKI  activity and degradation of mPER2. mPER2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The core mechanism of the mammalian circadian clock and its link to lipid metabolism. The CLOCK:BMAL1 heterodimer binds 

to enhancer E-box sequences and activates transcription. PERs and CRYs inhibit CLOCK:BMAL1, resulting in decreased transcription. 

CLOCK:BMAL1 heterodimer induces the transcription of R ev - e rb ,  R o r , and Ppar .  ROR  stimulates and REV-ERB  inhibits 

Bmal1 transcription, acting through ROR elements (RORE). PPAR  activates transcription of R ev - e rb a  an d  Bmal1 by binding to 

peroxisome proliferator-response elements (PPRE). 
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degradation leads to a phase advance in the circadian 
expression pattern of clock genes in mice [80]. In addition, 
AMPK 3 subunit knockout mice exhibits impaired 
expression profile of clock-related genes, such as Per1 and 
Cry2, in skeletal muscle in response to 5-amino-4-imidazole-
carboxamide riboside (AICAR), an AMPK activator, as well 
as a diurnal shift in energy utilization [81]. As AMPK has 
been implicated in feeding regulation [82] and it serves as an 
energy sensor, it could be one of the links that integrates the 
circadian clock with metabolism. 

 Another protein, recently found to link metabolism with 
the circadian clock, is SIRT1. SIRT1 is an NAD

+
-dependent 

histone deacetylase involved in transcriptional silencing, 
genome stability, and a key factor in the longevity response 
to caloric restriction [83, 84]. It seems that after binding to 
E-box, CLOCK and CBP/p300 acetylate histones H3 and H4 
[55] and BMAL1 leading to binding of PER/CRY complex 
[85] and PER2 acetylation [86]. SIRT1 interacts directly 
with CLOCK and deacetylates BMAL1 and PER2 [86-88] 
leading to PER2 phosphorylation and degradation and a new 
cycle can begin. In addition, CLOCK:BMAL1 heterodimer 
regulates the circadian expression of NAMPT (nicotinamide 
phosphoribosyltransferase), a rate-limiting enzyme in the 
NAD

+
 salvage pathway. SIRT1 is recruited to the Nampt 

promoter and contributes to the circadian synthesis of its 
own coenzyme [89]. Most recently, it has been shown that 
AMPK enhances SIRT1 activity by increasing cellular 
NAD

+
 levels, resulting in the deacetylation and modulation 

of the activity of downstream SIRT1 targets [90]. 

 Thus, it turns out that the levels of NAD
+
 regulate 

circadian rhythms [91]. Indeed, CLOCK and its homolog 
NPAS2 can bind efficiently to BMAL1 and consequently 
to E-box sequences in the presence of reduced nicotina-
mide adenine dinucleotides (NADH and NADPH). On 
the other hand, the oxidized forms of the nicotinamide 
adenine dinucleotides (NAD

+
 and NADP

+
) inhibit DNA 

binding of CLOCK:BMAL1 or NPAS2:BMAL1 [91, 
92]. The ratio of NAD(P)

+
/NAD(P)H, which dictates the 

binding of CLOCK/NPAS2:BMAL1 to E-boxes, could 
cause phase-shifts in gene expression [71, 91, 92]. 

CIRCADIAN RHYTHMS AND LIPID METABOLISM 

 Circadian clocks have been shown to regulate the 
physiology of inguinal white adipose tissue, epididymal 
white adipose tissue, and brown adipose tissue [9, 93, 94]. 
Clock and adipokine genes, such as resistin, adiponectin, 
leptin, and visfatin, exhibit circadian expression in visceral 
fat tissue [95]. In addition, Fatty acid transport protein 1 
(Fatp1), fatty acyl-CoA synthetase 1 (Acs1), and adipocyte 
differentiation-related protein (Adrp) all exhibit diurnal 
variations in expression [96].  

 BMAL1 activity has been shown to be involved in the 
control of adipogenesis and lipid metabolism in mature 
adipocytes. Embryonic fibroblasts from Bmal1

-/- 
knockout 

mice failed to differentiate into adipocytes. In addition, loss 
of BMAL1 expression led to a significant decrease in the 
expression of several key adipogenic/lipogenic factors, such 
as peroxisome proliferator-activated receptor 2 (PPAR 2), 
adipocyte fatty acid-binding protein 2 (aP2), CCAAT 
enhancer binding protein  (C/EBP ), C/EBP , sterol regula-
tory element-binding protein 1a (SREBP-1a), phosphoe-

nolpyruvate carboxykinase (PEPCK), and fatty acid synthase 
(FAS). Furthermore, over-expression of BMAL1 in 
adipocytes increased lipid synthesis activity. These results 
indicate that BMAL1, a key protein in the core clock 
mechanism, plays important roles in the regulation of 
adipose differentiation and lipogenesis in mature adipocytes 
[97]. The role of BMAL1 in adipogenesis is further 
emphasized, as its expression is negatively regulated by the 
transcription factor reverse erythroblastosis virus  (REV-
ERB ) [98], and positively regulated by retinoic acid 
receptor-related orphan receptor  (ROR ) and ROR  [99] 
via the ROR response element (RORE) [100]. Both REV-
ERBs and RORs have been implicated in adipogenesis and 
lipid metabolism [101]. Interestingly, CLOCK:BMAL1 
heterodimer regulates the expression of both Rev-erb  
and Ror  [98, 99, 102] (Fig. 3). Mice deficient in ROR  
or REV-ERB  have impaired circadian rhythms of 
locomotor activity and clock gene expression [98, 99]. In 
addition to REV-ERBs and RORs, peroxisome proliferator-
activated receptor  (PPAR ), provides another example of a 
reciprocal link between circadian and lipid metabolic 
processes. PPAR  regulates the transcription of genes 
involved in lipid and glucose metabolism upon binding of 
endogenous free fatty acids. The CLOCK:BMAL 
heterodimer mediates transcription of PPAR , which subse-
quently binds to the peroxisome-proliferator response 
element (PPRE) and activates transcription of Bmal1 [103-
105] (Fig. 3). 

 The PPAR  coactivator, PGC-1 , a transcriptional 
coactivator that regulates energy metabolism, is rhythmically 
expressed in the liver and skeletal muscle of mice. PGC-1  
stimulates the expression of Bmal1 and Rev-erb , through 
coactivation of the ROR family of orphan nuclear receptors 
[106, 107]. Mice lacking PGC-1  show abnormal diurnal 
rhythms of activity, body temperature, and metabolic rate 
due to aberrant expression of clock genes and those involved 
in energy metabolism. Analyses of PGC-1 -deficient 
fibroblasts and mice with liver-specific knockdown of PGC-
1  indicate that it is required for cell-autonomous clock 
function [106]. Acetylated PGC-1  is also a substrate for 
SIRT1 [90]. Thus, PPAR , PPAR , REV-ERB , ROR , and 
PGC-1  are key components of the circadian oscillator that 
integrate the mammalian clock and lipid metabolism. The 
inter-connection between the clock core mechanism and 
lipogenic and adipogenic pathways emphasizes why clock 
disruption leads to metabolic disorders. 

CIRCADIAN RHYTHMS AND METABOLIC DIS-
ORDERS 

 Disruption of circadian rhythms in the SCN and 
peripheral tissues leads to metabolic disorders [108-110]. 
Evidence suggests that loss of circadian rhythmicity of 
glucose metabolism may contribute to the development of 
metabolic disorders, such as type 2 diabetes, in rodents [111-
113] and humans [114, 115]. For example, daily cycles of 
insulin secretion and glucose tolerance are lost in patients 
with type 2 diabetes [115, 116], as are daily variations in 
plasma corticosterone levels and locomotor activity in 
streptozotocin-induced diabetic rats [111, 112]. The 
oscillations of clock (Bmal1, Per1, Per2, Cry1, Cry2 and 
Dbp) and adipokine genes were mildly suppressed in the 
adipose tissue of obese KK mice and greatly suppressed in 
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the adipose tissue of obese, diabetic (KK-A
y
) mice [95]. 

Similarly, obese diabetic mice exhibit circadian oscillation of 
most genes in the liver, but some genes had attenuated, but 
still rhythmic, expression [117]. In addition, in type 1 
diabetes patients, lipolysis is increased earlier in the evening 
than in healthy controls and remains elevated throughout the 
night, indicating that lipolysis shows a distinct circadian 
rhythm that is altered in type 1 diabetes patients [118]. These 
findings point to the tight relationship between disruption of 
circadian rhythms and metabolic disorders.  

 The most compelling linkage between metabolic 
disorders and the circadian clock is demonstrated in clock 
gene-mutant and knockout animals. Several strains with 
varying effects on metabolism have thus far been examined. 
Homozygous C57BL/6J Clock

19
 mice, with a truncated 

exon 18 and deleted exon 19 of the Clock gene, have a 
greatly attenuated diurnal feeding rhythm, are hyperphagic

 

and obese, and develop a metabolic syndrome of 
hyperleptinemia,

 
hyperlipidemia, hepatic steatosis, and 

hyperglycemia [119]. Loss of circadian rhythms in Clock
19

 
mutant mice was accompanied by attenuated expression of 
hypothalamic peptides associated with energy balance, such 
as ghrelin and orexin [119]. In addition, Clock

19
 mice had 

altered
 

gluconeogenesis and increased insulin sensitivity 
[120, 121]. In Clock

19 
on an Jcl:ICR background, serum 

levels of triglyceride and free fatty acids were significantly 
lower than in wild-type control mice, whereas total 
cholesterol and glucose, insulin, and leptin levels did not 
differ [122]. Unlike C57BL/6J Clock

19
 mutant mice [119], 

neither male nor female Jcl:ICR Clock
19 

mutant
 
mice were 

obese, and they mostly had low or normal fasting plasma
 

glucose rather than hyperglycemia, low plasma free fatty 
acids

 
rather than hyperlipidemia, and normal plasma leptin 

rather
 
than hyperleptinemia. Combination of the Clock

19 

mutation (Jcl:ICR) with the leptin knockout (ob/ob) 
resulted in significantly heavier mice than the ob/ob 
phenotype [123]. However, in Jcl:ICR Clock

19 
mutant 

mice, high fat diet amplified the diurnal variation in glucose 
tolerance and insulin sensitivity and obesity was attenuated 
through impaired dietary fat absorption [122]. Triglyceride 
content in the liver was significantly less increased in 
Jcl:ICR Clock

19 
mutant mice fed a high-fat diet compared 

with wild-type mice. Jcl:ICR Clock
19 

mutant mice had 
attenuated daily rhythms of Acsl4 (acyl-CoA synthetase 
long-chain 4) and Fabp1 (fatty acid binding protein 1) gene 
expression in the liver under both normal and high-fat diet 
conditions compared to wild-type mice, which could have 
led to the attenuated accumulation of triglycerides in the 
liver under a high-fat diet [124]. In Clock

19
 mutant, 

melatonin producing mice of the BALB/c/CBA background, 
relative weight

 
of epigonadal fat compared with body weight 

was not
 
significantly different between male wild-type and 

mutant mice fed a high-fat diet [121]. Although the effects 
on metabolism were variable, due to strain differences, the 
over all picture is that disruption of the Clock gene leads to 
disruption of metabolic pathways.  

 Bmal1
-/-

 knockout mice are lean. However, similarly to 
C57BL/6J Clock

19
mutant mice, Bmal1

-/-
 knockout mice 

exhibit suppressed diurnal variations in glucose and 
triglycerides as well as abolished gluconeogenesis. Although 
recovery from insulin-induced hypoglycemia was impaired 
in C57BL/6J Clock

19 
mutant and Bmal1

-/-
 knockout mice, 

the counter-regulatory response of corticosterone and 
glucagon was retained [120]. Thus, CLOCK and BMAL1 
regulate the recovery from insulin-induced hypoglycemia, 
glucose tolerance, insulin sensitivity, and fat absorption. 

 Mutation in another central clock gene Per2 (mPer2
-/-

 
mice), exhibits no glucocorticoid rhythm even though the 
corticosterone response to hypoglycemia is intact. Although 
food consumption is similar during the light and dark periods 
on high fat diet, mPer2

-/-
 mice develop significant obesity 

[125]. mPer2
-/-

 mice also exhibit increased bone density in 
mice [126]. As bone and adipose tissue share a common 
ontogeny, it is possible that these findings may also have 
implications for adipogenesis [127].  

EFFECT OF HIGH-FAT DIET ON CIRCADIAN 
RHYTHMS 

 Few studies show that a high-fat diet leads to minimal 
effects on circadian gene expression in visceral adipose 
tissue and liver [128, 129]. However, recent studies show 
that high-fat diet leads to rapid changes in both the period of 
locomotor activity in constant darkness and to increased food 
intake during the normal rest period under light-dark 
conditions [130]. These changes in behavioral rhythmicity 
correlate with disrupted clock gene expression within 
hypothalamus, liver, and adipose tissue, leading to altered 
cycling of hormones and nuclear hormone receptors 
involved in fuel utilization, in mice, rats, and humans [130-
135]. Furthermore, a high-fat diet modulates carbohydrate 
metabolism by amplifying circadian variation in glucose 
tolerance and insulin sensitivity [120]. 

 In addition to the disruption of clock gene expression, 

high-fat diet induced a phase delay in clock and clock-

controlled genes [134]. AMPK has been found to 

phosphorylate Ser-389 of CKI , resulting in mPER2 

degradation and a phase advance in the circadian expression 

pattern of clock genes [80]. As the levels of AMPK decline 

under HF diet, it is plausible that the changes seen in the 

expression phase of genes under HF diet are mediated by 

changes in AMPK levels [134]. In addition to its effect on 

gene expression, high-fat feeding led to impaired adjustment 

to local time by photic resetting. These results correlated 

with reduction in c-FOS and pERK expression in the SCN in 
response to light-induced phase shifts [136]. 

CIRCADIAN RHYTHMS AND OBESITY 

 Fluctuations in body weight have been associated with 

changes in day length in various species, suggesting a central 

role for the circadian clock in regulating body weight. For 

example, in Siberian hamsters, modulation of body weight 

depends on photoperiod acting via the temporal pattern of 

melatonin secretion from the pineal gland [137, 138]. In 

studies performed on sheep, adipose tissue leptin levels were 

modulated by day length independently of food intake, body 

fatness, and gonadal activity. In addition, increasing the 

length of the photoperiod resulted in increased activity of the 

lipogenesis-promoting proteins lipoprotein lipase and malic 

enzyme, independent of the nutritional status [139, 140]. In 

humans, studies have demonstrated an increased incidence of 
obesity among shift workers [141-143]. 
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 Clock and adipokine genes, such as resistin, adiponectin, 

leptin, and visfatin, exhibit circadian expression in visceral 

fat tissue [95]. The expression of these mediators is blunted 

in obese patients [68, 144, 145]. In obese subjects, leptin 

retains diurnal variation in release, but with lower amplitude 

[146]. Leptin 24-h levels were lower in obese compared with 

non-obese adolescent girls, suggesting that blunted circadian 

variation may play a role in leptin resistance and obesity 

[147]. Circadian patterns of leptin concentration were 

distinctly different between adult women with upper-body or 

lower-body obesity, with a delay in peak values of leptin of 

approximately 3 h in women with upper-body obesity [148]. 

Indeed, leptin and the leptin receptor knockouts in animals or 

mutations in humans have been demonstrated to produce 

morbid, early onset obesity, hypoleptinemia, hyperphagia, 

hyperinsulinemia, and hyperglycemia [149-152]. Similarly 

to leptin, the rhythmic expression of resistin and adiponectin 

was greatly blunted in obese (KK) and obese, diabetic (KK-

A
y
) mice [95]. In humans, circulating adiponectin levels 

exhibit both ultradian pulsatility and a diurnal variation. In 

the latter case, the pattern of adiponectin release is out of 

phase with leptin with a significant decline at night, reaching 

a nadir in the early morning [145]. In obese subjects, 

adiponectin levels were significantly lower than lean 

controls, although the obese group had significantly higher 

average pulse height and valley concentrations [153]. In rats, 

melatonin, a synchronizer of the SCN clock, decreased 

weight gain in response to high-fat diet and decreased 

plasma leptin levels within 3 weeks. These effects were 

independent of total food consumption [154]. Thus, it seems 

that the circadian clock plays a major role in determining 

body weight probably by influencing the expression and 
secretion of hormones. 

 A potential role of the Clock polymorphisms in obesity 

and other metabolic disorders has been suggested. A 

significant association was found between the different 

Clock haplotypes and obesity, nonalcoholic fatty liver 

disease, the metabolic syndrome, type 2 diabetes, and 

cardiovascular disease [155-157]. In addition, the Clock gene 

CGC haplotype may be protective for the development of 

obesity [156]. However, the 3111T/C single nucleotide 

polymorphism (SNP) of the Clock gene is not associated to 

human obesity and/or binge eating disorder, but it seems to 

predispose obese individuals to a higher BMI [158]. Thus, 

polymorphism in the Clock gene is associated with obesity 
and metabolic disorders. 

SUMMARY AND CONCLUSIONS 

 Western lifestyle leads to high food consumption, 

inactivity during the active period, enhanced activity in the 

rest period, and shortened sleep period. This lifestyle may 

cause disrupted circadian rhythms leading to obesity and 

metabolic disorders. Disruptions of rhythms together with 

genetic background increase the risk to develop health 

complications. Unfortunately, circadian rhythms in 

metabolism are often overlooked in both treatments and 

design of clinical and animal studies. Resetting the 

biological clock by food or feeding time may lead to better 

functionality of physiological systems preventing metabolic 
disorders and promoting well-being.  
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