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1. INTRODUCTION 

 Much attention has been given to develop iterative 
methods for solving nonlinear equations in these years, see 
[1-37] and the references therein. Ostrowski [1] introduced 
some third-order scheme. King [2] developed a family of 
fourth-order methods. Jisheng Kou [29] presented a method 
with the order of convergence five. Neta [3] developed one-
parameter family of sixth-order methods for nonlinear 
functions. Popovski [7] showed some three-step methods, as 
well as Neta's methods, but have an asymptotic convergence 
rate 7 which is better than the 6 of Neta. Also, Popovski [8] 
presented a class of two-step, sixth order methods. 

 Among wide variuos of papers have been published in 
the recent years, we mention some progress about mutli-step 
methods. Abbasbandy [19] and Chun [22] have proposed 
and studied several one-step and two-step iterative methods 
with higher order convergence. Noor and Noor [26], Yun 
[33] and Hueso et al. [34] studied some three-step iterative 
methods with third order convergence. 

 These mutli-step methods have been suggested by 
combining the well-known Newton method with other 
methods. Motivated by the research going on in this 
direction, we present a unified approach for constructing 
new higher-order methods by using the existing iteration 
formulas. It provides a convenient tool to develop new 
iteration formulas, which improve the Newton method. Also, 
some recently developed methods are special cases of our 
result. 

2. DEVELOPMENT OF METHODS AND 
CONVERGENCE ANALYSIS 

 Throughout this paper, we consider iterative methods to 
find a simple root , i.e., 0=)(f  and 0)(f  of a 

nonlinear equation 0=)(xf . 
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Let )(
np

x  be any iteration function, whose order of 

convergence is at least p , which means that the 

corresponding iterarive method defined by  
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 is of order p  and satisfies the error equation  
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xe =  and A  is constant. 

Now we suggest and analyze the following iterative method 
for solving nonlinear equation: 
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 where 
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T  and )(tH  denotes a single-variable 

function to be determined later. Consider the conditions 
below. 
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 Our concern here is to find )(tH  for which the method 

defined by (3) has higher order of convergence. This can be 
answered in the following theorem, which gives a detailed 
analysis of convergence. The method is similar to the 
method presented in [36] in which it introduces the auxiliary 
function H . However, instead of using the two-variable 
function ),( yxH  in [36], a much more simpler single 

variable function )(tH  is used in the algorithm. This 

simplification is owing to the usage of a novel ratio 
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Theorem 1  

 Let  be a simple zero of sufficient differentiable 

function f . If )(tH  satisfies condition (4) and <|(1)| H , 

then the iterative method defined by (3) is of order at least 

1+p  and satisfies the error equation  
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 If )(tH  satisfies conditions (4), (5) and <|(1)| H , 

then the iterative method defined by (3) is of order at least 
2+p  and satisfies the error equation  
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 If )(tH  satisfies condition (4-6) and <|)(| (3)
tH , then 

the iterative method defined by (3) is of order at least 
3},{2 +ppmin  and satisfies the error equation  
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Proof. Let 
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 Using Taylor series expansion of )( nzf  about the simple 

zero  and taking into account (10), we have  
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 By the Taylor expansion of )( nxf  and )( nxf  about  

respectively, we get 
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 Then, dividing (12) by (13) gives  
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and hence  
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 Note that  
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we obtain  
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 Thus, from (16) and (18), we obtain  
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 If )(tH  satisfies the condition (4), we have  
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and hence  
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 If )(tH  satisfies the conditions (4) and (5), we have  
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 and hence  
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 If )(tH  satisfies the conditions (4)-(6), we have  
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 Thus, 

),0(

(1))
3

4
2(20=

422

2

3(3)3

232

3

21

+

+

+

+

+

p

n

p

n

p

nn

eeAc

eHccccAe
.       (26) 

this completes the proof.  

 As it can be seen from the Theorem, that the order of any 
existing iterative method with order p  can be improved to 

1+p , 2+p  or 3},{2 +ppmin  more higher, respectively. 

The expense of this acceleration based on only one 
additional function evaluation or two additional function 
evaluations, depends on that the iteration formula 

)(=
npn

xz  either including the function evaluation )( nyf  

or not. 

 The Theorem provides us with a unified frame to 
construct new higher-order methods, which improve the 
computational efficiency of the original method much better. 

3. SOME ITERATIVE METHODS DEVELOPED BY 

THEOREM 1 

 In this section, we show some recently developed 
methods which are special cases of the method (3). Also, 
many new iterative methods can be developed by choosing 
different function )(tH . 

3.1. Relations with Some Recently Developed Iterative 

Methods 
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 It is easy to show that the function )(tH  satisfies the 

conditions (4)-(6). If we take the iteration function,  
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which is the known iterative function of order three [16], 
then by Theorem 1 we obtain the following iterative method,  

+

+

+ L0,1,2=,
)()(3

)()(

)(

)(
=

)()(

)(2
=

)(

)(
=

'1

'

n
xfyf

yfxf

xf

zf
zx

yfxf

xf
xz

xf

xf
xy

nn

nn

n

n

nn

nn

n

nn

n

n

nn

     (28) 

which converges with order 6. This is the main result given 
by S.K. Parhi and D.K. Gupta [35]. 

 If we take the iteration function,  
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which is the iterative function of order three [21, 23], then by 
Theorem 1 we obtain the following sixth-order iterative 
method  
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 This is the main result given by Jisheng kou[27]. 

 If we choose  
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and the iterative functions (27) and (29), by applying the 
theorem we obtain  
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separately. These are also new methods developed recently 
by Jisheng kou [27]. 

3.2. Some New Iterative Methods  

 It is easy to find different )(tH  satisfying condition  

(4)-(6), this can be done with the help of mathematical 
packages, such as Maple, Mathematica. Thus, many existed 
iterative methods belong to this unified framework. Also, 
many new higher-order methods can be developed by  
using Theorem 1. For example, we may find function 
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respectively. 

 Similarly, consider the function 
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equation (34), we obtain another new sixth-order method  
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 These new sixth-order methods add only one evaluation 
of the function at the point iterated by the third-order 
methods to obtain the sixth-order, so that they have the 
efficiency index equal to 1.5656

4 , which is much better 

than that of Newton’s method 1.4142 . One may try to 

find some other new iterative methods by using the 
methodology described in section 2. 

4. NUMERICAL EXAMPLES 

 To illustrate the convergence speed and behavior of some 
methods from the proposed families ((3)), we have tested a 
number of algebraic polynomials and analytic functions. For 
all test problems the stop criteria is 14

1 10<|)(| +nxf . 

 The Newton method (NM), Neta's 6th order method [3] 
(Neta), Jisheng Kou et al's method [28] (Kou), the method 
defined by (27) (AM), (28) (AM1), (29) (HM), (32) (HM1) 
and the new method obtained in this paper (35) (AM2),  
(36) (HM2) and (37) (HM3). We used the following test 
functions and display the approximate zeros  found up to 

the 15th decimal place. 

34140971.36523001=10,4=)( 23

(1) + xxxf  

82153411.40449164=1,sin=)( 22

(2) +xxxf  

7827130919

1.20764=5,cos3sin=)( 22

(3) ++ xxxexf x

2=1,1)(=)( 3

(4) xxf  

3=1,=)( 3072

(5)

+ xxexf  

00318842.15443469=10,=)( 3

(6) xxf  

54398610.25753028=2,3=)( 2

(7) +xexxf x  

3=1,2)(=)( 23

(8) xxf  

 The results of the comparison of the number of iteration 

of various iterative methods and Newton’s method. 
0

x  is the 

given initial point are displayed in Table 1. 

 The test results in Table 1 show that the computational 
orders of convergence of the newly proposed methods are in 
accordance with the theory developed in the Section 2. For 
most of the functions we tested, the methods introduced in 
the present presentation behave at least equal performance as 
compared to the other well known methods of the same order 
of convergence, and can compete with Newton’s method 
also. 

 Neta's sixth order method [3] performs well with these 
test problems. The three new sixth order methods are as 
good as Neta's 6th order method for first 7 test problems, 
except for the eighth test equation. It should be pointed out 
that these three new methods are only arbitrarily chosen 
illustrative examples for using the proposed framework. 
Thus, we do not want to claim too much about the 
superiority of these three new methods based on our 
computational tests. However, some very efficient methods 
might be developed by using the proposed framework. In 
fact, it is interesting to see that for these test functions,  
the algorithm AM1, proposed by S.K. Parhi and D.K. Gupta 
[35], is the best. Note that AM1 is a special case of our 
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approach. Therefore, it is valuable to do further study to 
construct efficient algorithms under the proposed 
framework. 

5. CONCLUSIONS 

 In this work we develop a unified framework to construct 
higher-order iterative methods for solving nonlinear 
equations. The proposed methods add only one or two 
function evaluations at the point iterated by the existing  
p-order iteration formula but they increase the order of  
the existing method to 3},{2 +ppmin  units higher.  

By considering many other possible combinations of the  
p-order formulas and the functions H satisfying condition  
(4-6), we can continuously derive many new high-order 
methods. 

 An interesting question is that, what would happen if 
higher order derivatives of )(tH  would be considered? 

Would it not be possible to compute the order of the method 
if higher derivatives of )(tH  and their bounds would be 

considered? From the proof of the Theorem 1, it is clear  
that (4-6) should be used if we want to increase the order  
of the existing method to 3},{2 +ppmin  units higher based 

on the present framework. Also, the result can not be 
improved even if the higher derivatives of )(tH  and their 

bounds are considered. In fact, the coefficients of 3+p

n
e  and 

p

n
e

2  in the equation (26) can not be vanished by choosing  

the values of higher derivatives of )(tH . Thus, the new 

framework is required if one want to exploit the higher 
higher derivatives  of )(tH , that will be an interesting fields 

for future studies. 
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 We are taking the liberty of presenting the comment 
written by one of the referees. He wrote: 

 The reviewer, however, likes to add some comments 
from an engineering point of view. From this perspective the 
reduced number of iteration steps may be a nice feature but it 
is not essential for the presented examples. However, the 
proposed method could be a valuable contribution, if the 
proposed algorithm can be applied to the solution of a 
system of nonlinear equations, which repeatedly needs to be 
solved at every integration point of a FE-mesh, when 
nonlinear constitutive behaviour is taken into account. In this 
context it is extremely important that (i) no divergence 
occurs (as is the case for algorithm HM1 even for a 
nonlinear scalar equation) and that (ii) the algorithm is very 
efficient. The latter property is not only reflected by the 
number of iteration steps but also by the number of 
operations and computing time. E.g., if one iteration step 

Table 1. Comparison of the Number of Iteration 
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requires much more computing time then the smaller number 
of iteration steps is overruled.  
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