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1. INTROCUTION  

 Since the first isolation of L-arginine in 1886 [1], the 
biochemistry and physiology of this amino acid has been a 
field of active research. However, the discovery about 100 
years later, that L-arginine is the only physiologically 
significant substrate for the synthesis of nitric oxide (NO) [2-
6], has markedly stimulated the interest in the complex 
metabolism of this amino acid, as NO has been identified as 
an important intra- and transcellular signalling molecule 
involved in the regulation of many physiological and 
pathophysiological processes in the mammalian organism 
[for reviews 7-14].  

 The present review will give an overview of the 
biochemistry and metabolism of L-arginine focusing on the 
mechanisms which may either provide or limit cellular 
availability of this amino acid and possible interactions 
between the different pathways. In addition, emerging 
species differences are addressed, as they may have 
considerable impact on the translation of results from animal 
models into human. 

2. BIOSYNTHESIS OF L-ARGININE  

 L-Arginine has been characterized as semi-essential 
amino acid, in that it is non-essential in the healthy adult 
organism of most mammals, but has to be supplemented in 
the growing organism, after trauma or during various disease 
states [15-19]. Normal L-arginine plasma levels are in the 
range of 100 – 200 M [20-23]. It is important to note that 
even in adult mammalian organisms not all of the enzymes 
required for de novo synthesis of L-arginine are expressed in 
every tissue. Three steps in the L-arginine biosynthesis, 
differentially compartmented in the mammalian organism 
may be discriminated: Biosynthesis of I) L-ornithine, II) L-
citrulline and III) L-arginine.  
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I) The biosynthesis of L-ornithine form food- or blood-
derived L-glutamine and L-proline occurs almost  
exclusively in the small intestine [24,25] as the L- 1-
pyrroline-5-carboxylate (P5C) synthetase (P5CS) (one of 
the enzyme required for the conversion of L-glutamine 
into L-ornithine, see Fig. 1) is exclusively located in the 
intestinal mucosa [26,27]. Likewise, proline 
dehydrohenase (PROHD), which catalyses the formation 
of P5C from proline (Fig. 1), is also mainly expressed in 
the intestinal mucosa, although some activity is also 
detected in the liver and kidney [26,27]. As outlined in 
more detail below L-ornithine is also produced by the 
arginases using L-arginine as substrate (Fig. 1), but this 
reaction may be considered as L-arginine consuming 
rather than as initial step in the L-arginine biosynthesis.  

II) The biosynthesis of L-citrulline from L-ornithine 
depends on the presence of ornithine carbamoyltrans-
ferase (OTC) and carbamoylphosphate synthetase 1 
(CPS1). The expression of both enzymes is restricted to 
the mitochondrial matrix of hepatocytes and epithelial 
cells of the small and to a minor extent large intestine 
[28,29]. In the liver, this reaction is part of the urea cycle, 
whereas L-citrulline produced in the intestine is released 
into the circulation. Most of this circulating L-citrulline is 
taken up by cells of the proximal tubulus of the kidney 
converted into L-arginine and finally released into the 
circulation for the benefit of other cells [30-35].  

III) The biosynthesis of L-arginine from L-citrulline is 
performed by the cytosolic enzymes argininosuccinate 
synthetase 1 (ASS1) and argininosuccinate lyase (ASL). 
The reaction catalysed by ASS requires L-aspartate as 
co-substrate and is the rate-limiting step. In contrast to 
the mitochondrial enzymes of the urea cycle OTC and 
CPS1, ASS1 and ASL appear to be expressed in many 
cells, although the degree of expression and the 
efficiency of this pathway appear to differ considerably 
between different cells [36-47]. Since during NO-
synthesis L-arginine, via N -OH-L-arginine as 
intermediate product, is converted to L-citrulline [48-50], 
the immediate use of L-citrulline for the re-synthesis of 
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Fig. (1). Metabolic pathways of L-arginine.  

ARG, arginase (EC 3.5.3.1); ASL, argininosuccinat lyase (EC 4.3.2.1); ASS1, argininosuccinat synthetase 1 (EC 6.3.4.5); OTC, ornithine 
carbamoyltransferase (EC 2.1.3.3); CPS1, carbamoyl-phosphate synthetase 1, mitochondrial (EC 6.3.4.16); ADC, arginine decarboxylase (EC 
4.1.1.19); GATM, glycine aminotransferase (EC 2.1.4.1); RARS arginyl-tRNA-synthetase (EC 6.1.1.19); NOS, nitric oxide synthase (EC 
1.14.13.39) ; ODC1, ornithine decarboxylase (EC 4.1.1.17); OAT, ornithine aminotransferase (EC 2.6.1.13); PYCR1, pyrroline-5-carboxylate 
reductase 1 (EC 1.5.1.2); P5CDh = ALDH4A1, aldehyde dehydrogenase familiy 4, member A1 (EC 1.5.1.12); P5CS, pyrroline-5-carboxylase 
synthetase (= ALDH18A1, EC 1.2.1.41); PRODH, proline dehydrogenase (oxidase) 1 (EC 1.5.99.8); SRM, spermidine synthase (EC 
2.5.1.16); SMS, spermine synthase (EC 2.5.1.22). 
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 L-arginine may be an effective way to ensure sufficient 

substrate supply for a prolonged NO synthesis and has 
therefore been described as citrulline/NO cycle [see 
27,51]. The functional significance of this L-arginine 
providing pathway for the synthesis of NO is further 
supported by observations showing that ASS1 and ASL 
are co-localized with endothelial NOS in caveoli [52] and 
that stimuli which induce a prolonged NO synthesis by 
induction of the inducible NOS (iNOS, see also below) 
can also cause an up-regulation of ASS1 [e.g. 
40,41,43,45,53-56]. Nevertheless, despite the up-
regulation of ASS1, the availability of L-arginine may 
remain rate limiting for the synthesis of NO and the 
cellular uptake of L-arginine may determine the amount 
of NO synthesised, as demonstrated for example in 
different macrophages [38,39,45,57] (see also below). 

3. CELLULAR UPTAKE OF L-ARGININE  

 There are several mechanisms by which L-arginine may 
be transported into the cells. First, there is a family of 
specific cationic amino acid transporter (CAT) proteins 
consisting of four members (CAT-1, -2A, -2B and 3) with 
CAT-2A and 2B being splicing variants of the same gene. 
For detailed description of their structure and functions it is 
referred to a recent review of Closs et al. [58]. Here, only a 
short overview will be given. These CATs belong to the 
larger family of solute carriers 7 (SLC7) and therefore the 
names SLC7A1, SLC7A2 and SLC7A3 have been assigned 
for the genes of CAT-1, -2, and -3, respectively [59]. There 
is an additional homologous protein SLCA4 or CAT-4, 
which however lacks cationic amino acid transport activity 
[60] and other physiological functions have not yet been 
identified.  

 The different CAT proteins consist of between 619-658 
amino acids and have been predicted on the basis of 
hydropathy analysis to have 14 transmembrane domains 
[61], a model supported by further experimental data [58]. 
All CATs (except of CAT-4) selectively transport (at 
physiological pH) cationic amino acids in a sodium-
independent manner, but there are some differences 
particularly with regard to the affinity for amino acids. For 
CAT-1, Km values for L-arginine, L-ornithine and L-lysine 
in range of 100 to 150 M have been described [62,63]. 
Further functional characteristics, such as “trans-stimulation” 
(stimulation by substrate at the trans-side), indicated that 
CAT-1 is a molecular correlate of the previously described 
amino acid transport system y

+ [64,65]. CAT-2B and CAT-3 
are also considered as system y

+-like transporters as they 
show similar transport characteristics, although with 
somewhat lower affinities for cationic amino acids. On the 
other hand, CAT-2A has clearly distinguished properties. In 
particular, it shows a substantial lower substrate affinity for 
cationic amino acids than the other CATs [63,66]. 

 CAT-1 appears to be expressed in almost every tissue 
except the liver. Nevertheless, its expression levels appear to 
be modulated in a tissue and cell specific manner [e.g. 67-
72]. CAT-2A is primarily expressed in the liver [63], but has 
been shown to be up regulated in skeletal muscle after surgi-
cal stress [73]. On the other hand, CAT-3, although abun-
dantly expressed during embryonal development, appears to 
be restricted to brain tissue in the adult organism [74,75]. 

Most interestingly, pro-inflammatory mediators such as 
lipopolysaccharides (LPS) or interferon-  (IFN- ), which 
cause induction of the “high throughput” nitric oxide syn-
thase (iNOS), an enzyme which consumes L-arginine to con-
siderable extent [76], caused an up-regulation of cellular L-
arginine uptake [e.g. 57,77-80], and this was associated with 
an up-regulation of CAT-2B [57,80,81]. Since iNOS-
mediated NO synthesis in macrophages largely depends on 
cellular uptake of L-arginine [e.g. 39,45,82], the concomitant 
up-regulation of CAT-2B may help to ensure a sufficient 
substrate supply. The particular role of CAT-2B to provide 
sufficient substrate to iNOS is also supported by the 
observations that iNOS mediated NO synthesis in 
macrophages and astrocytes was markedly impaired after 
ablation of the CAT-2 gene [83,84]. Based on the observa-
tion that in rat macrophages iNOS inhibition by the specific 
inhibitor (AMT, 2-amino-5,6-dihydro-6-methyl-4H-1,3-
thiazine) resulted in reduced L-arginine uptake despite the 
increased expression of CAT-2B, a particular close link 
between iNOS and CAT-2B was suggested [81].  

 In addition to the specific CATs, several broad spectrum 
amino acid transport systems, system y+L, b0,+ and B0,+, have 
been differentiated essentially on the basis of affinity and 
sodium-dependence of the transport of either neutral or cati-
onic amino acids [64,65,85-87]. During the recent years it 
was possible to ascribe distinct molecular entities also to 
these different transporter systems, namely the heteromeric 
amino acid transporters (HATs) among them 4F2hc/y+LAT1 
and 4F2hc/ y+LAT2 (SLC3A2/SLC7A7 and SLC7A6) and 
rBAT/b0,+AT (SLC3A1/SLC7A9) [88-92]. 

 In addition to changes in the expression levels of 
transporter proteins modulation of transporter activity may 
also play a role in the control of cellular L-arginine uptake. 
Major basic protein (MBP) polycationic peptide released 
from activated eosinophils [e.g. 93] has been described to 
contribute significantly to allergic airway hyper-
responsiveness [94-96]. Polycationic peptides including 
MBP were shown to inhibit L-arginine uptake into rat 
alveolar macrophages and airway epithelial cells [79]. 
Moreover, exposure of alveolar macrophages to polycationic 
peptides resulted in reduced NO synthesis, most likely 
because of limited L-arginine availability [79]. The 
polyanion heparin which is able to act as antagonist against 
polycationic peptides [95] prevented the polycationic 
peptides mediated inhibition of L-arginine uptake [79]. In 
line with these observations are functional studies in which 
nitric oxide deficiency and airway hyper-reactivity of 
isolated tracheae from allergen-challenged guinea-pigs could 
be normalized by heparin application [97]. L-Ornithine 
released from cells with high arginase activity as for 
example activated macrophages [76,98] might be another 
endogenous modulator of L-arginine transport and thereby 
its intracellular availability. Since L-ornithine is a cationic 
amino acid and thus substrate of CATs it may competitively 
inhibit L-arginine uptake. Furthermore since CATs are trans-
activated transporters, increased levels of extracellular L-
ornithine may favour the extrusion of L-arginine and thereby 
additionally reduce intracellular L-arginine levels [58]. In 
isolated guinea-pig tracheae L-ornithine induced hyper-
reactivity which might be caused by insufficient NO 
synthesis caused by L-arginine deficiency [99]. 
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4. NITRIC OXIDE SYNTHASES 

 As the structure and function of NOSs have been 
reviewed extensively in the past years only a short overview 
and some selected features of these enzymes will be noted 
here. There are three NOS isoenzymes (NOS I = nNOS; 
NOS II = iNOS; NOS III = eNOS) [e.g.7,8,48,100-101] of 
which multiple splicing variants exist [e.g. 102-104]. These 
isoenzymes differ in structural properties, distribution, regu-
lation and output of NO quantities. The NOSs are relatively 
large enzymes (135-160 kD) with two functional domains, 
the N-terminal catalytic domain which binds the heme 
prosthetic group and the redox cofactor tetrahydrobiopterin 
(H4B) and the C-terminal reductase domain with the binding 
sites for FMN, FAD, and NADPH. All three NOSs are inac-
tive in the monomeric form and dimerization through the 
heme domain is required for activity. All three NOS use L-
arginine as substrate, and in a reaction, in which N -
hydroxy-L-arginine (L-NOHA) is an intermediate, NO and 
L-citrulline are released [e.g. 49,104-106] (Fig. 1). The Km 
values for L-arginine of all three NOSs are in the lower mi-
cromolar range [49,100,105]. nNOS and eNOS are constitu-
tively expressed in a variety of different cells and their ac-
tivities are regulated by Ca+-dependent calmodulin binding 
as well as by serin phosphorylation/dephosphorylation 
[104,107-112]. In contrast, iNOS is regulated only transcrip-
tionally [8,101,113]. Induction can be elicited in a large vari-
ety of cells by bacterial toxins such as LPS and several pro-
inflammatory cytokines such as interleukin 1-ß (IL-1ß), IFN-
 or tumor necrosis factor-  (TNF- ), whereas IL-4, IL-8, 

IL-10, transforming growth factor-ß (TGF-ß) and several 
other mediators can exert suppressive effects on iNOS gene 
transcription. Once expressed, iNOS is fully active inde-
pendent of the cellular calcium levels because iNOS binds 
calmodulin already in the presence of low concentrations or 
even in the absence of calcium [114]. As a consequence, the 
induction of iNOS leads to a prolonged synthesis of large 
amounts of NO, a process which may essentially be limited 
by the availability of substrate and the life-time of the iNOS 
protein. Most interestingly, cellular L-arginine appears 
however not only to determine substrate availability for 
iNOS, but may also affect iNOS-mediated NO synthesis by 
stimulating translation of iNOS mRNA [115]. Therefore, 
mechanisms controlling cellular L-arginine availability (see 
also below) appear to be crucial for the regulation of iNOS-
mediated NO synthesis. In this context it is interesting to 
note that particularly under conditions of limited L-arginine 
availability iNOS releases oxygen radicals which may di-
rectly interact with NO resulting in the formation of per-
oxynitrite [116], a highly reactive nitrogen species which has 
been claimed to be an important mediator for detrimental 
effects of iNOS [see 117]. Noteworthy too, during high 
throughput iNOS-mediated NO synthesis the intermediate 
product L-NOHA is released in amounts to be biologically 
active by its own [76] (see also below).  

5. ARGINASES AND DOWN-STREAM, L-ORNITHINE-
DEPENDEND PATHWAYS 

 Arginase, which catalyzes the hydrolysis of L-arginine to 
urea and L-ornithine, is a classical enzyme of the urea cy-
cles, but is additionally expressed in many non-hepatic cells 
in which it may among others interfere with synthesis of NO 
(see below).  

 There exist two isoenzymes: arginase I was originally 
described as the hepatic and arginase II as the extrahepatic 
enzyme, but arginase I is also expressed in non-hepatic tissue 
and arginase II is found in the liver [27,118]. The two isoen-
zymes of arginase show a different subcellular distribution, 
arginase I has a cytosolic and arginase II a mitochondrial 
localization [119-121].  

 Two Mn2+ ions per arginase molecule are essential for 
maintaining the tertiary structure and full enzyme activity 
[122]. Furthermore, X-ray cristal structure analysis revealed 
a homotrimeric quaternary structure of arginase I as well as 
arginase II [123-126]. Although alterations in Mn2+ ions 
availability may affect enzyme activity [127] cellular ar-
ginase activity appears to be regulated essentially at the tran-
scriptional level. Nonetheless, recent reports indicate that 
arginase activity may also be modulated by post-tanslational 
modification of the enzyme. Thus, it was shown that cysteine 
residues (C168 and C303) in arginase I can undergo          
S-nitrosylation and that in particular the modification of 
C303 causes stabilization of the arginase I trimer resulting in 
a sixfold increase in affinity for L-arginine [128]. By mecha-
nisms not yet illuminated, uric acid was also shown to en-
hance arginase activity, again by increasing the affinity for 
L-arginine [129]. Uric acid may affect arginase I and II, as 
stimulatory effects were seen in endothelial cell, liver and 
kidney lysates. 

 Both arginase isoenzymes have an alkaline pH optimum, 
with maximal reaction velocities at pH 9.0–9.5. However, 
there appear to be some differences with regard to the 
enzymes kinetics between arginase I and II as well as 
between different species. Thus, Km values for L-arginine 
hydrolysis by human arginase I were 80 and 20 M at pH 
8.5 and 9.5, respectively [125], whereas the Km values 
exhibited by human arginase II at pH 7.5 and 9.5 were 0.3 
and 5 mM, respectively [130]. For rat arginases the reported 
Km values are considerable higher (between 1-7 mM at pH 
9.0-9.5 for the liver (arginase I) and 18 mM at pH 9.5 for the 
kidney (arginase II) enzyme [131-133].  

 Differences between arginase I and II appear also to exist 
with regard to their sensitivity towards inhibitors. L-
Ornithine, the product of the arginase reaction is a relatively 
potent competitive inhibitor of rat arginase I, but a poor in-
hibitor of human arginases II (Table 1). The Ki for arginase I 
inhibition is comparable to the Km for L-arginine. This find-
ing may support the idea that the primary function of ar-
ginase II may be net biosynthesis of L-ornithine [130]. 
Although L-NOHA, the intermediate product in NO 
synthesis, is a potent inhibitor of both arginase isoenzymes, 
its potency to inhibit human arginase II was about 20fold 
higher than its potency to inhibit rat arginase I (Table 1). 
Similarly, the analogue L-nor-NOHA, the most potent 
arginase inhibitor described so far, was a more potent 
inhibitor of human arginase II than of rat arginase I      
(Table 1). However, since comparable data of L-NOHA and 
L-nor-NOHA for human arginase I are not yet available it 
remains unclear at present whether these observations reflect 
differences in the sensitivity of isoenzymes or species differ-
ences, particularly as there are marked species differences 
with regard to the affinity of the substrate L-arginine (see 
above) and two other potent inhibitors of arginase, S-(2-
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borono-ethyl)-L-cysteine (BEC) and 2(S)-amino-6-
boronohexanoic acid (ABH) (Table 1). 

 The expression of arginase isoenzymes appears to be 
regulated in a cell specific manner. Thus, in the rat corticos-
teroids up-regulate arginase I in the liver in a secondary 
manner [56,141], but inhibit the up-regulation of arginase I 
induced by LPS or granulocyte-macrophage colony-
stimulating factor (GM-CSF) in macrophages [142,143] or 
by IL-4 and IL-13 in pulmonary fibroblasts [144]. LPS 
causes marked up-regulation of arginase I in rat macro-
phages, but not in pulmonary fibroblasts [Lindemann and 
Racké, unpublished observation], most likely because of the 
lack of expression of Toll-like receptor 4 in fibroblasts. On 
the other hand, the Th2 cytokines IL-4 and IL-13 cause up-
regulation of arginase I in a number of different cells includ-
ing macrophages [142], fibroblasts [144] and smooth muscle 
[145].  

 Marked species differences in the expression pattern of 
the arginase isoenzymes in non-hepatic cells have to be 
noted. Thus, in rat peritoneal [146,147] and alveolar [142] 
macrophages, both arginase isoforms can be detected, but 
arginase I appears to be the predominant enzyme. On the 
other hand, arginase I mRNA could not be detected in 
isolated human monocyte-derived macrophages [148] and 
human alveolar macrophages [Warnken and Racké, 
unpublished observations). In human alveolar macrophages 
only arginase II mRNA could be detected and the overall 
arginase activity was about 100fold lower than in rat 
macrophages [Warnken and Racké, unpublished 
observations]. Similarly, rat and mouse pulmonary fibro-
blasts express both arginase isoenzymes with arginase I be-
ing particularly sensitive to inductive stimuli [144,149], 
whereas in human lung fibroblasts only arginase II was de-
tected [150,151]. Nonetheless, also in human arginase I is 
not restricted to liver, high levels of arginase I are expressed 
in granulocytes [148, 152] where it appears to be localized in 
the granules allowing release of the enzyme during activa-
tion. Thus, it appears that non-hepatic expression of arginase 
I is rather restricted to particular cells in human, but wide-
spread distributed in rat and mouse. 

 L-Ornithine, the product of arginase, serves as substrate 
for ornithine decarboxylase (ODC), the key enzyme in the 
synthesis of polyamines which are important regulators of 
cellular growth and differentiation [153-155]. This, together 
with the fact that L-ornithine can also serve as precursor for 
the synthesis of L-proline [27] (Fig. 1), an amino acid essen-
tial for the synthesis of collagen [156], favored the hypothe-
sis that arginase might play an important role in tissue re-
modeling processes [e.g. 157-159]. This idea is supported by 
the observations that elevated arginase levels are found in 
tissues in which increased fibrotic remodeling processes oc-
cur such as fibrotic lung diseases (or respective animal mod-
els) [e.g. 149,160-162] or allergic asthma (or respective ani-
mal models) [e.g. 163-166]. In fact the synthesis of basal and 
TGF- -induced collagen synthesis by mouse [149] and rat 
[150,151,167] pulmonary fibroblasts in culture was signifi-
cantly reduced in presence of the arginase inhibitor L-
NOHA. Strikingly however, collagen synthesis in human 
lung fibroblasts was not affected by two different arginase 
inhibitors (L-nor-NOHA and BEC) [150,151, and unpub-
lished results]. Since human, in contrast to the rat, pulmo-
nary fibroblasts express only arginase II (see above), these 
divergent functional observations demonstrate that the spe-
cies difference in expression pattern determines species dif-
ferent functional roles of arginases in non-hepatic tissues. 
Furthermore, these observations suggest a role of arginase I 
rather than arginase II in the supply of L-ornithine for the 
biosynthesis of L-proline and collagen. On the other hand, 
arginase appears not to be crucially involved in the regula-
tion of pulmonary fibroblasts proliferation. Although Th2 
cytokines up-regulate the expression of arginase I and II and 
total enzyme activity in rat pulmonary fibroblasts [144], ar-
ginase inhibitors did affect neither basal nor IL-4- nor IL-13-
induced proliferation [150,151,167]. Likewise, in rat human 
pulmonary fibroblasts arginase inhibitors did neither affect 
basal nor PDGF-induced proliferation, although PDGF 
caused a marked increase in arginase II expression in these 
cells [168,169]. On the other hand, the ODC inhibitor DL- -
difluoromethylornithine (DFMO) largely attenuated IL-4- 
and IL-13-induced proliferation of rat pulmonary fibroblasts 
[167], indicating that polyamines are crucially involved in 
the pro-proliferative effects of these cytokines, but arginase-

Table 1. Kinetics of Arginase Inibitors 

 Arginase I Arginase II 

 (rat liver arginase) (human recombinant) (human recombinant) 

 Ki ( M)  

(pH 7.4-7.5) 

or *Kd 

Kd Ki ( M) 

pH (7.4-7.5) 

Ki ( M) (pH 9.5) 

L-Ornithine 1000 n.a. > 10.000 (5) n.a. 

L-NOHA 10-40 (1,2,3,4) n.a. 1.6 (6) 2 (6) 

L-nor-NOHA 0.1-0.5 (2,4) n.a. 0.05 (6) n.a. 

BEC 2.2* (7) 0.27 (8) 0.31 (6) 0.03 (6) 

ABH 0.1* (9) 0.005 (8) 0.25 (6) 0.009 (6) 

Data from: 1) [134], 2) [135], 3) [136], 4) [137], 5) [130], 6) [138], 7) [139], 8) [125], 9) [140]; n.a., not available. 
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mediated supply of L-ornithine might not be a limiting factor 
in polyamine synthesis.  

6. INTERACTIONS BETWEEN NITRIC OXIDE SYN-
THASE AND ARGINASE-POLYAMINE PATHWAYS 

 NOSs and arginase both utilize L-arginine and there 
appear to be multiple interactions between both pathways. 
Evidence that arginase may limit L-arginine (i.e. substrate) 
availability for NO synthesis was first demonstrated in rat 
alveolar macrophages. Inhibition of arginase by the specific 
inhibitor, N -hydroxy-D,L-indospicine [170] resulted in 
marked increase in L-arginine turnover by iNOS [171]. A 
similar shift of L-arginine utilization into the NOS pathway 
after inhibition of arginase was also observed in J774A.1 
macrophages [172]. In this study it was additionally shown 
that the magnitude of this shift was inversely related to the 
extracellular L-arginine concentration. Similarly, Tenu et al. 
[173] showed on murine peritoneal macrophages that the 
availability of L-arginine determines whether substrate 
competition between arginase and iNOS is of functional 
significance.  

 Polyamines, mediators derived from the arginase product 
L-ornithine have also been shown to inhibit NO synthesis in 
activated J774.2 [174-176] and rat alveolar macrophages 
[177], In both cell types spermine was much more effective 
than spermidine, and putrescine had no or only a marginal 
effect. Spermine suppressed the expression of iNOS, but in 
addition also that of CAT-2B and this correlated with 
inhibitory effects on L-arginine transport [177]. A number of 
cellular effects of polyamines are mediated by aldehyde 
metabolites rather than by the intact polyamines and 
evidence was obtained that the inhibitory effects on iNOS 
and CAT-2B, i.e. on NO synthesis and L-arginine transport, 
are also mediated by the aldehyde of spermine [175-177]. 
Finally, it was shown that inhibition of ODC enhanced LPS 
induced iNOS induction and NO synthesis in J774 macro-
phages indicating that polyamines formed in the 
macrophages themselves may play a role in the control of 
their NO synthesis [178].  

 On the other hand L-NOHA, the intermediate product in 
NO synthesis, is a potent inhibitor of arginase I and II (Table 
2) and there is evidence that during iNOS-mediated NO 
synthesis sufficient amounts of L-NOHA may “escape”, 
resulting in cellular concentrations producing significant 
inhibition of arginase [76,171,179]. The counter regulatory 
nature of the NOS pathway on one side and the argi-
nase / polyamine pathway on the other side is additionally 
underlined by the observations that NO is an effective 
inhibitor of ODC as demonstrated in various epithelial cells 
[180-184]. There is evidence that this effect is mediated via 
nitrosylation of the enzyme [183,184].  

7. GPRC6A, A G-PROTEIN-COUPLED RECEPTOR 
AS TARGET FOR CATIONIC AMINO ACIDS AND 

REGULATORS OF NITRIC OXIDE SYNTHASE AND 

ARGINASES  

 GPRC6A is a subtype of the novel family C of G-
protein-coupled receptor (GPCR) with so far unknown 
physiological function [185-187]. GPRC6A has been charac-
terized as a promiscuous L- -amino acid receptor with 
preference for basic amino acids [188]. GPRC6A appears to 

couple to Gq and activation of the receptor triggers increase 
in cellular calcium levels. As summarized in Table 2, L-
arginine appears to be a slightly more potent agonist than L-
ornithine. Most interestingly however, the endogenous ar-
ginase inhibitor L-NOHA with an EC50 of 10 M was even  
more potent than L-arginine (EC50 of 24 M, Table 2). Since 
in culture medium of activated rat macrophages concentra-
tions between 7-40 M of L-NOHA were detected [76] it 
appears likely that in the vicinity of cells in which iNOS has 
been induced extracellular L-NOHA may reach levels high 
enough to activate GPRC6A receptors. Moreover, the 
arginase inhibitor L-nor-NOHA and with somewhat lower 
potency also the NOS inhibitors (L-NMMA=L-NOARG>L-
NAME) showed to be agonists at GPRC6A receptors. This 
agonism should have implications in the interpretation of 
experiments in which these tools were used to describe the 
significance of NOSs and arginases. Interfering effects at 
GPRC6A have to be considered, particularly as the 
physiological function of the GPRC6A receptor is not yet 
understood [189].  
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