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Abstract: Physiological brain aging is characterized by a loss of synaptic contacts and neuronal apoptosis that provoke 
age-dependent decline of cognitive functions. Neural/synaptic redundancy and plastic remodelling of brain networking, 
also secondary to mental and physical training, promotes maintenance of brain activity in healthy elderly for everyday life 
and fully productive affective and intellectual capabilities. However, age is the main risk factor for neurodegenerative 
disorders such as Alzheimer's disease (AD) that impact on cognition. Oscillatory electromagnetic brain activity is a 
hallmark of neuronal network function in various brain regions. Modern neurophysiological techniques including 
electroencephalography (EEG) can index normal and abnormal brain aging to facilitate non-invasive analysis of cortico–
cortical connectivity and neuronal synchronization of firing, and coherence of rhythmic oscillations at various 
frequencies. The present review provides a perspective of these issues. It is concluded that discrimination between 
physiological and pathological brain aging clearly emerges at the group level, with applications at the individual level also 
suggested. Integrated approaches utilizing neurophysiological techniques together with biological markers and structural 
and functional imaging are promising for large-scale, low-cost and non-invasive evaluation of at-risk populations. 

Keywords: Alzheimer's disease (AD), resting state, electroencephalography (EEG), low resolution brain electromagnetic 
tomography. 

1. INTRODUCTION 

 Since its introduction, the electroencephalogram (EEG) 
was viewed with a great enthusiasm as the only methodology 
allowing a direct, on-line view of the “brain at work” [1]. It 
offers appreciable promise as a means to characterize 
significant deviations from the ‘natural’ aging found in 
Alzheimer and other dementias [2]. From the 1970s and 
1980s with the introduction of structural imaging 
technologies such as computer assisted tomography (CAT) 
and magnetic resonance imaging (MRI), these newer 
methods produced non-invasive views of in vivo brain 
anatomy with considerable resolution that contributed to 
their clinical and therefore economic utility. Over the course 
of the following two decades, development of regional 
metabolic-perfusion methods such as positron emission 
tomography (PET), single photon emission computed 
tomography (SPECT), and the ability to map oxygen  
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consumption and regional blood flow in specific neural 
locations with functional magnetic resonance imaging 
(fMRI) have supplanted the role of EEG in basic and clinical 
studies. However, these functional brain imaging methods 
with their high spatial resolution for anatomical details are 
relatively limited in their temporal resolution when 
measuring functional brain activation (seconds to minutes). 
Thus, these neuroimaging techniques cannot discriminate in 
series or parallel activation of different relays within a 
distributed network [3]. As these imaging methods were 
being developed, similar advances were being made for EEG 
measures in part because neuroelectric signals can track 
information processing with millisecond precision, and may 
measure natural brain aging and to discriminate it from 
neurodegeneration [4, 5]. 

 In recent years, an increasing attention has been paid to 
the application of quantitative EEG (qEEG) and/or event-
related potentials (ERPs) as useful clinical markers of early 
disease or progression [6], in large part as a result of recent 
and dramatic improvements in the ease of use of the 
technology and in access to sufficient computing power and 
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the algorithms necessary for rapid processing of very 
complex raw datasets. Examples of recent technological 
advances include a reduction in the size (and portability) of 
EEG amplifiers and the development of high-density array 
nets that do not require skin abrasion to place with low 
impedance. A positive ERP peaking 600 ms after the 
zerotime of stimuli to be encoded (P600) has been reported 
to be impacted in patients with mild cognitive impairment 
(MCI) and Alzheimer’s disease (AD) [7, 8]. Furthermore, a 
positive ERP peaking 300 ms after the zerotime of oddball 
stimuli (P300) has been reported to be impacted in dementia 
[6]. Thus, theoretical and empirical support exists for the 
application of ERPs as a measure of individual variation of 
cognitive function along pathological aging [9]. However, 
recording of ERPs requires a peculiar set up between the 
stimulation device and EEG machine, about 40-60 minutes 
of time for the exam in a patient, and technicians able to 
carry out engaging experimental conditions. In this regard, 
recording of resting state EEG rhythms represents a 
procedure much easier and rapid that does not require 
stimulation devices. 

 The present review outlines the impact of EEG 
techniques for the measurement of physiological and 
pathological brain aging and attempts to provide a 
reasonably comprehensive analysis of brain aging by the 
analysis of resting state EEG rhythms in elederly subjects 
with various degrees of cognitive decline. Its major goal is to 
highlight the emerging neurophysiological findings to 
determine whether these techniques provide sufficient 
innovative and potentially useful information for the 
assessment of normal aging and dementia, both at a group- 
and single-subject level. 

2. ADVANCED EEG TECHNIQUES 

 Advanced EEG analysis techniques can illustrate changes 
in specific rhythms oscillating at various frequencies over 
time, provide quantitative measurements of individual 
rhythms, and allow control over the contribution of volume 
currents from far-field generators [10, 11]. Hence, EEG 
signals generated from extracerebral sources (e.g., 
electrocardiogram, electromyogram, electroretinogram, eye 
movements etc.) can be isolated from those produced by the 
brain, with a direct measure of the recorded neuroelectric 
signals [11]. EEG coherence or synchronicity of rhythmic 
signals from separate electrodes in different frequency bands 
generated in different cortical areas can also be measured. 
The spatial resolution of the signals has been reduced from 
about 7 to 2 cm by applying surface Laplacian estimation 
with a regularized 3D spline function, which reduces the low 
spatial EEG frequencies contributed by volume conduction 
and eliminates electrode reference influence [12-15]. 
Compared to other linear or nonlinear modelling analysis 
techniques of cortical sources of EEG–MEG, surface 
Laplacian estimation provides a rough representation of the 
neural currents without an explicit model of the generators 
(i.e., shape, number, location) by using a model of the head 
as a volume conductor [12, 13]. However, surface Laplacian 
methods cannot disentangle the activity of two spatially 
adjacent cortical zones such as primary somatosensory and 
motor areas that are contiguous across the central sulcus or 
deep cortical sources in secondary somatosensory and 
insular cortices. Surface Laplacian estimation also is 

unreliable when computed at the borders (i.e., temporo-
parietal electrodes), and its maxima often do overlie cortical 
sources of EEG potentials, since the influence of tangential 
relative to radial oriented generators is greater [12, 13, 16]. 

 Spectral coherence analysis indexes the temporal 
synchronization of two EEG time series among electrodes in 
the frequency domain and permits characterization of linear 
functional cortico–cortical connectivity. In general, 
decreased coherence reflects reduced linear functional 
connections and information transfer (i.e., functional 
uncoupling) among cortical areas or modulation of common 
areas by a third region. In contrast, coherence increase is 
interpreted as augmented linear functional connections and 
information transfer (i.e., functional coupling), which 
reflects the interaction of different cortical structures for a 
given task. Finally, the direction of the information flow 
within the EEG rhythms between pairs of electrodes can be 
estimated by a direct transfer function (DTF) [17-22]. 

 Source reconstruction of the electromagnetic brain scalp 
signals can be achieved via different methods. Relevant 
literature on brain aging is particularly linked to the use of 
low-resolution electromagnetic tomography algorithm 
(LORETA) technique that computes 3D linear solutions 
from multi-channel input to localize generators in the brain 
from the EEG field distribution on the scalp by employing a 
three-shell spherical head model of the scalp, skull, and brain 
compartments [23-25]. Source analysis is reference free, 
since the same source distribution is obtained for EEG data 
referenced to any electrode including a common average. It 
can be also used from data collected by low spatial sampling 
(e.g., 19 electrodes) when cortical sources are estimated from 
resting EEG rhythms [26-29]. LORETA solutions consist of 
voxel z-current density values that are used to predict EEG 
spectral power density at scalp electrodes. A normalization 
method yields current density at each voxel for the power 
density averaged across all frequencies (0.5–45 Hz) of 
electromagnetic brain rhythms and voxels of the brain 
volume. 

3. RESTING STATE EEG RHYTHMS AND PHYSIO-
LOGICAL AGING 

 Resting state EEG rhythms typically change across 
physiological aging, with gradual modifications in spectral 
power profile indicating a pronounced amplitude decrease of 
alpha (8-13 Hz) and a global “slowing” of the background 
EEG, wich increases in power and topographic location in 
the slower delta (2–4 Hz) and theta (4–8 Hz) frequency 
ranges [30-33]. A recent study in a large sample of healthy 
subjects (N = 215, 18–85 years) confirmed an age-dependent 
power decrement of low-frequency alpha rhythms (8–10.5 
Hz) in parietal, occipital, and temporal regions, as well as a 
decrease of occipital delta power [34]. 

 Aging effects on parieto-occipital alpha rhythms 
presumably reflect the activity of dominant oscillatory neural 
network in the resting awake brain. This activity is 
modulated by thalamo–cortical and cortico–cortical 
interactions facilitating/inhibiting the transmission of 
sensorimotor information and the retrieval of semantic 
information from cortical storage [35-37]. Low frequency 
alpha is primarily related to subject's global attentive 
readiness, whereas high-frequency alpha reflects the 
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oscillation of specific neural systems for the elaboration of 
sensorimotor or semantic information [33, 38, 39]. Over the 
course of “natural” aging, the power decrease of the occipital 
alpha rhythms might be associated with changes in the 
cholinergic basal forebrain system function, which sustain 
the excitatory activity in the cholinergic brainstem pathway 
[40]. 

 Neuroelectric output does not scale linearly with inputs 
received, so that assessment of nonlinear EEG interactions is 
important, as this method can provide information on the 
strength, direction, and topography of the interdependencies. 
Spatial organization of nonlinear interactions between 
different brain regions has been investigated to compare 
anterior–posterior intrahemispheric and left–right 
interhemispheric interactions across physiological aging. 
Differences were found in the rates of interdependencies 
between the left pre-frontal and the right parietal regions 
between young and elderly, suggesting that the aging brain 
engages right parietal region to assist the pre-frontal cortex 
[41]. 

4. RESTING STATE EEG RHYTHMS AND DEMEN-
TIA 

 Dementia is one of the most frequent chronic diseases of 
the elderly. Its prevalence increases with age and affects 
nearly 30% of all octogenarians [42] with heavy social costs 
and impact on family and caregivers. Neuropathological 
hallmarks indicating Alzheimer's dementia (AD) include 
brain cortical and subcortical atrophy leading to ventricular 
enlargements primarily due to neuronal loss in the temporal 
and parietal structures. Microscopic signs include 
neurofibrillary tangles (intracellular aggregations of tau 
protein filaments) and amyloid plaques (extracellular 
aggregates of amyloid beta-peptides) that are particularly 
concentrated in the hippocampus, entorhinal cortex, and 
post-central parietal neocortex [43]. Tangles are mainly 
found in hippocampal and parahippocampal limbic 
structures, whereas extensive diffuse and neuritic amyloid 
plaques – circumscribed by proinflammatory and 
proapoptotic reactions – form deposits throughout the cortex 
[44]. A progressive decrease of use-dependent synaptic 
plasticity and of interneuronal connectivity and its 
association with the degree of dementia is considered the 
neurophysiological hallmark of brain aging [45]. However, 
in pre-clinical conditions plastic compensatory remodelling 
appears to continue that maintains neural function, such that 
the neuronal and synaptic death may occur in the absence of 
dementia symptoms for an unknown duration, possibly for 
years or decades. 

 When compared to the resting state EEG rhythms of 
healthy normal elderly (Nold) subjects, AD patients evince 
high power for delta and theta and low power for posterior 
alpha (8–12 Hz) and/or beta (13–30 Hz) frequencies [28, 46-
50]. Some of these EEG changes could discriminate among 
different dementia diagnoses, as a strong decline of posterior 
slow-frequency alpha sources appears specific for mild AD 
group compared to the vascular dementia, fronto-temporal 
dementia and normal elderly groups. In addition, abnormal 
wide amplitude of the theta sources characterized cerebro-
vascular dementia patients [28]. EEG abnormalities were 
associated with altered regional blood flow/metabolism and 

with impaired global cognitive function as evaluated by 
mini-mental state examination (MMSE) [49, 51-53]. 

 Of note, early stages of AD (even preclinical) are 
typically associated to slowing down of resting occipital 
alpha rhythms, namely a decrease of the individual alpha 
frequency (IAF) peak in power density [54]. Therefore, the 
IAF should be always taken into account in EEG studies in 
AD subjects, since power changes in theta and alpha bands 
might be dependent phenomena. Furthermore, the 
conventional partition of EEG power into many conventional 
frequency bands allows the comparison of the results with 
those of most of the field studies but may prevent the 
separation of independent EEG rhythms or sources. 

 Genetic risk factors such as Apo-E  4 alleles are 
associated with abnormalities of resting state EEG rhythms 
in AD [55-58] with relatively specific EEG measures. 

 Compared to AD patients with 2 and 3, AD patients 
with 4 demonstrated faster theta and lower beta spectral 
power [56]. Furthermore, the AD patients with 4 were 
characterized by higher theta power and lower beta power at 
baseline, whereas they had higher delta power and lower 
alpha power at 3 years at follow-up [57]. Moreover, AD 
patients with ApoE 4 has been related to selective decrease 
in functional cortico–cortical connectivity, which was 
suggested by the reduction of right and left temporoparietal, 
right temporofrontal, and left occipitoparietal alpha 
coherence [55]. Thus, genetic risk factors for AD are 
combined with relatively specific EEG measures. 

 EEG power per se does not capture one of the main 
features of AD, namely the impairment of functional neural 
connectivity. It has been reported that AD patients present a 
reduced linear coupling of resting state EEG rhythms among 
cortical regions, as revealed by spectral EEG coherence [55, 
59-63], suggesting a linear temporal interdependence of 
coupled EEG rhythms from simultaneously engaged neural 
sources. Such findings imply that functional coupling of 
cortical rhythms is modulated by cholinergic systems, and 
that a decrease of cortical EEG coherence may be a fine-
grained marker of AD, since it is characterized by defective 
basal forebrain cholinergic inputs to cortex and hippocampus 
[64]. 

 Most EEG studies of AD have reported a prominent 
decrease of alpha band coherence [45, 55, 58-63, 65-67]. 
This result also has been found to be associated with ApoE 
genetic risk, which is hypothesized to be mediated by 
cholinergic deficit [55]. However, delta and theta band 
coherence changes in AD is not homogeneous, as some 
studies demonstrate a decrease of slow-band EEG coherence, 
whereas others find an increase [59, 63, 65, 68]. To improve 
the functional coupling evaluation EEG and MEG data have 
been analyzed with procedures inspired by the theory of 
nonlinear dynamics, which provide a measure of signal 
dynamic coordination [69]. AD patients produce a 
nonlinearly defined “complexity”, which is a measure of 
signal dynamic coordination. Brain rhythms loose the usual 
modulation in complexity as observed by eyes-open versus 
eyes-close comparisons, as a reflection of neuronal death, 
deficiency in neurotransmission, and/or loss of connectivity 
in local neuronal networks [70, 71]. Nonlinear analysis also 
has been used to model brain flexibility in information 
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processing, defined as the capability to affect information 
processing states from identical initial conditions. AD 
patients demonstrate a decrease in information processing 
flexibility, so that EEG complexity decrease in AD might be 
attributable to decreased nonlinear dynamics that are 
associated with cognitive decline. Among the techniques for 
nonlinear brain dynamics, synchronization likelihood 
combines sensitivity to linear and nonlinear functional 
coupling of EEG/MEG rhythms [69]. This measure has been 
shown to be significantly decreased at 10–12 Hz, 14–18 Hz, 
and 18–22 Hz bands when comparing AD to MCI and/or 
Nold subjects [72-75]. 

 In addition or in parallel to the cortico–cortical 
uncoupling progression, a decrease of synaptic coupling is 
likely to contribute to reducing selective EEG coherence for 
faster rhythms, as observed in healthy humans by transient 
use of a cholinergic synaptic blocker like scopolamine [93]. 
Animal models suggest that acetylcholine loss produces a 
decrease of high-frequency EEG couplings and an increase 
of slow-frequency couplings [78]. Loss or a significant drop 
in EEG synchronization in faster rhythms also has been 
correlated with decreased MMSE scores in MCI and AD 
patients [69]. Linear and nonlinear EEG analysis improves 
classification accuracy of AD compared to unaffected 
controls, and these methods correlate with disease severity 
[69, 73, 74]. 

 Few studies have assessed EEG measures over the course 
of dementia progression. A significant increase of delta and 
theta power in conjunction with decrease of alpha and beta 
power over a period of 30 months from diagnosis have been 
found [76]. The length of the follow-up is of paramount 
importance and indicates the reason for a lack of findings 
over a 12-month period [77]. The major question in this 
context is: “Which is the physiological mechanism at the 
basis of abnormal resting brain rhythms in MCI and AD?” 
Abnormality of resting EEG rhythms may originate from 
impairment in the cholinergic neural projections from basal 
forebrain, which is a pivotal aspect of AD [79]. Resting EEG 
alpha power is decreased from experimental damage to this 
cholinergic pathway [80]. Furthermore, the cholinergic basal 
forebrain has been found to be responsive to the treatment 
with cholinesterase inhibitors more for AD than other 
dementias [83]. Conversely, brainstem cholinergic innervat-
ions of the thalamus are relatively spared in AD patients 
[79]. Long-term (1 year) treatment of acetylcholinesterase 
inhibitors (AChEI) demonstrate less temporal and occipital 
alpha reduction for responders compared to non-responders 
and a combined effect on delta and low alpha [81, 82]. 
Hence, increasing cholinergic tone was related to restoring 
temporal and occipital alpha rhythms in responders. Brain 
cholinergic systems also appear to improve primarily 
cerebral blood flow with a functional impact on attentional 
and memory functions [84]. 

5. RESTING STATE EEG RHYTHMS AND MILD COG-
NITIVE IMPAIRMENT 

 Assessing pre-clinical dementia is of keen interest as a 
clinical research issue, since MCI often precedes frank 
dementing illness. As the selective cognitive impairments 
characteristic of MCI are primarily memory-related and not 
severe enough to exceed standard clinical criteria for AD, 

their prodromal qualities do not greatly impair daily 
functioning and can be identified by refined clinical and 
neuropsychological evaluation. Consistent MCI symptoms 
3–5 years following their identification either remain stable 
or decrease in 30–50% of the cases, whereas the remaining 
cases progress toward a frank AD condition or, less 
frequently, to other dementias. Epidemiological and clinical 
follow-up studies confirm that MCI reflects a transition state 
towards mild AD and prompts the idea that early 
identification of MCI patients can facilitate rehabilitative or 
pharmacological interventions to slow disease progression 
[85-87]. A recent study [88] illustrates MCI effects for low-
frequency alpha (8–10.5 Hz) activity from parietal, occipital, 
and limbic areas that demonstrate an intermediate magnitude 
in MCI compared to mild AD and normal elderly [88]. 
Increase of slow EEG power coupled with a decrease in 
alpha activity is linked to cognitive performance decline in 
MCI compared to Nold. More important, the spectral 
magnitude of these sources is correlated negatively with 
MMSE scores across subjects of the three groups, suggesting 
that EEG evidence of alpha power decrease in MCI 
compared to normal subjects is related to behavioral 
cognition [47, 67, 89-92]. The relative spectral magnitude 
decrease of posterior low-frequency alpha sources in MCI 
may be related to an initial selective impairment of the 
cholinergic basal forebrain, which could induce a sustained 
increase of the excitatory activity in the cholinergic 
brainstem pathway [40, 78, 93]. As a consequence, the 
increased excitability of thalamocortical connections would 
desynchronize the resting alpha rhythms and enhance the 
cortical excitability as seen in AD (see Section 4.5). Hence, 
changes of low-frequency alpha power in MCI and mild AD 
suggest a progressive impairment of the thalamo–cortical 
and cortico–cortical systems that govern visual attention. 
This hypothesis is consistent with clinical findings of 
increasing deficits of visuo-spatial abilities in MCI and mild 
AD [94]. Similarly, limbic sources imply a progressive 
impairment of thalamo–cortical and cortico–cortical systems 
regulating attention tone for memory functions. 

 Decreases in cortico–thalamic modulation and increase 
of slow EEG rhythms correlated to progressive cortical 
hypoperfusion have been found in AD [53, 95]. Abnormal 
delta and alpha sources in the posterior brain regions could 
therefore index the progressive decline of cognitive visuo-
spatial functions across MCI and mild AD thereby 
supporting a transition between these conditions [85-87]. An 
intriguing aspect includes the peculiar magnitude increase of 
the parieto-occipital high-frequency (10.5–13 Hz) alpha 
sources in MCI compared to mild AD and normal elderly 
[88]. Furthermore, prospective studies have demonstrated 
that increased delta/theta activity, decreased alpha and beta, 
and slowed mean frequency may be predictors of 
progression from MCI to dementia [47, 67]. These findings 
imply that neuroelectric indices could be developed for the 
preclinical assessment of dementia, as their acquisition are 
inexpensive, easily implemented, entirely non-invasive and 
very well suited for large-scale screening and follow-up of 
at-risk populations. A multicentric EEG study [96] exhibited 
the findings from a major EEG study of these factors in MCI 
subjects. The hypothesis that presence of ApoE 4 affects 
sources of resting EEG rhythms in MCI and AD was 
assessed in 89 MCI with 34.8% 4 incidence and 103 AD 
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with 50.4% 4 incidence [96]. Alpha 1 and 2 sources in 
occipital, temporal, and limbic areas were of lower 
amplitude in subjects carrying the ApoE 4 allele. For AD 
homozygous for ApoE 4 allele, abnormal temporo-parietal 
and occipitoparietal EEG or MEG rhythms were found [55, 
69]. However, in addition to ApoE 4 allele, another 
important genetic risk factor for late-onset AD is haplotype 
B of CST3 (the gene coding for cystatin C—a neurotrophic 
protein), which was investigated to establish eventual links 
with cortical rhythmicity [97]. EEG measures were obtained 
from 84 MCI with 42% B haplotype and 65 AD with 40% B 
haplotype. Slow alpha (from parietal, occipital, temporal 
areas) and fast alpha (from occipital areas) power were 
statistically lower in CST3 B carriers. A trend was observed 
for occipital delta power sources as stronger in CST3 B 
carriers than in non-carriers for both MCI and AD patients. 

 Association between the presence and amount of 
hippocampus atrophy in AD and MCI subjects and changes 
in sources of posterior slow rhythms have been observed by 
EEG and whole-head MEG [98-100]. Less known is the 
relationships between impairment of white matter and slow 
rhythms across the continuum from MCI to AD. This issue 
has been addressed with EEG assessments in MCI (N = 34) 
and AD (N = 65) cases [101]. Delta activity was related to 
the amount of cortical atrophy revealed by MRI voxel-to-
voxel volumetry of lobar brain volume (white and gray 
matter), such that as delta power increased brain volume 
decreased. Thus, changes in brain structure and function 
could be found for MCI and AD patients. 

 As life expectancy and elderly populations in Western 
countries are increasing, the incidence of MCI that may 
predict AD or vascular dementia is rising. Cognitive 
impairment associated with MCI or AD is associated with 
decreased power and coherence in the alpha/beta band, at 
least at the group level. This observation suggests the 
occurrence of a functional disconnection among cortical 
areas, since both power and coherence in the delta and theta 
bands increase with cortical deafferentiation from subcortical 
structures [102]. However, the extent to which features of 
neuroelectric activity can be used to predict the conversion 
from MCI to AD in single subjects is as yet unclear. In a 
seminal EEG study, a multiple logistic regression of theta 
power (3.5–7.5 Hz), mean frequency, and interhemispheric 
coherence has been ablt to to predict decline from MCI to 
AD at long term for with an overall predictive accuracy of 
about 90% [103]. Furthermore, spectral EEG coherence or 
other EEG features have shown to contribute to the 
discrimination of Nold from mild AD with 89–45% of 
success, from MCI to AD with 92–78% of success, and the 
conversion of MCI subjects to AD with 87–60% of success 
[47, 63, 67, 104-109]. These findings are encouraging for 
future development of this prognostic and perhaps diagnostic 
approach [110]. 

 Rossini et al. (2006) [111] investigated whether 
combined analysis of EEG power and coherence provide 
early and reliable discrimination of MCI subjects who will 
convert to AD after a relatively brief follow-up. Cortical 
connectivity using spectral coherence measures and 
LORETA was evaluated to characterize EEG sources at 
baseline in 69 MCI cases that were reassessed clinically after 
about 14 months. At follow-up, 45 subjects were classified 

as stable MCI (MCI Stable), whereas the remaining 24 had 
converted to AD (MCI Converted). Results showed that at 
baseline, fronto-parietal midline coherence as well as delta 
(temporal), theta (parietal, occipital and temporal), and low-
frequency alpha (central, parietal, occipital, temporal, 
limbic) sources were stronger in MCI Converted than MCI 
Stable subjects. Cox regression modeling showed low 
midline coherence and weak temporal source was associated 
with 10% annual rate AD conversion, while this rate 
increased up to 40% and 60% when strong temporal delta 
source and high midline gamma coherence were observed 
respectively. This outcome indicates that quantitative EEG is 
able to predict with a good approximation MCI progression 
to AD in the short run. 

6. CONCLUSIONS 

 The present review highlights the use of modern EEG 
techniques that report assessment of physiological and 
pathological brain aging. Application of these techniques 
allows the quantification of the power and functional 
coupling of resting state EEG rhythms at scalp electrodes 
and mathematical cortical sources. The results reviewed in 
the present article suggest that these quantitative indexes of 
resting state EEG rhythms might reflect neurodegenerative 
processes along preclinical and clinical stages of AD. 
Moreover, risk factors including genetic causes correlate 
with neurophysiological findings to reinforce their causative 
role in diagnosis and prognosis of pathologic brain aging. 
Unfortunately, this remarkable literature suffers from the 
partial lack of integration of various EEG techniques such as 
analysis of power density and functional coupling (i.e. 
spectral coherence, directed transfer function) within a 
unique frame of goal-directed test for evaluation of 
physiological brain aging and discrimination from abnormal 
scenarios heralding neurodegeneration. In the near future, 
systematic evaluation of AD and other dementing disorders 
relative to normal aging using refined and integrated EEG 
techniques will help to coalesce these methodologies and 
improve diagnostic utility. If this approach can provide 
clinically useful information at the individual level, such 
methods should prompt design of an instrument widely 
available for large-scale population-based screening studies. 
The results would be welcome for prognosis and providing 
an objective evaluation of innovative pharmacological and 
cognitive rehabilitation treatments for dementing illness. 
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