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Abstract:

The current therapies against cancer showed limited success. Nanotechnology is a promising strategy for cancer tracking, diagnosis, and therapy.
The hybrid nanotechnology assembled several materials in a multimodal system to develop multifunctional approaches to cancer treatment. The
quantum dot and polymer are some of these hybrid nanoparticle platforms. The quantum dot hybrid system possesses photonic and magnetic
properties, allowing photothermal therapy and live multimodal imaging of cancer. These quantum dots were used to convey medicines to cancer
cells. Hybrid polymer nanoparticles were utilized for the systemic delivery of small interfering RNA to malignant tumors and metastasis. They
allowed non-invasive imaging to track in real-time the biodistribution of small interfering RNA in the whole body. They offer an opportunity to
treat cancers by specifically silencing target genes. This review highlights the major nanotechnology approaches to effectively treat cancer and
metastasis.

Keywords: Nanotechnology, Nanoparticle, Cancer, Diagnosis, Therapy, Theranostic.

Article History Received: October 30, 2019 Revised: March 11, 2020 Accepted: March 12, 2020

1. INTRODUCTION

Cancer is one of the leading causes of death in the world. It
is characterized by an uncontrolled cell proliferation within the
body. The cells divide into infinity and lead to the formation of
a primary tumor. Some cells of the primary tumor diffuse into
the body and lead to the formation of secondary tumors called
metastases.  The  cancer  cell  is  characterized  by  its
independence  from  the  signals  of  cellular  proliferation,  to
escape apoptosis, to proliferate to infinity, to become invasive
and metastatic, and to induce angiogenesis (Fig. 1). Cancers are
linked  to  environmental  and  genetic  factors.  Three  types  of
genes  are  responsible  for  cancerization,  positive  regulatory
proto-oncogenes  for  normal  cell  proliferation,  negative
regulatory anti-oncogenes for cell proliferation and DNA repair
genes [1 - 3].

The diagnosis of cancer can be made by biopsy, biological
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analysis, endoscopy, and medical imaging modalities such as
Pet, CT, and MRI [4 - 20]. There are other options of therapies,
as  described  in  the  references,  such  as  immunotherapy  and
combination therapy [21 -  26].  Surgery and radiotherapy are
curative treatments for localized tumors, they have undesirable
effects. For metastatic tumors, chemotherapy is privileged, but
lacks specificity and is associated with adverse side effects for
patients. New targeted therapies or immunotherapies are more
effective and less toxic, they are able to specifically recognize
and treat cancer cells while preserving healthy cells and having
fewer  side  effects  [27  -  33].  Nanomedicine  is  the  set  of
processes for  creating and manipulating devices at  the nano-
meter  scale.  These  devices  could  perform cellular  detections
and  repairs  in  the  human  body  at  the  molecular  level.
Conventional imaging detects cancer at about a cm3 containing
about a billion cancer cells, while nanotechnology devices have
the ability to detect a single cancer cell. Through nanoparticles
(NPs), nanotechnology is a promising strategy for the therapy
and diagnosis of various diseases [34 - 45].

2. NANOTECHNOLOGY APPROACHES

Nanomedical  devices  are  designed  to  perform  various
biomedical  applications  in  disease  sites.  They  can  be
introduced into the body and guided to cancer sites to diagnose,
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administer  drugs,  and  perform  surgery  on  an  anatomical,
cellular and molecular scale. Biochips NPs can take single-cell
captures  and  perform  analytical  cell  separations  [46].
Nanotechnologies have theranostic applications, they have the
ability to be used simultaneously for the diagnosis and targeted
therapy  of  cancer  [47,  48].  For  the  diagnostic  function,
nanotechnology  has  applications  in  non-invasive  imaging,
biocompatible NPs are used in tomography as imaging probes
to  measure  and  locate  tumors  [49].  For  the  therapeutic
function, nanotechnologies are applied in chemotherapy, small
interfering RNA (siRNA) therapy, photodynamic therapy, and
photothermal therapy. Nanoparticles were labeled with specific
nucleic acid barcodes, which by their sequencing, allowed to
measure the systemic and in vivo biodistribution of NPs siRNA
delivered to tissues [50] (Fig. 2).

Nanomedicine  through  NPs  offers  better  treatments  than
conventional  cancer  therapies.  NPs  have  the  ability  to
encapsulate,  protect,  and  release  targeted  drugs  by  having
better  pharmacokinetics,  circulation  half-life,  and
bioavailability. The characteristics of NPs, such as size, shape,
and  surface,  offer  better  biological  interactions  and  stability
over  large  pH  and  temperature  ranges  [51].  These  platforms
allow the selective distribution of drugs to tumor cells, reduce
side  effects,  and  avoid  the  body's  defense  mechanisms  [52].
The  effectiveness  of  protein-based  drugs  is  limited  by  the

formation of antibodies, the combination of these drug proteins
with  NPs  allows  to  increase  their  tolerance  by  the  body  and
restore their antitumor activity [53].

The  effectiveness  of  tumor  administration  of
nanomedicines  depends  on  biological  barriers  in  the  spleen,
lymph  nodes,  and  liver  [54].  The  NPs  cross  these  natural
barriers  and  selectively  target  biomarkers  overexpressed  by
cancer  cells  such  as  ανβ3  integrin  and  folate  receptors  [55].
Physiological  barriers  may  hinder  the  administration  of
nanomedicines. The NPs at 5 nm are eliminated by the kidneys.
The gap between normal endothelial  cells  is  10 to 50 nm. In
cancer sites, the gap between endothelial cells varies from 200
to 1200 nm. NPs greater than 200 nm accumulate in the liver,
spleen  and  bone  marrow,  where  they  are  taken  up  by  the
reticuloendothelial system (RES) and degraded by monocytes
and macrophages. NPs at 100 nm leave the systemic circulation
through  the  effect  of  permeability  and  increased  retention
(EPR) and accumulate in cancerous areas [56 - 58]. The NPs
are  able  to  distinguish  target  cancer  cells  based  on  their
receptors  profile  allowing  selective  therapy  with  fewer  side
effects [59]. Nanomaterials such as graphene and nanoclays are
able  to  interact  with  the  cell  membrane  and  activate  protein
kinase.  These  nanosilicates  can  provide  information  on  cell
signaling involved in tumor growth useful for the development
of medical treatments [60].

Fig. (1). Representation of cancer. The grey arrow indicates normal cells, the green arrow shows cancer cells, the yellow arrow shows angiogenesis,
and the blue arrow indicates blood vessels.
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Fig. (2). NPs enabling multimodal in vivo imaging of a cancer bearing body. Nanoparticles were injected into the body and guided to cancer sites
in  order  to  perform diagnosis  and  therapy.  NP  system possesses  optical,  photonic,  radioactive,  contrast,  chromogenic  and  magnetic  properties
allowing live multimodal theranostic of cancer. In the homunculus, imagery shows red signal intensity where NPs were located, different techniques
are used. In fluorescence imaging, molecules excited by light emit a higher intensity light detected by a CCD (Charge Coupled Device) camera, the
emitted light is in the near infrared (NIR) (700-900 nm) and is characterized by high sensitivity and penetration of deep tissues. Radioactive products
are used in scintigraphy and positron emission tomography, allowing functional and metabolic imaging, radioactive radiation is used to destroy cancer
cells. Magnetic resonance imaging (MRI) is a method of obtaining imaging inside the body, by applying magnetic fields, MRI uses the quantum
properties of atomic nuclei to locate NPs in the emitting space of the nuclear magnetic resonance (NMR) signal.

Nanomedical  devices  can  be  nanoliposomes,  nanowires,
carbon  nanotubes,  nanopores,  gold  nanoparticles  (AuNPs),
magnetic NPs, nanodiamonds, quantum dots, dendrimers, and
nanosponges.  There  are  NPs  carrying  drugs  like  liposome,
mesoporous  silica,  polymer,  and  virus.  There  are  NPs  of
photothermal  therapy  like  gold  NPs,  and  carbon  tube.  The
devices  of  nanotechnology  bring  new  hope  in  the  targeted
treatment of cancer (Table 1).

2.1. Liposomes

Liposomes  are  systems  consisting  of  a  lipid  bilayer
enveloping  an  aqueous  central  cavity.  The  cavity  can  carry
hydrophilic drugs, whereas the envelope can carry hydrophobic
drugs. Drug delivery into the cell cytoplasm is accomplished
by  the  fusion  of  liposomes  with  cell  membranes.  The
hydrophilic  polar  heads  are  directed  outwards  and  the
hydrophobic aliphatic tails are directed inwards. The size of the
liposomes is of the order of 10 to 1000 nm. They are used to
convey  drugs  and  siRNAs  to  cancer  cells  because  of  their
biodegradability.  Liposomal  doxorubicin  (Doxil)  is  a
chemotherapy  drug  used  to  treat  various  cancer.  The
fluorescent  or  radioactive  labeling  of  liposomes  is  used  in
diagnostic  techniques  in  medical  imaging.  Hybrid  NPs  in

which  liposomes  are  incorporated  either  within  or  at  the
surface have theranostic applications in cancer [61]. Liposomal
NPs are used as an optical nanoprobe for in vivo chromogenic
detection  of  H2O2  produced  by  cancer  cells,  and  in  photo-
thermal therapy of target tumor sites [62]. The encapsulation of
drugs by liposomes gives them steric stability,  protects them
against  enzymes  and  the  immune  system  and  avoids  their
toxicity  against  the  patient.  To  release  the  medications,  the
liposomes  fuse  with  biological  membranes  and  are  endo-
cytosed  by  cells.  Molecules  such  as  antibodies  are  added  in
liposomes systems to specifically recognize target cancer cells.
The half-life of liposomes is short in biological media and their
use requires frequent administration. They are chemically and
physically  unstable  because  they  are  sensitive  to  pH  and
temperature  variations.  They  are  opsonized  and  quickly
eliminated  by  the  reticuloendothelial  system  (RES).  The
modification of the surfaces of the liposomes with polyethylene
glycol (PEG) chains reduces their immuno-genicity since the
opsonins no longer cling to their surface, the organism does not
recognize  them as  foreign  and  they  are  not  destroyed  by  the
RES [63, 64].
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2.2. Nanowires

Nanowires are wires of nanometric size, their diameter is
of the order of 1 to 900 nanometers. They are made of plastic
or metal conductive materials. The molecules of the nanowires
are organic or inorganic. Nanowires applications are mainly in
vitro and have many medical interests. They can be coated with
antibodies  that  bind  to  target  molecules  for  the  diagnosis  of
cancer. Nanowires are highly more sensitive and specific than
conventional  biochemical  tests  and  represent  a  powerful
method  of  prognostic  evaluation  of  cancer  [65].

Table 1. Nanoparticles for cancer théranostics.

Nanoparticles Therapy Diagnostic References
Liposomes Pharmacotherapy:

medicine
Gene therapy:

siRNA
Phototherapy:
photothermal,
photodynamic

Medical
imaging:
optical,

fluorescent,
radioactive,

contrast,
chromogenic,

magnetic
resonance

[61, 62]
Polymers [106 – 108]

and [112]
Quantum Dot [97, 98] and

[100 - 102]
Gold [70], [72],

[76] and [80,
81]

Magnetic [83], [85],
[89, 90]

Nanodiamonds [91, 92] and
[94]

Carbon
Nanotubes

[66]

2.3. Carbon Nanotubes

Carbon  nanotubes  (CNTs)  are  fibrous  nanomaterials
composed of layers of carbon atoms forming a tube. They have
mechanical properties of rigidity, deformability, and lightness.
Carbon nanotubes called “armchair” have a metallic character
and  they  are  conductors.  Carbon  nanotubes  called  “zig-zag”
and carbon nanotubes called “chiral” are semiconductors, they
have electrical conductivity between that of a conductor and an
insulator. Owing to their physicochemical properties, they have
many biomedical applications. They are used in drug delivery,
chemotherapy, photodynamic therapy, and gene therapy. They
have optical properties of luminescence with NIR absorbance,
because of their fluorescent capacity they are employed in the
detection of cancerous cells. They have properties of thermal
conductivity;  under  laser  irradiation,  they  produce  heat
allowing  the  thermotherapy  of  cancer  cells  [66].

2.4. Nanopores

A  nanopore  is  a  hole  of  the  order  of  1  to  100  nm  in  a
synthetic material such as graphene or biological material such
as protein. Nanopore technology is used to characterize DNA
molecules. The passage of individual nucleotides through the
nanopore  under  tension  triggers  a  signal  which  varies
according to the bases of the DNA strand, making it possible to
distinguish  the  four  standard  DNA  bases  and  to  read  the
genetic  code.  The  sequencing  of  DNA  by  nanopores  is  less
expensive  and  offers  the  possibility  of  detecting  genetic
mutations responsible for cancer. It has been utilized in patients
with chronic lymphocytic leukemia and has been shown to be
more sensitive than traditional sequencing methods. Nanopore-
based DNA sequencing presents various advantages compared

to traditional methods such as i) label-free ii) ultralong reads
iii)  high  throughput  reads  iv)  requires  low  material  v)  use
unamplified genomic DNA [67 - 69].

2.5. Gold Nanoparticles

AuNPs  have  optical  properties  of  plasmons,  they  are
contrast  agents  in  biological  imaging.  In  the  treatment  of
cancer,  they  are  used  in  imaging,  photothermal  therapy,
photodynamic therapy and for targeted drug delivery. AuNPs
are biocompatible and may have sites for attaching molecules
to  their  shells  that  specifically  recognize  cancer  cells.
Nanoshells are AuNPs consisting of a dielectric core composed
of silica and a metal shell made of gold (SiO2 core, Au shell).
Nanorods are AuNPs of 1 to 100 nm containing semiconductor
materials. Nanoshells and nanorods are used in photothermal
therapy  because  of  their  NIR  absorption.  Under  magnetic
resonance  guidance,  the  exposure  to  NIR  light  of  tumors
treated  with  AuNPs  induces  irreversible  cancer  cell  lethality
[70 - 76]. Multifunctional nanoshells have a greatly increased
relaxivity  of  T1  enhancing  MRI  T1  properties  used  for
quantitative  monitoring  in  vivo  therapeutics.  These  nano-
particles  of  Au  core-silica  layer-Au  shell  contain  internal
gadolinium ions for T1 imaging contrast, encapsulated within
the silica layer between an inner core and outer Au layer, in a
multilayered  geometry  [77].  The  absorbing  NIR  is  used  to
trigger  the  release,  localized  in  space  and  time,  of  drugs
conjugated  to  nanoshells  in  order  to  treat  cancer  cells  while
minimizing  the  toxicity  of  normal  cells  [78].  Nanorods  have
been activated with NIR to generate photothermal therapy to
treat metastases, they have the ability to inhibit the migration
of  cancer  cells  by  targeting  the  cytoskeletons  and  integrins
[79]. Gold nanocages are porous AuNPs of 10 to 150 nm, they
are  biocompatible  and  absorb  in  the  NIR,  they  are  contrast
agents  in  medical  imaging.  Gold  nanocages  conjugated  with
antibodies are employed in cancer thermotherapy [80, 81].

2.6. Magnetic Nanoparticles

Magnetic  NPs  are  nanomaterials  of  about  10  to  100 nm,
they  are  composed  of  magnetic  materials  of  iron,  nickel  or
cobalt.  The  magnetic  NPs  most  adapted  for  biomedical
applications  are  nanomaterials  composed  of  iron  oxides,
magnetite or maghemite. There are contrast agents in magnetic
resonance imaging, using a magnetic field gradient, they can be
directed  to  cancer  sites.  Magnetic  nanoparticles  are  used  in
various applications for cancer therapy: i) hyperthermia-based
therapy ii) selective photodynamic therapy of cancerous cells
iii)  targeting  and  extraction  of  cancer  cells  iv)  targeted  and
controlled drug delivery to cancer cells [82 - 90].

2.7. Nanodiamonds

Nanodiamonds are NPs of about 10 to 100 nm and can be
produced by meteorite impacts. Due to their hardness and wear
resistance,  they  are  used  in  industrial  and  scientific
applications.  Due  to  their  biocompatibility,  photostability,
electrostatic  properties,  and  surface  functionality,  they  are
employed in biomedical applications to treat a wide range of
diseases. These are platforms for localized drug delivery and
monitoring  of  imaging-guided  treatments.  The  nanodiamond
technology  system  facilitates  the  targeted  and  sustainable
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delivery of drugs.  The nanodiamond platform maximizes the
effects  of  drugs  by  ensuring  their  prolonged  administration.
Nanodiamonds have a capacity in drugs sustained-release. The
adsorption/desorption  on  nanodiamonds  is  the  basic
mechanism for targeted drug delivery. These are applications
of cancer nanomedicine and cancer cell biomarkers [91 - 96].

2.8. Quantum Dot

The Quantum Dots  (QDs)  are  fluorescent  semiconductor
nanocrystals of about 10 nm, composed of a core coated with
an  envelope.  QD-containing  NPs  represent  an  approach  in
cancer  medical  imaging,  cancer  cell  tracking,  cancer
photodynamic therapy, and cancer diagnosis. They are contrast
agents and have tumor imaging properties. When injected into
the body, they infiltrate cancerous sites and produce images of
these  sites.  The  toxicity  of  QDs  limits  their  use  for  in  vivo
applications. Thus appropriately coated, QDs can be rendered
non-toxic  in  biological  media.  Polymer-coated  QDs  have
properties of biocompatibility, solubility, targeting cancerous
cells and drug delivery. QDs based on a core with lead sulfide
(PbS) and shell with cadmium sulfide (CdS) and covered with
PEG, emitting at about 1600 nm allow 3D tumor fluorescence
imaging  in  vivo  [97,  98].  QDs  can  target  specific  receptors.
Folate  is  vital  for  cell  growth;  the  folate  receptor  is
overexpressed in the cancer cell. QDs conjugated to folate are
used  to  diagnose  cancer.  QDs  have  higher  optical  properties
than organic dyes. They are photostable and possess quantum
properties with excitation and emission of light in the NIR. The
signal emitted is 100 times more intense than fluorescent dyes
allowing  deep  tissue  analysis  [99,  100].  When  placed  in  the
body and illuminated by light, QDs heat the surrounding tissue
allowing  hyperthermic  cancer  therapy.  Considering  that
hyperthermia between 42°C and 45°C induces cell  apoptosis
while  a  temperature  above  45°C  causes  cell  necrosis.  In
photodynamic  cancer  therapy,  QDs  react  with  molecular
oxygen producing peroxides and hydroxyl radicals, which lead
to the death of cancer cells [101, 102].

2.9. Polymer-based Nanoparticles

Dendrimers  and  nanosponges  are  polymers  of  size  from
about 10 nm to 1000 nm. They have better solubility, stability,
absorption,  and  in  vivo  bioavailability.  They  are  the  most
promising  drug  carriers  in  targeted  cancer  therapy  [103].
Dendrimers  are  polymers  of  macromolecules,  their  size  and
shape  are  variable.  Dendrimers  are  tree  branch  molecules
composed of a nucleus of branching units and functional end
groups. Drugs can be incorporated into the central nucleus or
conjugated to the functional extremity, to be transported to the
cancer  cells.  These  are  contrast  agents  used  in  MRI  for  the
diagnosis of cancer [104, 105]. Nanosponges are a scaffold of
polymers filled with nanocavities in which molecules can be
stored. These are NPs that take the form of red blood cells and
move throughout the living body. They can trap bacteria and
toxins  in  their  scaffolds  and  filter  them  into  the  liver.
Nanosponges injected into the living body are used to deliver
drugs to cancer cells [106 - 108]. Human ferritin heavy-chain
nanocages  coupled  to  polyethylene  glycol  constitute  a  drug
delivery system able to overcome multiple biological barriers,
to  penetrate  preferentially  into  tumor  tissues,  to  distribute

selectively  and dependently  on transferrin  receptor  in  cancer
cells  [109].  Polymer-based  NPs  can  be  wrapped  in
macrophage-derived  cell  membranes  which  neutralize
endotoxins, sequester pro-inflammatory cytokines, and inhibit
the  onset  of  immune  activation  against  these  NPs  [110].  To
develop  interfering  RNA  (RNAi)  -  based  cancer  treatments,
albumin is conjugated to siRNA to increase their half-life in the
circulation, their bioavailability, their accumulation in tumors
and their uptake by tumor cells [111]. Nano-encapsulation of
multiplexed  RNAi  in  lipopolymeric  NPs  is  a  therapeutic
targeting  strategy  to  meet  the  challenges  of  therapeutic
resistance  and  tumor  heterogeneity  [112].  Spherical  nucleic
acids (SNAs) nanoconjugate-based RNAi constitute an in vivo
nanotherapeutic strategy, they are capable of performing non-
invasive imaging and inactivating in vivo intratumoral proteins
[113].

2.10. Hybrid Nanoparticles

Hybrid  NPs  are  multifunctional  systems  in  which
nanostructures such as liposomes, polymers, noble metals, and
nanotubes are incorporated inside or on the surface of a nano-
assembly.  They  combine  both  diagnostic  and  therapeutic
functions.  These  nanodevices  are  able  to  perform  multiple
tasks, they are utilized in drug therapy and medical imaging for
in vivo targeting of cancer sites (Figs. 3 and 4). Polymer hybrid
NPs  aim to  offer  biocompatible  and  biodegradable  materials
suitable for therapeutics and diagnosis applications. They can
incorporate  QD  and  magnetic  NPs.  They  combine  medical
imaging and drug delivery in cancer therapy. Conjugated with
folate, they selectively target cancer sites.

Table 2. Hybrid Nanoparticles for cancer theranostics.

Hybrid
Nanoparticles

Therapeutic
Functions

Diagnostic
Functions

References

Mesoporous
silica-based

Pharmacotherapy:
radionuclides, toxin...
Phototherapy: gold,

quantum dots,
upconversion...

Medical
imaging: gold,

magnetic
nanocrystals,

quantum dots...

[70] and
[114]

Polymer-based [70], [117,
118] and
[120]

Mesoporous  silica-based  hybrid  NPs  are  the  best  drug
carriers  because  of  their  large  surface  area,  size,  porosity,
chemical stability, and biocompatibility. They can incorporate
theranostic  molecules  and magnetic  nanocrystals  [70]  (Table
2).  AuNPs  have  photonic  and  magnetic  properties,  but  their
toxicity  to  cells  and  their  lack  of  solvent  stability  limit  their
use.  The creation of  mesoporous silica-based hybrid systems
stabilizes AuNPs by allowing them to retain their properties in
biological  media  while  being  biocompatible.  In  these  hybrid
systems,  the  AuNPs  absorb  light  in  the  NIR,  convert  it  into
photons  through  the  tissues  and  deliver  treatment.  QDs  are
promising in tumor multimodal imaging, hyperthermic therapy,
and photodynamic therapy. Mesoporous silica is employed in
these  systems  to  host  the  drug  load  and  control  its  release
[114].

Drug  delivery  is  focused  on  lipid  NPs  which  have
pharmacokinetic,  stability,  biodistribution  and  toxicity
limitations. Polymeric NPs are drug delivery systems that can
escape  endosomal  activities  and  offer  greater  anticancer
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efficiency  [115].  NPs  composed  of  a  combination  of  mixed
lipids are vectors for delivering oligonucleotides across the cell
membrane.  The  mechanism  for  releasing  oligonucleotides  is
endocytotic. These various lipid block hybrid NPs have a high
efficiency  of  transfection  of  cells  with  the  ribonucleic  acid
messenger (mRNA), allowing protein expression. These lipid
hybrid  NPs  have  minimal  toxicity  and  promising  medical
strategies [116, 117]. Mechanisms that involve tumor growth
and metastasis depend on the genetic mutations of oncogenes.
RNAi  represents  a  promising  strategy  for  the  treatment  of
human diseases,  including cancer.  Hybrid polymer NPs used
for  in  vivo  and  systemic  delivery  of  siRNA  to  tumors
specifically  deactivate  the  expression  of  mutated  oncogenes.
These siRNA-conjugated polymeric NPs have no toxicity risk
to  patients  and  are  photostable.  They  provide  theranostic
follow-up by non-invasive imaging of tumors ; also long-term

circulation, prolonged-release, and significant accumulation of
drugs in tumors. They are capable of efficient gene silencing
and have negligible side effects [118].

Fluidic microchips were used to probe the translocation of
hybrid  polymeric  NPs  through  endothelial  cells  and  in  vivo
imaging monitoring of their transvascular permeability [119].
The hybrid anti-cancer systems integrate Yttrium 90 (90Y) beta-
emitting radionuclides inside of nanocrystalline matrix coated
with  NIR  light  upconversion  polymer  and  coupled  to
recombinant proteins composed of two modules: i) the DARP
in  module  targeting  cells  overexpressing  the  HER2  receptor
oncomarker ii) the Exotoxin A cytotoxic module inhibiting the
synthesis of HER2-positive cell proteins. These nanocomple-
xes  have  diagnostic  functions  and  selective  drug  therapy  of
cancer cells [120].

Fig.(3). Schematic design of the hybrid NP platform. Hybrid NPs are composed of an inorganic or polymeric core (orange) and a polymeric shell
(blue). The hybrid NPs host NP agents within their shell and or inside their core. Schematic design showing imaging agent (radio-isotope compound,
fluorescent compound) allows the visualization or detection of NPs. The pharmacotherapy agent (active pharmaceutical ingredient) allows drug
delivery. The genetic therapy agent (siRNA) allows genetic material delivery. The stealthing agent (PEG, dextran, phospholipids) increases the
circulation half-life of nanoparticles. The specific-ligand agent (antibody) allows specific binding to antigen. The specific-targeting agent (HER2,
ERBB3, BRAF) allows targeting specific receptors of cancer cells. The functional agent (enzyme) allows biochemical reactions.
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Fig.(4). Schematic illustration of cancer theranostics by the multifunctional NPs hybrid platform. In the interaction between the NPs and the
cancer cells, the ligand targeting agent binding to tumor receptor induces internalization and endocytosis of NPs in cancer cells. In diagnosis, the cells
are labeled following NPs agent release, which is localized within the cancer cells through various methods. In thermal treatment, the cells are treated
with NPs, which are activated by radiation to induce the destruction of cancer cells. In therapy with NPs siRNA delivery, the cells are treated with
NPs loaded with siRNA (NPsi oncogenes), which mediate gene silencing and functional effects in mutated cells, to induce effective and cytotoxic
destruction of cancer cells. In pharmacotherapy, the therapeutic agent drug release molecule induces the destruction of the cancer cells.

CONCLUSION

The  tools  of  nanotechnology  are  promising  for  the
treatment of a wide range of diseases. Several nanotechnology
platforms have been developed and several clinical trials have
demonstrated their anticancer benefits, thereby liposomes are
widely used. Dendrimers, cantilevers, and CNTs are emerging
nano-applications in cancer medicine. Drug resistance results
from  the  accumulation  of  lactic  acid  in  poorly  vascularized
cancer  sites,  the  NPs  make  it  possible  to  overcome  these
problems  of  administration  of  the  drugs  to  the  cancerous
tissues. NPs are characterized by their modular size, their high
surface-volume  ratio,  their  loadable  surface  with  biological
substances  of  interest,  and  their  stability  in  wide  ranges  of
temperature  and  pH.  Nevertheless,  nanoparticles  have  many
challenges to overcome, notably their accumulation in the liver
and the spleen, as well as the different barriers to cross to reach
the cancer cells. Antisense oligonucleotides or RNAi offer an
opportunity  to  treat  cancers  by  specifically  disabling  the
expression  of  target  genes  that  lead  to  tumor  growth.
Nevertheless, this approach confronts problems of side effects
related to their pairing with non-target mRNA, the induction of
the  innate  immune  response,  their  short  half-life  and  their
destruction  by  serum  nucleases.  Hybrid  NP  polymers
effectively protect siRNA and allow NIR imaging to track in
real-time the systemic and in vivo biodistribution of siRNA to
tumors.  Polymeric  hybrid  NPs  show  photostability  and
significant systemic circulation time. Nanotechnology presents
new  ways  to  diagnose,  treat  and  follows  patients.  The

characterization  and  lack  of  biodegradation  of  NPs  raise
concerns about the safety of their clinical use. The toxic effects
of  NPs  are  not  sufficiently  known.  Regulations  hinder  the
widespread application of NPs in cancer medicine because of
potential health risks for patients. Successful clinical trials and
compliance  with  quality  guidelines  would  address  the
challenges  facing  the  NPs  on  the  marketplace.

LIST OF ABBREVIATIONS

AuNPs = Gold Nanoparticles

BRAF = B-Raf proto-oncogene

CCD = Charge Coupled Device

CdS = Cadmium Sulfide

CNTs = Carbon Nanotubes

CT = Computerized Tomography

DARPin = Designed Ankyrin Repeat Proteins

DNA = Deoxyribonucleic acid

ERBB3 = Receptor tyrosine-protein kinase erbB-3

EPR = Effect of Permeability and increased Retention

HER2 receptor = Human Epidermal Growth Factor Receptor-2

MRI = Magnetic Resonance Imaging

NIR = Near-infrared Region

NP = Nanoparticle

(NMR) = Nuclear Magnetic Resonance

Death of cancer cell

Diagnosis Phototherapy Pharmacotherapy Gene therapy

NP platform ­ Cancer cell interaction
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PbS = Lead Sulfide

PEG = Polyethylene Glycol

Pet = Positron Emission Tomography

pH = Potentiel Hydrogen

QD = Quantum Dot

RES = reticuloendothelial System

RES = Reticuloendothelial System

RNAi = Interfering RNA

mRNA = Ribonucleic Acid Messenger

siRNA = Small Interfering RNA

SNAs = Spherical Nucleic Acids

T1 = spin-lattice Relaxation Time in Contrast

Theranostics = Diagnosis  and  Therapy  Coupled  in  the  Same
System
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