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Abstract: Research in Alzheimer’s disease (AD) has seen a tremendous growth of candidate biomarkers in the last 

decade. The role of such established or putative biomarkers is to allow an accurate diagnosis of AD, to infer about its 

prognosis, to monitor disease progression and evaluate changes induced by disease-modifying drugs. An ideal biomarker 

should detect a specific pathophysiological feature of AD, not present in the healthy condition, in other primary 

dementias, or in confounding conditions. Besides being reliable, a biomarker should be detectable by means of procedures 

which must be relatively non-invasive, simple to perform, widely available and not too expensive. At present, no 

candidate meets these requirements representing the high standards aimed at by researchers. Among others, various 

morphological brain measures performed by means of magnetic resonance imaging (MRI), ranging from the total brain 

volume to some restricted regions such as the hippocampal volume, have been proposed. Nowadays the efforts are 

directed toward finding an automated, unsupervised method of evaluating atrophy in some specific brain region, such as 

the medial temporal lobe (MTL). In this work we provide an extensive review of the state of the art on the automatic and 

semi-automatic image processing techniques for the early assessment of patients at risk of developing AD. Our main 

focus is the relevance of the morphological analysis of MTL, and in particular of the hippocampal formation, in making 

the diagnosis of AD and in distinguishing it from other dementias. 
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INTRODUCTION 

 During the last decade, interest in magnetic resonance 
imaging (MRI) of neurodegenerative diseases has been 
rapidly rising. Much of this increased interest is due to the 
growth in the incidence and prevalence of these diseases, 
caused by population aging in the industrialized countries 
(especially the United States, Europe, and Japan) [1]. In 
addition, the imaging techniques have become more refined, 
especially due to the development of computer-assisted 
image processing tools with quantification of the volumes of 
brain structures. Finally, improved knowledge concerning 
the pathophysiological mechanisms of neurodegenerative 
diseases, especially Alzheimer’s disease (AD), has led to the 
development of putative treatments which are entering 
clinical trials [2]. The scientific community have recognized 
that imaging techniques are ”supportive features” in the 
diagnosis of probable AD [3], and can be used to monitor the 
effects of treatments slowing disease progression. All of 
these factors have led to an outburst of interest in the 
imaging of neurodegenerative diseases, culminating in the 
funding of the Alzheimer’s Disease Neuroimaging Initiative  
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 (ADNI). This very large multi-site study uses MRI, positron 
emission tomography (PET), and biomarkers, together with 
clinician measures, to monitor disease progression (further 
information at http: //www.ADNI-info.org). 

 Despite the lack of a disease-modifying treatment at 
present, the discovery of sensitive and specific markers of 
early AD would represent a major breakthrough as it would 
allow – once this treatment is available – to slow (and 
hopefully even to stop) the degenerative process before 
dementia develops. Furthermore, current symptomatic 
treatments may be more efficient when administered in the 
early stages of AD [4]. However, early diagnosis remains 
difficult to achieve, and currently the clinical diagnosis of 
AD can be made relatively late during the disease 
progression. The difficulties lie mostly in the similarities 
between the cognitive impairment due to normal aging 
processes and the early symptoms of AD. The diagnosis of 
clinically probable AD can currently be made in living 
subjects only once the stage of dementia has been reached. It 
is based on a number of criteria as defined by the National 
Institute of Neurological and Communicative Disorders and 
Stroke (NINCDS) and the Alzheimer’s Disease and Related 
Disorders Association (ADRDA) [3, 5], but can be 
confirmed only by postmortem histopathology. While the 
clinical signs of AD are well established, the early 
symptomatic and predementia stage remains to be better 
defined [6]. 
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 In recent years, the early clinical signs of AD have been 
extensively investigated, leading to the concept of amnestic 
mild cognitive impairment (aMCI), an intermediate 
cognitive state between normal aging and dementia [7-11]. 
aMCI patients experience memory loss to a greater extent 
than expected for age, and they progress to a diagnosis of 
AD at a faster rate than controls [7, 8]. Conversion rates 
typically range from 1 to 3 years, with an average rate of 20 
months [12]. Nevertheless aMCI remains a clinically and 
pathologically heterogeneous state in need of more extensive 
definition and classification [13]. Emerging disease-
modifying treatments should be used in the aMCI subset 
with prodromal AD and not in a wider population with 
uncertain pathology [14]. 

 Such findings imply a need of improved tools for MRI-
based volumetric analyses that are suitable for routine 
clinical use. Furthermore, although many efforts are 
underway to develop treatments that could prevent AD or 
slow its progression, these efforts are also partially hindered 
by the lack of practical yet sensitive in vivo biomarkers that 
may help demonstrate the disease-modifying effects of 
potential treatments and to identify those patients most likely 
to benefit from an aggressive protocol. Both of these needs 
might be better addressed by efficient methods for the 
quantitative measurement of atrophy in the living brain. 

THE ROLE OF NEUROIMAGING 

 A challenge for modern neuroimaging is to help in the 
diagnosis of early AD, particularly in aMCI patients. Three-
dimensional (3D) MRI with high spatial resolution allows 
the visualization of subtle anatomic changes and thus can 
help detect brain atrophy in the initial stages of the disease 
[15]. Therefore sensitive neuroimaging measures have been 
investigated to quantify structural changes in the brain in 
early AD, which are automated enough to permit large-scale 
studies of the disease and of the factors that affect it. To 
track the disease process, several MRI-based measures have 
been proposed. Many studies have searched for optimal 
volumetric measures (e.g., of the hippocampus or entorhinal 
cortex) to differentiate normal aging from AD, and from 
aMCI [16]. The goal of research in this area is therefore to 
develop highly specific and sensitive tools capable of 
identifying as early as possible among at-risk subjects those 
who will most likely progress to AD. 

 The segmentation of sub-cortical structures in brain MRI 
is of paramount importance for many clinical and 
neuroscientific investigations. In many studies on the 
evolution of the neurodegenerative process, sub-cortical 
structures must typically be segmented in large populations 
of patients and healthy controls, in order to quantify disease 
progression over time, to detect factors influencing structural 
changes, and to measure response to treatment. To date, 
these studies have particularly focused on assessing atrophy 
of medial temporal lobe (MTL) structures [6, 17-20]. A 
common biological marker of disease progression is the 
morphological change in the hippocampus, because it is 
known to occur early in the course of the disease on a spatial 
scale large enough to be detectable in structural MRI [18, 21] 
or by mapping the spatial distribution of atrophy in 3D [14, 
22-24]. By means of MRI at millimeter resolution, subtle 
hippocampal shape changes can be resolved [16]. 

 Many researchers have thus assessed hippocampal 
atrophy in AD by using manual segmentation in MRI [25-
35]. These studies have demonstrated that manual MR 
volumetry of the hippocampus can help distinguish patients 
with AD from elderly controls with a high degree of 
accuracy (80% - 90%). However, the manual segmentation 
of the hippocampus requires a high degree of anatomic 
training and is observer dependent and time consuming. The 
tracing by hand of both hippocampi represents a tedious task 
requiring a time between 30 mins and 2 hours; it quickly 
causes fatigue and the accuracy of the result may be affected. 
On the other hand visual evaluation of atrophy in 3D MRI, 
although more suited for clinical practice, is prone to 
subjectivity [36]. 

Automatic Methods 

 Methods to assess hippocampal atrophy have been 
largely based on volumetric measurements [28, 21, 18], on 
mapping the spatial distribution of atrophy in 3D scans [14, 
22-24, 37], or on visual rating scales [38]. Volumetric 
measurements typically rely on manual outlining of MTL 
structures on (serial) MR images, which is time-consuming 
and prone to interrater and intrarater variability. Thus, large-
scale studies of AD-related hippocampal atrophy are often 
impractical [39]. A number of studies were published where 
the visual rating scale was used in memory clinic population 
[40-47]. However, the scale, although simple to use and 
suitable for a clinical application, was not designed to detect 
atrophy progression on serial imaging; its quantized nature 
makes it insensitive to subtle changes over time [44]. 

 In order to accelerate and spread epidemiological studies 
and clinical trials, some automated systems have been 
proposed for hippocampal segmentation. 

 In [48], the authors explore whether the application of 
local registration and calculation of the hippocampal 
boundary shift integral (HBSI) can reduce random variation 
in comparison with manual measures. Hippocampi were 
outlined on the baseline and registered on the follow-up 
MRIs of 32 clinically diagnosed AD patients and 47 matched 
controls (37–86 years) with a wide range of scanning 
intervals (175–1173 days). The scans were globally 
registered using 9 degrees of freedom, and subsequently 
locally registered using 6 degrees of freedom, and HBSI 
values were then calculated automatically. The use of HBSI 
significantly reduced the mean rate (P < 0.01) and variation 
in controls (P < 0.001) and increased group separation 
between AD cases and controls. When comparing HBSI 
atrophy rates with manually derived atrophy rates at 90% 
sensitivity, specificities were 98% and 81%, respectively. 
From logistic regression models, a 1% increase in HBSI 
atrophy rates was associated with an 11-fold increase in the 
odds of a diagnosis of AD. For manually derived atrophy 
rates, the equivalent odds ratio was 3. The authors conclude 
that HBSI-derived atrophy rates reduce operator time and 
error, and are at least as effective as the manual equivalent as 
a diagnostic marker and represent a potential marker of 
progression in longitudinal studies and trials. 

 Crum et al. describe the application of voxel-level 3D 
registration onto serial MRIs [49]. Their fluid registration 
determines a deformation field modeling brain change, 
which is consistent with a model describing the flow of a 
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viscous fluid. The objective was to validate the measurement 
of hippocampal volumetric change in AD by fluid 
registration against current methodologies. First, the 
convergence, repeatability, linearity, and accuracy of the 
method were investigated and compared with expert manual 
segmentation. A simple model of hippocampal atrophy was 
used to compare simulated volumetric changes against those 
obtained by fluid registration. Finally the serial segmentation 
was compared with the current gold standard technique – 
expert human labeling with a volume repeatability of 
approximately 4% – in 27 subjects (15 normal controls, 12 
clinically diagnosed with AD). The scan-rescan volumetric 
consistency of serial segmentation by fluid-registration was 
shown to be superior to human serial segmentors 
(approximately 2%). The mean absolute volume difference 
between fluid and manual segmentation was 0.7%. For these 
reasons this fluid registration approach has a potential 
importance for tracking longitudinal structural changes in the 
brain, particularly in the context of clinical trials where a 
large number of subjects may have multiple MRI scans. 

 However, both methods described above require the 
manual segmentation of the baseline hippocampal region. 

 Fischl et al. present a technique for automatically 
assigning a neuroanatomical label to each voxel in an MRI 
volume based on the probabilistic information automatically 
estimated from a manually labeled training set [50]. In 
contrast with other segmentation procedures that only label a 
small number of tissue classes, this method assigns one of 37 
labels to each voxel, including left and right caudate, 
putamen, pallidum, thalamus, lateral ventricles, 
hippocampus, and amygdala. The classification technique 
employs a registration procedure that is robust to anatomical 
variability, including the ventricular enlargement typically 
associated with neurological diseases and aging. The 
technique is shown to be comparable in accuracy to manual 
labeling, and of sufficient sensitivity to robustly detect 
changes in the volume of noncortical structures that presage 
the onset of probable AD. The method helped identify 
significant group differences in terms of hippocampal 
volume, but the authors did not investigate the classification 
of individual participants. 

 In [51] the authors verified the precision and 
reproducibility of deformation-based hippocampal 
segmentations in the MRIs of five patients with mesial 
temporal sclerosis. The overall percentage overlap between 
automated segmentations was 92.8% (SD, 3.5%), between 
manual segmentations was 73.1% (SD, 9.5%), and between 
automated and manual segmentations was 74.8% (SD, 
10.3%). Thus, such deformation-based hippocampal 
segmentations are shown to provide a precise method of 
hippocampal volume measurement in this population. 

 Powell et al. propose several automated segmentation 
methods based on a multidimensional registration and give a 
direct comparison between their methods and various 
template, probability, artificial neural network and support 
vector machine based automated segmentation methods [52]. 
Three metrics for each segmentation method are reported in 
the delineation of sub-cortical and cerebellar brain regions. 
Results show that the machine learning methods outperform 
the template and probability-based methods. Utilization of 

these automated segmentation methods may be as reliable as 
manual raters and require no rater intervention. 

 Wang et al. describe how in the framework of a large-
deformation diffeomorphic metric mapping (LDDMM) the 
diffeomorphic matching of images is modeled as the change 
with time of a flow of an associated smooth velocity vector 
field v controlling the evolution [53]. The initial momentum 
parameterizes the whole geodesic and encodes the shape and 
form of the target image. Thus, methods such as principal 
component analysis (PCA) of the initial momentum allow to 
study anatomical shape and form in target images with no 
restriction to the small-deformation assumption in the 
analysis of linear displacements. The authors apply this 
approach to a study of AD. The left hippocampus in the AD 
group shows significant shape abnormality. A similar pattern 
of abnormality is shared by the right hippocampus. 
Furthermore, PCA of the initial momentum leads to the 
correct classification of 12 out of 18 very mild AD subjects 
(Clinical Dementia Rating Scale, CDR=0.5) and 22 out of 26 
control subjects. 

 Yushkevich et al. developed an open source application 
called ITK-SNAP, which is intended to make level set 
segmentation easily accessible to a wide range of users, 
including those with little or no mathematical expertise [54]. 
Their work describes the methods and software engineering 
philosophy behind this new tool and provides the results of 
validation experiments performed in the context of a 
neuroimaging study of ongoing child autism. The validation 
establishes SNAP intrarater and interrater reliability and 
overlap error statistics for the caudate nucleus and finds that 
SNAP is a highly reliable and efficient alternative to manual 
tracing. Analogous results for lateral ventricle segmentation 
are provided. 

 However none of these and other methods [51, 55-59], is 
yet widely used [16] due to high computational burden [60], 
unsatisfactory results [61], or poor generalization capability 
[50]. 

 Moreover, while several automated hippocampal 
segmentation methods have been proposed, most of them 
rely either on the manual identification of several 
hippocampal landmarks on each scan [23, 51, 62, 63], or on 
algorithms based on the intensities and spatial anatomical 
relationship of different brain structures to guide 
hippocampal outlining [50, 64]. Webb et al. [65] devised an 
automated method to detect hippocampal atrophy in patients 
with temporal lobe epilepsy based on the analysis of the 
image intensity differences between patients and controls 
within a volume of interest centered on the hippocampus. 
Rusinek et al. [66] used the boundary shift integral analysis 
applied to a volume of interest centered on the hippocampus 
to calculate the rate of MTL atrophy. 

 Few of these methods have been applied to patients with 
AD and/or MCI and rarely did researchers report the 
accuracy of their techniques in the differentiation among 
MCI, AD and controls. Carmichael et al. [39] have assessed 
the performance of automated atlas-based segmentation by 
applying to AD and MCI patients several freely available 
registration methods: Automated Image Registration 
[University of California at Los Angeles, Los Angeles, CA], 
Statistical Parametric Mapping [Wellcome Department of 
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Imaging Neuroscience], Functional MRI Linear Image 
Registration Tool [University of Oxford, Oxford, England], 
and a fully deformable approach. They came to the 
conclusion that these approaches are less precise when 
applied to AD patients than controls but this should be 
tempered by the fact that these techniques were not 
specifically designed for this task. Csernansky et al. [67] 
used the high-dimensional brain mapping approach, on the 
basis of fluid registration with a template, to obtain 
hippocampal volumes and hippocampal shape differences 
between patients with very mild AD and controls. By using a 
classification on the basis of volume and shape features, they 
achieved a sensitivity of 83% and a specificity of 78%. By 
using a similar high-dimensional brain mapping approach, 
Hsu et al. [62] compared automated and manual 
segmentations in AD and cognitively impaired patients. 
They reported good correlations between manual and 
automated measurements of the hippocampal volume. 
However, they did not investigate the accuracy of this 
technique for the classification of individual patients. Colliot 
et al. [68] evaluated the accuracy of automated hippocampal 
volumetry to help distinguish between patients with AD, 
patients with MCI, and elderly controls. Individual 
classification on the basis of hippocampal volume resulted in 
84% correct classification (sensitivity, 84%; specificity, 
84%) between AD patients and controls and 73% correct 
classification (sensitivity, 75%; specificity, 70%) between 
MCI patients and controls. Ridha et al. [44] compared an 
automated intensity-based measure of MTL atrophy 
(ATLAS) with volumetric and visually based methods. Their 
measure differentiates patients with AD from controls at 
cross-sectional and longitudinal levels. At baseline, for a 
specificity of 85%, the sensitivity of hippocampal volume 
measurement and visual rating scale [38] were similar (84% 
vs 86%), whereas the sensitivity of the ATLAS measure was 
lower at 73%. 

 In a recent work [69] a novel approach, based on the 
measure of a new statistical indicator, the -box score, able 
to separate the AD, aMCI and controls cohorts, was 
introduced. In this work the authors describe the 
development of a simple, quick, and operator independent 
method to extract two subimages (one for each side of the 
brain) from a MR image, containing both the hippocampus 
and the perihippocampal region. A novel statistical indicator, 
which measures MTL atrophy, is computed on the intensities 
in the automatically extracted subimages. This novel 
indicator was applied to a sample of 150 mild AD patients 
(MMSE score 23.2 ± 4.1), 247 aMCI, and 135 healthy 
controls. Significant differences of MTL atrophy were 
detected both in AD and in aMCI cohorts (AD vs controls 
0.28 ± 0.03 vs 0.34 ± 0.03, P < 0.001; aMCI vs controls 0.31 
± 0.03 vs 0.34 ± 0.03, P < 0.001). MTL atrophy in the 
subgroup of 25 aMCI converters was similar to the one 
evaluated in the AD group, and was significantly different 
from the one of the controls (0.27 ± 0.03 vs 0.34 ± 0.03, P < 
0.001). 

 Individual classification on the basis of the -box score 
was also analyzed by using the receiver operating 
characteristic (ROC) curves, which indicate the relationship 
between sensitivity and 1-specificity for each intergroup 
discrimination. The area under the curve was 0.863 for AD 
patients vs controls, 0.746 for aMCI patients vs controls, and 

0.880 for aMCI converters vs controls. With specificity set at 
85%, the sensitivity was 74% for AD vs controls, 45% for 
aMCI vs controls, and 83% for aMCI converters vs controls. 

 This method is able to capture differences between 
subgroups of interest with different stages of cognitive 
impairment, with comparable discriminating capability 
between aMCI converters and controls, and between AD 
patients and controls. However, this and other results should 
be considered with caution owing to the relatively small 
number of converters. Anyway, this is in agreement with 
several studies regarding the manual segmentation of 
hippocampus, which have reported that baseline 
hippocampal volume is an indicator of future progression to 
AD [21, 70-73]. This is also in agreement with studies based 
on visual rating, which clearly found MTL atrophy in 
patients who subsequently converted to AD [74-76]. 

 Compared to other methods of hippocampal or MTL 
atrophy measurement, this method, which does not directly 
tackle the objective of hippocampus segmentation, is fully 
automated, allowing the analysis of large sets of data, and 
requires relatively moderate image postprocessing and 
prerequisites for automation. Therefore, it could be a good 
candidate for being more widely used than other automatic 
methods. 

Local Analysis to Assess the Spatial Distribution of 
Atrophy 

 While the detection of hippocampal volume changes has 
been the focus of most image processing studies because of 
its relatively straightforward interpretation, the popularity of 
more sophisticated approaches based on shape analysis is 
increasing as they promise a more accurate localization of 
changes in hippocampal surfaces. Shape analysis and/or 
classification methods using both local and global 
information may give complementary information and 
improve classification reliability. 

 In [77], the authors propose a method for the mapping of 
hippocampal (HC) surfaces to establish correspondences 
between points on HC surfaces and enable localized HC 
shape analysis. A novel geometric feature, the intrinsic shape 
context, is defined to capture the global characteristics of the 
HC shapes. Based on this intrinsic feature, an automatic 
algorithm is developed to detect a set of landmark curves 
that are stable across population. The direct map between a 
source and target HC surface is then solved as the minimizer 
of a harmonic energy function defined on the source surface 
with landmark constraints. For numerical solutions, the 
authors compute the map with the approach of solving 
partial differential equations on implicit surfaces. The direct 
mapping method has the advantage of being automatic, and 
it is invariant to the position of HC shapes. The direct 
mapping method is applied to study temporal changes of HC 
asymmetry in AD using HC surfaces from 12 AD patients 
and 14 normal controls. The results show that the AD group 
has a different trend in temporal changes of HC asymmetry 
than the group of normal controls, and demonstrate the 
flexibility of the direct mapping method by applying it to 
construct spherical maps of HC surfaces. Spherical 
harmonics analysis is then applied and it confirms the results 
on temporal changes of HC asymmetry in AD. 
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 Evidence from neuropathologic studies supports the 
specific role of neuronal loss in the CA1 region and 
subiculum [24, 78]. Reliable detection in vivo of 
hippocampal changes that are more specific to AD, 
particularly at the pre-clinical or early clinical stage, has 
important clinical ramifications and is an area of active 
research [79, 80]. Scher et al. [81] analyze hippocampal size 
and regional shape differences as a means of distinguishing 
the AD-affected hippocampus from hippocampal changes 
associated with normal aging. They use structural imaging 
techniques to model hippocampal size and regional shape 
differences between elderly men with incident AD and a 
non-demented comparison group of elderly men. Participants 
were diagnosed with incident AD (n=24: age=82.5±4.6) or 
were non-demented (n=102: age=83.0±5.9). One reader, 
blinded to dementia diagnosis, manually outlined the left and 
right hippocampal formations using published criteria. They 
used 3D structural shape analysis methods developed at the 
Laboratory of Neuro Imaging (LONI) to compare regional 
variation in hippocampal diameter between the AD cases and 
the non-demented comparison group. Mean total 
hippocampal volume was 11.5% smaller in the AD cases 
than the non-demented controls (4903±857 mm

3
 vs 

5540±805 mm
3
), with a similar size difference for the 

median left (12.0%) and median right (11.6%) hippocampus. 
Shape analysis showed a regional pattern of shape difference 
between the AD and non-demented hippocampus, more 
evident for the hippocampal body than the head, and the 
appearance of more consistent differences in the left 
hippocampus than in the right. While assignment to a 
specific sub-region is not possible with this method, the 
surface changes primarily intersect the area of the 
hippocampal body containing the CA1 region (and adjacent 
CA2 and distal CA3), subiculum, and the dentate gyrus-hilar 
region. 

 Apostolova et al. [22], using an innovative surface-based 
hippocampal analytic technique, analyzed the structural MR 
hippocampal data of 31 aMCI and 34 AD subjects. They 
tested the hypothesis that AD subjects have greater atrophy 
of the CA1, CA2 and CA3 hippocampal subfields relative to 
aMCI subjects. 3D hippocampal maps localized the main 
group differences to the CA1 region bilaterally and the CA2 
and CA3 region on the left [corrected] (right [corrected] P = 
0.0024, left [corrected] P = 0.0002, both corrected for 
multiple comparisons). Age, race, gender, education and 
Mini-Mental State Examination (MMSE) were significant 
predictors of hippocampal volume. Hippocampal volume 
was a significant predictor of clinical diagnosis. Their study 
suggests that as AD progresses, subregional hippocampal 
atrophy spreads in a pattern that follows the known 
trajectory of neurofibrillary tangle dissemination. In this 
work, state-of-the-art 3D hippocampal analysis techniques 
allowed to demonstrate selective subregional hippocampal 
atrophy in vivo [23, 37]. 

 Moreover, Apostolova et al. [14] investigated the 
structural neuroimaging correlates of MMSE performance in 
patients with clinical and preclinical AD. They analyzed 
structural MRI data from 29 probable AD and 5 MCI 
patients who later converted to probable AD by using an 
advanced 3D cortical mapping technique. MMSE scores 
were entered as covariates in a general linear model that 
predicted the gray matter density at each cortical surface 

point. The results were corrected for multiple comparisons 
by permutation testing. The global permutation-corrected 
significance for the maps linking gray matter loss and 
cognitive decline was P=0.005 for the left and P=0.012 for 
the right hemisphere. Strongest correlations between MMSE 
score and gray matter integrity were seen in the entorhinal, 
parahippocampal, precuneus, superior parietal, and 
subgenual cingulate/orbito-frontal cortices. Significant 
correlations were also seen bilaterally in the temporal, the 
middle frontal and the left angular and supramarginal gyri. 
As a global cognitive measure, MMSE depends on the 
integrity of widely distributed cortical areas in both brain 
hemispheres with left-sided predominance. 

 The purpose of [82] was to determine whether a similar 
deformity of the hippocampus can predict the onset of 
dementia in non-demented elders. Using high dimensional 
diffeomorphic transformations of a neuroanatomical 
template, hippocampal volumes and surfaces were defined in 
49 non-demented elders; the hippocampal surface was 
subsequently partitioned into three zones (i.e., lateral, 
superior and inferior-medial), which were proximal to the 
underlying CA1 subfield, CA2-4 subfields plus dentate 
gyrus, and subiculum, respectively. Annual clinical 
assessments using the CDR, where CDR 0 indicates no 
dementia and CDR 0.5 indicates very mild dementia, were 
then performed for a mean of 4.9 years (range 0.9-7.1 years) 
to monitor subjects who converted from CDR 0 to CDR 0.5. 
Inward variation of the lateral zone and left hippocampal 
volume significantly predicted conversion to CDR 0.5 in 
separate Cox proportional hazards models. When 
hippocampal surface variation and volume were included in 
a single model, inward variation of the lateral zone of the left 
hippocampal surface was selected as the only significant 
predictor of conversion. The pattern of hippocampal surface 
deformation observed in non-demented subjects who later 
converted to CDR 0.5 was similar to the pattern of 
hippocampal surface deformation previously observed to 
discriminate subjects with very mild AD and non-demented 
subjects. These results suggest that inward deformation of 
the left hippocampal surface in a zone corresponding to the 
CA1 subfield is an early predictor of the onset of AD in non-
demented elderly subjects. 

 The aim of [24] was to locate in vivo the structural 
changes within the hippocampal formation in AD patients of 
mild to moderate severity. A group of 28 AD patients and 40 
cognitively intact persons (age 74 ± 9 and 71 ± 7 years) 
underwent T1-weighted high-resolution MR scans. The 
hippocampal formation was isolated by manually tracing on 
35 coronal slices the outlines of the proper hippocampus and 
subiculum after registration to a common stereotactic space. 
Group differences were assessed with ad-hoc developed 
algorithms that make use of 3D parametric surface mesh 
models. In AD patients, significant atrophic changes 
amounting to tissue loss of 20% or more were found in 
regions of the hippocampal formation corresponding to the 
CA1 field and part of the subiculum. Regions corresponding 
to the CA2-3 fields were remarkably spared. The regions of 
the hippocampal formation that were found atrophic in AD 
patients are those known to be affected from pathological 
studies. This study supports the possibility of carrying out in 
vivo macroscopic neuropathology of the hippocampus with 
MRI in the neurodegenerative dementias. 
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 Thomson et al. [37] developed an anatomical mapping 
technique to detect hippocampal and ventricular changes in 
AD. The resulting maps are sensitive to longitudinal changes 
in brain structure as the disease progresses. An anatomical 
surface modeling approach was combined with surface-
based statistics to visualize the region and rate of atrophy in 
serial MRI scans and isolate where these changes link with 
cognitive decline. Sixty-two high-resolution MRI scans were 
acquired from 12 AD patients (mean age ± SE at first scan: 
68.7 ± 1.7 years) and 14 matched controls (age: 71.4 ± 0.9 
years) each scanned twice (1.9 ± 0.2 years apart). 3D 
parametric mesh models of the hippocampus and temporal 
horns were created in sequential scans and averaged across 
subjects to identify systematic patterns of atrophy. As an 
index of radial atrophy, 3D distance fields were generated 
relating each anatomical surface point to a medial curve 
threading down the medial axis of each structure. 
Hippocampal atrophic rates and ventricular expansion were 
assessed statistically using surface-based permutation testing 
and were faster in AD than in controls. Using color-coded 
maps and video sequences, these changes were visualized as 
they progressed anatomically over time. Additional maps 
localized regions where atrophic changes linked with 
cognitive decline. Temporal horn expansion maps were more 
sensitive to AD progression than maps of hippocampal 
atrophy, but both maps correlated with clinical deterioration. 
These quantitative, dynamic visualizations of hippocampal 
atrophy and ventricular expansion rates in aging and AD 
may provide a promising measure to track AD progression in 
drug trials. 

Other Cerebral Areas 

 Most studies have focused on sub-cortical structures, and 
especially the hippocampus, regarding their crucial roles in 
higher cognitive functions and memory processes 
respectively. Up to now, fewer MRI studies have been 
performed examining the role of additional temporo-parietal 
regions, whereas the basal nuclei and thalamus have received 
even less attention. 

 Of these studies, some have manually drawn regions of 
interest within temporo-parietal regions, such as the fusiform 
and superior temporal gyrus [72, 83]. In addition, others 
have used whole-brain measures, such as voxel-based 
morphometry [84-86], fluid registration methods [87, 88], 
and cortical thickness approaches [89, 90], thus avoiding the 
need to measure individual anatomic areas. Taken together, 
the results of these studies provide evidence that areas within 
the parietal and lateral temporal lobes may additionally be 
involved in the earliest stages of AD. However, it remains 
unclear which specific region, or which combination of these 
regions beyond the MTL, best predicts disease progression 
from MCI to AD. 

 In [91] MR images from 129 individuals with MCI were 
analyzed to identify the volume of 14 neo-cortical and 2 non-
neo-cortical brain regions, comprising the temporal and 
parietal lobes. In addition, 3 neuropsychological test scores 
were included to determine whether they would provide 
independent information. After a mean follow-up time of 5 
years, 44 of these individuals had progressed to a diagnosis 
of AD. Cox proportional hazards models demonstrated 
significant effects for 6 MRI regions with the greatest 

differences being the following: the entorhinal cortex (hazard 
ratio [HR]=0.54, P < 0.001), inferior parietal lobule (HR = 
0.64, P < .005), and middle temporal gyrus (HR = 0.64, P < 
.004), indicating decreased risk with larger volumes. A 
multivariable model showed that a combination of the 
entorhinal cortex (HR = 0.60, P < .001) and the inferior 
parietal lobule (HR = 0.62, P < .01) was the best predictor of 
progression to AD, and reiterated the importance of 
including both MRI and neuropsychological variables. These 
findings confirm the importance of the entorhinal cortex and 
of the inferior parietal lobule as predictors of progression in 
time from MCI to AD. The inclusion of neuropsychological 
performance in the final model continues to highlight the 
importance of using these measures in a complementary 
fashion. 

 de Jong et al. [92], besides confirming the well known 
presence of decreased global grey matter and hippocampal 
volumes in AD, investigated whether deep grey matter 
structures also suffer degeneration in this syndrome, and 
whether such degeneration is associated with cognitive 
deterioration. In this cross-sectional correlation study, two 
groups were compared on volumes of seven sub-cortical 
regions: 70 memory complainers (MCs) and 69 subjects 
diagnosed with probable AD. Using 3 Tesla 3D T1 MR 
images, volumes of nucleus accumbens, amygdala, caudate 
nucleus, hippocampus, pallidum, putamen and thalamus 
were automatically calculated by means of the Integrated 
Registration and Segmentation Tool (FIRST) algorithm, 
developed at the Oxford Centre for Functional MRI of the 
Brain (FMRIB). Subsequently, the volumes of the different 
regions were correlated with cognitive test results. Besides 
finding the expected association between hippocampal 
atrophy and cognitive decline in AD, volumes of putamen 
and thalamus were found to be significantly reduced in 
patients diagnosed with probable AD. Moreover the decrease 
in volume correlated linearly with impaired global cognitive 
performance. These findings strongly suggest that, beside 
sub-cortical atrophy, deep grey matter structures in AD 
suffer atrophy as well and that degenerative processes in the 
putamen and thalamus, in the same way as the ones in the 
hippocampus, may contribute to cognitive decline in AD. 

CONCLUSIONS 

 The importance of this entire field is to increase by 
several orders of magnitude as soon as a treatment capable of 
slowing the progression of AD is identified and announced. 
Several clinical treatment trials are coming to a close (results 
not yet announced), and many more are being planned. The 
implications then become obvious and huge, and encompass 
the way in which neuroimaging techniques might assist in 
making the diagnosis of AD and distinguishing it from other 
dementias; the role of the neuroradiologist in diagnosing 
dementia in its early stage; the role of automated 
segmentation and registration programs for improved 
diagnosis; and finally, the identification of those subjects 
who, cognitively healthy at present, are at high risk of 
developing AD in the future. 

 We should take advantage of all of the rapidly improving 
technologies of MRI acquisition (structural, perfusional, 
diffusion tensor, susceptibility weighted MRI and magnetic 
resonance spectroscopic imaging), reconstruction (Fourier 
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and Bayesian methods), and image processing (segmentation 
and registration) techniques to address these fascinating and 
very high-impact medical questions. 
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