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Abstract: A variant of the Metropolis algorithm is proposed that allows parallel processing. Rather than generating a sin-

gle candidate point, as in the Metropolis algorithm, for each chain iteration a number of candidates are generated. Energy 

calculations for each of these candidates can be carried out in parallel. This algorithm would be advantageous in fitting 

model parameters to data in a Bayesian context, where the forward model calculations (the analog of the energy calcula-

tions), are time consuming. 
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1. INTRODUCTION 

Computer processor speed is increased primarily by 
shrinking the size of the circuitry, and modern processors are 
pushing physical limits on size and heat dissipation. 
Increases in computer processing power in the future will 
thus more and more come about through having 
multiprocessing systems. To take advantage of such systems 
for a single problem requires, instead of the traditional 
sequential algorithm a parallel algorithm, pieces of which 
can be executed in parallel on many different processors. 

Markov Chain Monte Carlo (MCMC) originated with the 
1953 paper [1] by Nicolas Metropolis, Adriana Rosenbluth, 
Marshall Rosenbluth, Agusta Teller, and Edward Teller. This 
paper surely stands in the first rank of scientific papers from 
the twentieth century and has had a profound impact on the field 
of scientific computation [(see, for example, Refs. 2 and 3)].  

The problem in statistical mechanics that was being ad-
dressed required the evaluation of an integral over a high 
dimensional configuration space, representing the positions 
of N particles, of the function exp(-E/kT), where E is the 
potential energy of the system as a function of the 2N parti-
cle coordinates (a two-dimensional space was assumed), the 
temperature T is a constant, and k is Boltzmann’s constant. 
The authors state: 

 “It is evidently impractical to carry out a hundred-
dimension integral by the usual numerical methods, so we 
resort to the Monte Carlo method. The Monte Carlo method 
for many-dimensional integrals consists simply in integrating 
over a random array of points instead of over a regular array 
of points. Thus the most naïve method of carrying out the 
integration would be to put each of the N particles at a ran-
dom position in the square (this defines a random position in 
the 2N-dimensional configuration space), then calculate the 
energy of the system…, and give this configuration a weight  
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of exp(-E/kT). This method, however, is not practical…, 
since with high probability we choose a configuration where 
exp(-E/kT) is very small; hence a configuration of very low 
weight. So the method we employ is actually a modified 
Monte Carlo scheme, where instead of choosing configura-
tion randomly, and weighting them with exp(-E/kT), we 
choose configurations with a probability exp(-E/kT) and 
weight them evenly.” 

The method of generating configurations with probability 
exp(-E/kT) was to draw samples from a cleverly constructed 

Markov Chain, which was run for a large number of itera-

tions. An introduction to the Metropolis method and its ap-
plications in statistical mechanics is given in Ref. [4]. 

The method proposed here is closely related to the 

method proposed by Barker [5], and for the special case of a 
single candidate the present method is the same as Barker’s 

method.  

In the use of MCMC for statistical modeling the work of 
Hastings [6] is usually cited along with that of Metropolis. 
Hastings discusses both the Metropolis and Barker methods. 
Only a single candidate is considered.  

For Bayesian statistical applications (e.g. fitting model 
parameters to data), the “energy” function is the negative of 

the log of the combined likelihood function (for independent 

data, the sum of the log likelihoods for all the individual data 
points-a simple heuristic discussion of the likelihood function 

is given in Appendix A). The prior is usually incorporated 

into the parameterization (so that the prior becomes effec-
tively uniform). Two times the energy is an effective chi-

square function indicating how well the model fits the data. 

In these kinds of applications the evaluation of the energy 
(likelihood) function often involves time-consuming numeri-

cal solution of the forward model (from parameters to data), 

and most of the computation time is involved in this activity.  

In the present work, following closely the approach of 
the original Metropolis et al. paper, a variant of Markov-
Chain algorithm that allows parallel processing is proposed. 
Being able to carry out these forward model calculations in 
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parallel allows, in the same total computation time, P times 
more of them, where P is the number of parallel threads used. 

A natural use of parallel processing with the Metropolis 
algorithm is to run multiple independent chains, in parallel, 
and to appropriately average the results at the end of the runs 
[7]. This is not completely straightforward, however, particu-
larly when P is large, because of the difficultly of estimating 
“initialization bias” caused by the influence of the chain ini-
tialization, which is taken care of by deleting an initial 
“burn-in” fraction of the chain. See also Ref. [8] for a review 
of MCMC parallelization using multiple chains. 

Parallel processing can also be incorporated into the like-
lihood function calculation for single-chain calculations. One 
general method of doing this is “pre-fetching”, [9] where all 
the possible required likelihood function calculations, ex-
trapolated several iterations into the future, are done in ad-
vance using parallel processing, even though not all of them 
will actually be used--clearly an inefficient procedure. 

2. THE PROBLEM 

There is a possibly multidimensional parameter space 
with parameter point denoted by . Each of the dimensions 
j of has domain 0 to 1. The problem of interest may be 
stated in terms of multidimensional integration to evaluate 
expectation values of a given probability distribution. The 
goal is to calculate expectation value integrals of the form 

E F( )[ ] =
d e E ( )F( )

d e E ( )
  ,           (1) 

where F is an arbitrary function of , the probability distri-

bution P( )  is proportional to )(E
e , and the given “en-

ergy” function E( ) is bounded from below.  

3. THE METHOD 

The method is Markov Chain Monte Carlo integration, 

where an algorithm produces a Markov Chain (a sequence of 

parameter points t ) with stationary state P( ) e E ( )
. 

The expectation value integral given by Eq. (1) is then ap-

proximated by 

E F( )[ ]
1

T
F( t )

t=0

T

 ,            (2) 

for large T , where t enumerates the chain iteration.  

4. THE ALGORITHM 

The Markov Chain algorithm is a rule telling the com-

puter how to select the next point in parameter space, 

given that the chain is at a current point . The rule is the 

following. First N candidates for the new point, labeled by i 

= 1, N, are generated from a conditional probability distribu-

tion q( | )  (read as “the probability distribution of  

given, or conditioned on, ”). This “candidate” probability 

distribution is most often chosen to be a random walk 

( = + (x 1 / 2) , where x is a random number uni-

formly distributed between 0 and 1, and  is a fixed pa-

rameter, for all or some subset of the dimensions of ); 

however, the single requirement on this distribution is that it 

allow every point in parameter space to be eventually 

reached starting from every other point, possibly after many 

steps. An additional point i = 0 represents the unchanged 

current point. The chain is moved to the next point i = 0, N 

with discrete probability Pi Gi , where 

Gi

e E ( i )

q( i | )
 .            (3) 

For i = 0 in the above, i  is to be replaced by . 

A single chain is run; however, at each iteration, multiple 
candidates for the next position of the chain are generated. 
Only a single one of these candidates will be selected as the 
next position of the chain. 

5. STATIONARY STATE 

The arguments follow closely those of Metropolis et al. 

[1]. Consider a very large ensemble N of chains that have 

been run a long time from different starting points. The 

number of chains in volume element d  is denoted by 

n( ) . By the rule given by Eq. (3), the number of chains 

that move from  to  in one time step is proportional to 

n( )e E ( )
while the corresponding number that move from 

 to  is proportional to n( )e E ( )
 . If  

n( )

n( )
<
e E ( )

e E ( )   ,            (4) 

there will be a net flow from  to , which will tend to 
remove this inequality. The ensemble will approach a sta-
tionary state with 

n( ) e E ( )
  .            (5) 

More discussion is warranted. Consider, for simplicity, a 
discrete parameter space. In general, the number of chains in 
state k satisfies the equation 

dnk
dt

= n
k

pkl
l

+ nl plk
l

= n
k
+ nl plk

l

 ,         (6) 

where pkl  is the probability that the chain will transition 
from state k to l, and the first term on the right-hand side of 
Eq. (6) represents chain transitions where the chain moves 
from state k and the second term transitions where the chain 
moves to state k. If there exists a configuration nk  that satis-
fies the detailed balance condition 

nk pkl = nl plk  ,             (7) 

this configuration is a steady state from Eq. (6), however a 
steady state from Eq. (6) does not necessarily satisfy detailed 
balance. The additional fact that needs to be emphasized is 
that for an irreducible, ergodic chain (where every point can 
be reached from every other point after a finite number of 
steps), there is a single, unique steady state independent of 
chain starting position [10], so a steady state obtained by 
detailed balance is the steady state. 

One needs to know how long the chain need be run for 

convergence to the steady state. This can be assessed in prac-
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tice by running two independent chains with different start-

ing points and different random number seeds and compar-

ing the results. The comparison of the desired distribution (of 

F( ) ) calculated from the two chains directly gives the de-

gree of convergence. As usual, to minimize the effects of 

transient states (“initialization bias”), some initial fraction 

(the “burn-in” fraction) of each chain is discarded. Conver-

gence is obtained by increasing the total number of itera-

tions, with the same fraction of initial iterations discarded, 

until the two independent chains give an acceptable agree-

ment for the distributions of the quantities of interest.  

6. NUMERICAL EXAMPLE ONE 

Consider a purely artificial one-dimensional problem. The 

motivation for this example is to have the actual distribution 

that is being approximated using MCMC be something that 

is easy to describe. The energy function has an infinite rec-

tangular well of width 0.4 centered on the point = 0.75 . A 

candidate point is obtained by generating a random number x 

uniformly distributed between 0 and 1 and letting = x2 . 

Because d = 2xdx  and dx is numerically equal to the 

probability dP that the random number will be in this interval, 

dP

d
= q( | ) =

1

2
 .           (8) 

For each chain iteration, 950 candidate points i = 1, 950 are 

generated. The current point  is included as i = 0, and the 

probabilities of moving the chain to the points i = 0 to 950 

are set up to be proportional to (for i = 0 let i = ) 

i e
E ( i )   .            (9) 

An integer i is generated from this discrete probability 
distribution (by partitioning the interval from 0 to 1 with the 
i = 0, 950 normalized probabilities, generating a uniform 
random number from 0 to 1, and selecting the i of the interval 
containing the random number). The chain is then moved to 
the point i . This process is continued for a large number of 
steps. 

The result is shown in Fig. (1). 

Fig. (1). MCMC run for the example problem with an infinite 

height rectangular energy well. Each iteration involved 950 candi-

date points. The energies of each of these points could be calculated 

in parallel. In the entire run 380000 candidates were calculated.  

Because the correct result is known, convergence has to 
do with the departure of the solution from the correct result, 
which is accounted for by the Poisson statistics (±10 itera-
tions) of the number of events in each bin shown in Fig. (1). 

In contrast, Fig. (2) shows the same MCMC run of 400 
iterations, except that only a single candidate is generated. 

Fig. (2). MCMC run for the example problem with an infinite 

height rectangular energy well as shown in Fig. 1 except that in this 

case only a single candidate is generated. In the entire run 400 can-

didates were calculated.  

 

The comparison of Fig. (1) and Fig. (2) clearly shows the 
advantage of this method. If 950 processors were available 
(and other overheads were small) both calculations would 
take the same time to complete, and the Fig. (1). result is 
certainly preferable. 

7. CHOOSING THE CANDIDATE DISTRIBUTION 

Only uniform, random-walk candidate distributions are 
considered in this section. The question is: “How should one 
choose the ’s?”  

Assume initially that all the coordinates of  are varied 
(coordinate parameters for all dimensions). 

Consider the total volume of parameter space explored 
by the candidate distribution  

V = j
j

 , 

(j runs over all the dimensions of ). Initially, when the 
chain begins at an arbitrary point far from a minimum energy 
point, the volume V should be the entire volume of parame-
ter space. However, the chain then tends to find a lower en-
ergy point and remain there a long time without movement, 
because the candidate points are so widely spaced in parame-
ter space. With this type of behavior in mind, the algorithm 
can have an initial “adaptive phase” where, if the chain has 
remained stationary for a period of time (say for nSame itera-
tions), the total volume V searched is decreased by a factor 
of nSame N (by proportionally decreasing the ’s), where N 
is the number of candidate points. The rationale for this is 
that if the chain has remained stationary for nSame iterations, 
the minimum energy point is likely to be located inside a 
volume v = V/ (nSame N) surrounding the stationary point. 
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Thus there is no reason to continue searching outside this 
volume, and the volume v can become the total volume V for 
the next iterations. In practice a safety factor F (e.g. 3) is 
introduced so that the new volume V = F v. 

The other parameters of this adaptive algorithm that are 
specified in advance are, nSame (e.g. 2), the number of con-
secutive times the chain remains stationary before the search 
volume is decreased, nNotSame (e.g. 5), the number of consecu-
tive times the chain moves before the adaptive phase ends, 
and a minimum value of  for each parameter. The mini-
mum  (e.g. a factor of 1.2) is based on the quality of the 
data. The adaptive phase ends when the chain has consecu-
tively moved for all the previous nNotSame iterations. If the 
search volume is no longer being decreased because the ’s 
have reached their minimum values, it becomes a matter of 
waiting for a run of nNotSame iterations with consecutive 
moves. The ’s obtained with this adaptive algorithm result 
in a low rejection rate (the rate at which the candidate is 
rejected; quoting Hastings [6]: “high rejections rates are to 
be avoided”). However, going along with a low rejection 
rate, the candidate distribution is usually exploring only a 
minute fraction of the entire parameter space, which can be a 
problem if there are widely spaced additional energy min-
ima. To handle this situation one needs to move only single 
parameters or subgroups of parameters at each iteration 
rather than all the parameters at once, which allows sampling 
of larger volumes with acceptably low rejection rates. Also, 
in this case one can alternate between random walk sampling 
(with some ’s) and sampling of the entire subspace, with 
specified fractions of time spent on each. 

A question in practice is how to choose the ’s when dif-
ferent sized groups of parameters are used. To analyze this 
situation (which is done very roughly here), assume that the 
posterior probability is given by a multivariate log normal, 
with the logarithms used as parameters (alternatively, imag-
ine a multivariate normal distribution). Assume that the pa-
rameters j are grouped into groups Gk. The number of candi-
date points is N , and we desire an approximately equal 
number of these points N1 to land in the support region of the 
posterior, of size j. Then, 

N1 N j

jj Gk

 , 

so that 

j

jj Gk

const  . 

For example, consider a problem where there are 8 parame-

ters that are naturally grouped together, because of strong 

correlations between them. Assume another group of 4 pa-

rameters that are relatively independent of the first group. 

Assume that the width of the candidate distributions for the 

8-parameter group is a factor of 1.5, while the width of the 

posterior (for all parameters) is estimated to be a factor of 

1.2 because of the strength of the data. Then the width of the 

candidate distribution for the 4-parameter group needs to be  

1.2
log(1.5)
log(1.2)

8/4

2.5  , 

showing how the “size” of the space sampled by the candi-
date distribution can be compared across subsystems of dif-
ferent dimensionality.  

This new algorithm also allows stratified sampling (see 
Appendix), which would seem to be advantageous in some 
situations, although the author has not yet been able to dem-
onstrate this. 

8. NUMERICAL EXAMPLE TWO 

This example involves actual bioassay data (urine and 
whole body counts) from an individual who was involved in 
the Goiania radiation accident. Details of the data and the 
problem background are given in Ref. [11], which is freely 
available online. This example is also calculated using Win-
Bugs [12] in the soon-to-be-available National Council on 
Radiation Protection (NCRP) report on uncertainties in in-
ternal dosimetry [13].  

The passage of ingested, highly soluble, cesium through 
the body is assumed to be described by the compartmental 
model recommended by the International Commission on 
Radiation Protection (ICRP) shown in Fig. (3).  

Fig. (3). Biokinetic model describing ingestion of highly soluble 

cesium recommended by the ICRP. There are six rate coefficients 

labeled 1 through 6. The parameters j  for j = 1, 6 are the scaled 

natural logarithms of these rate coefficients. The log-space uniform 

prior on each rate coefficient was centered on 0.1 d
-1

 with a range 

of variation ÷1000 to 1000 (a factor of 1000000 total variation). 

 

The values of the rate coefficients indicated in Fig. (3) 
are values recommended by the ICRP for an adult. Some-
what different central values are obtained from the data in 
this case (case MPA in Ref. 10), which consisted of 15 24-hr 
urine excretion measurements in the time interval from 14 to 
69 days post intake (assumed to be a single acute intake oc-
curring on 20-Sep-1987) and 6 measurements of whole body 
content in the time interval from 66 to 418 days post intake. 
These data and other details are given in Ref. [10].  

The energy function depends on the intake amount I as 
well as the biokinetic parameters . This is replaced by a 
function of only the biokinetic parameters by performing the 
integration over intake amount numerically, 

E( ) = E0 log eE0L( , I )P(I )dI( ) =
E0 log e E ( ,I ) E0( )P(I )dI( )

, 

where E0 is a constant that might be needed to avoid having 

the integration for all the N candidates numerically under-

flow to zero, L( , I )  is the combined likelihood function for 

Blood

Body tissue 1 Body tissue 2

UrineFeces
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all the data (the product of the likelihood functions for all 

individual data points), and P(I) is the prior probability of 

intake amount (a broad lognormal assumed). Because the 

biokinetic models are linear in intake amount I, the integra-

tion over I is accomplished by first capturing all the N candi-

date biokinetic models in interpolation tables (giving, for a 

range of times, the bioassay quantities for unit intake) and 

then straightforwardly and relatively quickly performing the 

integration over I numerically. By far most of the computer 

time is spent on the solution of the differential equations of 

the forward model. 

The Markov Chain Monte Carlo analysis used N = 950 
candidate distributions, calculated in parallel using 8 threads, 
which required about 20 seconds of computer time per itera-
tion (3 GHz processor speed). The adaptive method dis-
cussed in Sec. 6, starting with a search of the entire space 
was used. In each iteration, all 6 parameters were varied. A 
run of 100 iterations was made, with the initial 25 iterations 
discarded as being either part of the adaptive phase or being 
influenced by the chain initial conditions. A scatter plot of 
parameter 5 versus parameter 6 for the remaining 75 itera-
tions is shown in Fig. (4). 

 

Fig. (4). Scatter plot of parameter 5 versus parameter 6 showing the 

uncertainties of these parameters including correlation (central val-

ues of both parameters about 0.004 d
-1

). This plot should be com-

pared with Fig. (6) of Ref. [10], and one finds them to be essentially 

identical.  

 

Two MCMC runs are shown in Fig. (4) to demonstrate 
convergence. In one, the prior is centered on 0.1 d

-1
 as de-

scribed in Fig. (4). In the other, the prior is centered on 0.3  
d

-1
, and a different random number seed is used.  

One finds Fig. (4) to be essentially identical with Fig. (6) 
of Ref. [4], which used a totally different method of calcula-
tion. The Markov Chain method is thus of comparable feasi-
bility for this type of problem. It is advantageous in its con-
ceptual simplicity and that the “tape” of chain parameters 
versus iteration simply and directly returns the parameter 
uncertainties and correlation. 

DISCUSSION AND CONCLUSIONS 

In the Metropolis algorithm, a single candidate is gener-
ated. If the energy is decreased, the chain is moved. If the 

energy is increased, the chain is moved with probability 
equal to the ratio of the smaller divided by the larger of the 
two exponentials. For a single candidate, the algorithm de-
scribed here is the same as the Barker algorithm, and it does 
not necessarily move the chain, even if the candidate has a 
lower energy. The chain moves probabilistically in all cases. 
The Barker algorithm is thus distinct from the Metropolis 
algorithm; however, it is found to perform very similarly. 

The conclusions of this paper are: 1) a new MCMC algo-

rithm has been derived, and it’s advantage is that it allows 

more than one candidate to be considered, with the energy 

functions for these candidates evaluated simultaneously, 

using parallel processing; 2) the algorithm has been demon-

strated for a statistical data fitting example that has recently 

been considered in two other publications, with good agree-

ment obtained; 3) an adaptive-phase algorithm for choosing 

the width of the candidate distributions is proposed; 4) with 

multiple candidates, it would be of interest to investigate 

other sampling schemes besides random sampling, for ex-
ample, stratified sampling. 
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APPENDIX A-HEURISTIC DISCUSSION OF THE 

LIKELIHOOD FUNCTION 

Consider a simple one-dimensional problem where one is 

attempting to estimate a single parameter  from a single 

measurement with value y. The forward model calculation 

gives the predicted value of the measurement f( ) if the true 

value of the parameter were known to be . If the true value 

of the parameter were , and the measurement was repeated 

a large number of times, the measurement values would have 

some distribution that could be normalized to form a prob-

ability distribution P(y| )dy, (read as the probability that y 

will be found to be in the interval dy given ). The problem 

at hand is to statistically interpret a single measurement that 

yields a single measurement value y. By the elementary rules 
of conditional probability (Bayes theorem),  

P( | y)d P(y | )P( )d  . 

In words, the desired probability that the true value of the 

parameter is in the interval d , given the measurement result 

that has been obtained, is proportional to P(y| ) times the 

prior P( ), times d . This relationship gives an unnormalized 

probability; but it is easily converted to a proper probability 
distribution by normalization 

P( | y) =
P(y | )P( )

P(y | )P( )d
 . 

The likelihood function is defined up to a multiplicative 
constant by the relationship 

L( ) P(y | )  . 
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In many cases of interest, where the statistical variations 
of the measurement are caused by variations of a large num-
ber of factors (e.g. urine excretion), the likelihood function is 
approximately log-normal 

L( ) C exp
1

2

ln(y) ln( f ( ))
2

 , 

where  is a constant representing measurement variability 
and C is an arbitrary constant factor. In measurements of 
urine excretion involving counting (for example counting 
radioactive decays when measuring the excretion of a radio-
active material), the log normal approximation is only valid 
when the counting statistics variations are relatively small. A 
more general model of the likelihood function (the Poisson 
mixture model) is discussed in Ref. [14]. 

There is an effective chi-square interpretation of the log 
likelihood function, but it requires that the maximum of the 
log likelihood function for a single data point is 0 (the con-
stant C is one). In that case, for the lognormal likelihood 
function, 

2 ln L( )( ) = 2 =
ln(y) ln( f ( ))

2

 . 

That is, -2 times the log of the likelihood function (the 
energy function) is a measure of how much the data departs 
from the predicted value. 

Note the power of Bayes theorem to relate statistical 
variation of the measurement if the true value of the parame-
ter is known to the desired quantity, which is the statistical 
variation of the parameter when the measurement value is 
known. 

APPENDIX B-STRATIFIED SAMPLING  

With this algorithm, there is the possibility of using 
stratified sampling. Imagine that in the run phase (rather than 
the adaptive phase) parameters are varied in groups, rather 
than all parameters being varied simultaneously. With a 
fairly small number of parameters in a group, the values of 
each parameter may be divided into strata such that the total 
number of candidate values N is the product of the number 
of strata. The jth coordinate of i for i = 1, N is then gener-
ated using the formula 

ij =
istrat (i, j) x

nstrat ( j)
 , 

where x is a random number uniformly distributed between 0 

and 1, nstrat ( j)  is the number of strata for coordinate j, and 

istrat (i, j) = 1,...nstrat ( j)  is the stratum number for coordinate j 

associated with candidate i. This is illustrated in Table 1 for 

N = 6 candidates generated using stratified sampling. There 

are two coordinate parameters, the first divided into 3 strata 

and the second into 2 strata. 

Table 1. The Function istrat (i, j) for N = 6 Candidates.  Values 

of the First Parameter (j = 1) are Divided into 

nstrat (1) = 3  Strata and the Second (j = 2) into 

nstrat (2) = 2  Strata 

i j = 1 2 

1  1 1 

2  2 2 

3  3 1 

4  1 2 

5  2 1 

6  3 2 
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