Synergistic Effect of Honey and *Thymus Ciliatus* Against Pathogenic Bacteria

Fatiha Abdellah¹, Laïd Boukraâ^{1,2,*}, Hammoudi Si Mohamed¹, Hasan A Alzahrani^{2,3} and Balkees Bakhotmah^{2,4}

¹Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Algeria ²Mohammad Hussein Al Amoudi Chair for Diabetic Foot Research, King Abdulaziz University, Jeddah, Saudi Arabia ³Department of Surgery, Faculty of Medicine, KAU, Jeddah, Saudi Arabia ⁴Department of Nutrition & Food Sciences, Art & Design College, KAU, Jeddah, Saudi Arabia

Abstract: The emergence of pathogenic bacterial strains with resistance to commonly used antibiotics has necessitated a search for novel types of antibacterial agents. The main objective of this study was to investigate the antibacterial activities of the powder of *Thymus ciliatus* and wild carrot honey when used jointly by the determination of MIC (Minimum Inhibitory Concentration) against three pathogenic bacteria, namely *Staphylococcus aureus* OxaR ATCC 43300, *Escherichia coli* ATCC 25922 and *Pseudomonas aeruginosa* ATCC 27853. The results indicate that the powder of thyme and honey are efficient against the tested strains. Honey MIC values were 10%, 14%, 10% (vol/vol), respectively whereas the MIC values of thyme powder were 0.4%, 2%, 9% (W/vol), respectively. When honey and thyme powder are used jointly, we noticed a decrease of the MIC values which is may be due to their synergistic effect. These preliminary results suggest that honey and thyme could be used together to manage superficial wounds and bacterial infections.

Keywords: Honey, Thymus ciliatus, antibacterial, synergy.

INTRODUCTION

Currently many questions are rising regarding the security of the chemical compounds used in medicine or in food industry [1]. On the other hand, the extensive use of antibacterial chemical compounds in human medicine and animal farming was conducted to the selection of resistant bacterial strains [2]. The history of aromatic and medicinal plants associate the valuation of the world civilization, the history of people shows that these plants occupy an important place in medicine, perfume composition and culinary preparation [3]. The aromatic plants have traditionally been used in folk medicine as well as to extend the shelf life of foods; showing inhibition against bacteria, fungi and yeasts [4]. Aromatic plants and spices have great importance for humans and despite many of them were substituted by synthetic ones, the demand for natural products is increasing [5]. During the past decade, traditional systems of medicine have gathered global importance. Current estimates suggest that, in many developing countries, a large proportion of the population relies heavily on traditional practitioners and medicinal plants to meet primary health care needs. Although modern medicine may be available in these countries, herbal medicines (phyto-medicines) have often maintained popularity for historical and cultural reasons. Concurrently, many people in developed countries have begun to turn to alternative or complementary therapies, including medicinal herbs. Few plant species of medicinal herbs have been scientifically evaluated for their possible medical application. Thymus (thyme) is one of the most important genera regarding numbers species within the Lamiaceae family. This genus is distributed in the Old World and on the coasts of Greenland, from the Macaronesian Region, Northern Africa and the Sinai Peninsula, through the West and East Asia. However, the central area of this genus surrounds the Mediterranean Sea [6-8]. The plants of Thymus genus are among the most popular plants throughout the world, commonly used as herbal teas, flavoring agents (condiment and spice), aromatic, and medicinal plants [9]. Thymus species are known to be used for traditional medicine for the treatment of various illnesses and have been found to possess significant pharmacologic activities [8, 10, 11]. These species have also been used as carminative, diuretic, urinary disinfectant and vermifuge [12]. The antioxidant and antimicrobial activity of the members of the genus Thymus have been determined [13-16]. Honey has been used for medicinal purposes since ancient times in the treatment of wounds and burns. After having played an important part in the traditional medicine for centuries, honey was subjected to laboratory and clinical investigations during the past few decades [17] and found to have important healing and anti-inflammatory properties [18]. Recently, the use of honey has re-emerged, mainly due to clinical observations of its antimicrobial effect and accelerated wound healing [18, 19]. Various studies attribute antibacterial, antifungal, anti-inflammatory, antiproliferative

^{*}Address correspondence to this author at the Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Algeria; Tel: +213 7 95 30 69 30; Fax: +21346423106; E-mail: laid_bouk@hotmail.com

Table 1. MIC Value of Honey and Thymus ciliatus

Bacterial Strains	MIC Values of Honey and Thymus Ciliatus							
Bacteriai Strains	Honey	Thymus Ciliatus						
S. aureus ATCC 43300	10%	0.4%						
E. coli ATCC 29523	14%	2%						
P. aeruginosa ATCC 27853	10%	9%						

Table 2. Value of MSIC against Cagainst S. aureus

ſ	Honey (%)	9	8	7		5	4			
					6			3	2	1
	Powder (%)	0,1	0,1	0,1	0,15	0.15	0 ,2	0,2	0,2	0,2

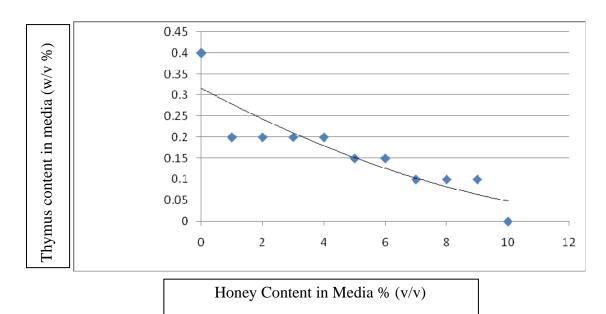


Fig. (1). Isobologram representing over additive effect of Thymus and honey against Staphylococcus aureus oxaR.

Table 3. Value of MSIC against Pseudomonas aeruginosa

Honey (%)	9	8	7	6	5	4	3	2	1
Powder (%)	2	2	2	4	4	5	6	7	7

and anticancer potentiating properties to honey [20]. The objective of this study is to evaluate the synergetic effect of the powder of *Thymus ciliatus* and wild carrot honey in terms of antibacterial activity against three bacterial strains.

MATERIALS AND METHODS

Vegetal Material

The aerial part of *Thymus ciliatus* was dried at 35°C in the dark then grinded, sieved and autoclaved.

HONEY

Monofloral honey sample (*Daucus carota* L) was kindly provided by a local beekeeper during the year 2010.

BACTERIAL STRAINS AND INOCULUMS STAN-DARDIZATION

S. aureus OxaR 43300, E. coli ATCC 25922 and P. aeruginosa ATCC 27853 were kindly provided by the university hospital Mustapha Pasha of Algiers (Algeria). Prior to the experiment the strains were maintained by subculture

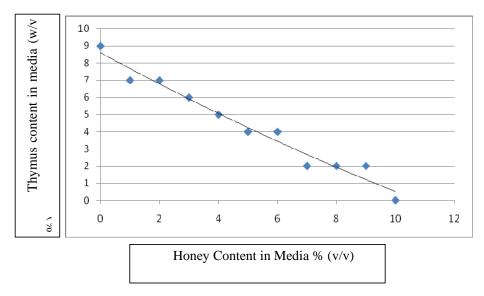


Fig. (2). Isobologram representing additive effect of *Thymus* and honey against *Pseudomonas aeruginosa*.

Honey (%)	13	12	11	10	9	8	7	6	5	4	3	2	1
Powder (%)	0,15	0,15	0,15	0,15	0,7	0,8	1,3	1,3	1,4	1,4	1,5	1,7	1,8

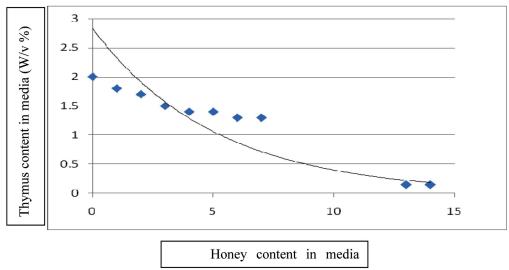


Fig. (3). Isobologram representing over additive effect of Thymus and honey against Escherichia coli.

in the specific media; the inoculums suspensions were obtained by taking five colonies from 24-hour cultures. The colonies were suspended in 5 ml of sterile saline (0.85% NaCl) and shaken for 15 seconds. The density was adjusted to the turbidity of a 0.5 McFarland Standard (equivalent to 1- 5×10^{6} cfu/ml) using sterile saline.

MINIMUM INHIBITORY CONCENTRATION (MIC)

The MIC of honey and *Thymus* has to be determined by using an agar incorporation technique method. Honey was added in increasing quantities (Vol/Vol) into media for a final volume of 5 ml. *Thymus ciliatus* was incorporated into media by adding different weight of the powder. The mixture was shacked moderately with a vortex then poured into plates. The final volume was 5 ml. Majiscule plates were inoculated then incubated at 37° c for 24hours. The MIC was determined based on the lowest concentration of honey and *Thymus* that inhibited the growth of tested organism.

MINIMUM SYNERGISTIC INHIBITORY CONCENTRATION (MSIC)

In aseptic condition volumes of honey were mixed with weights of the powder of *Thymus ciliatus* lower than the MIC determined in the first step and then incorporated with Mueller-Hinton media. The mixture was shacked moderately and poured into plates, then standard inoculums of 0.5 McFarland of bacterial strain were inoculated and the plates were incubated at 37°c for 24 hours.

RESULTS

Table 1 shows the MIC of honey and powder of *Thymus* ciliatus against the tested strains when used separately. Tables 2, 3 and 4 indicate the synergistic effect of honey and thyme powder when used jointly. Fig. (1) and (3) shows an over additive action where as Fig. (2) indicates a simple additivity.

DISCUSSION

It has been demonstrated in many studies that honey has antibacterial effect, attributed to its high osmolarity, low pH, hydrogen peroxide and presence of other uncharacterized compounds [21]. The major antimicrobial properties are correlated to the hydrogen peroxide level which is determined by relative levels of glucose oxidase and catalase [22] whereas the non-peroxide factors that contribute to honey antibacterial and antioxidant activity are lysozyme, phenolic acids and flavonoids [23]. The powder of Thymus ciliatus has shown a strong antibacterial effect; this activity couldbe due to that the total powder contains all active components which may act synergistically against bacteria. It has been reported that carvacol and thymol which are the main compounds of Thymus have antibacterial properties [24, 25]. In a recent study carried out in Morocco, Amarti et al. [26] found that the yield of essential oils in Thymus ciliatus was 1.2%, and thymol represents 44.2% of this oil. Dorman et al. [27] demonstrated that thymol have a wide array of antibacterial activity against 25 tested bacterial strains. Another study realized by the World Health Organization [28] showed that this compound (thymol) has an important antifungal and antibacterial activity against many microbial strains such as Aspergillus sp., S. aureus and E. coli. Lambert et al. [29] and Juven et al. [30] explained this phenomena by the fact that thymol binds to the membrane protein and increases the permeability of bacterial cell membrane. Helander et al. [31] attributed the thymol antimicrobial action to its phenolic character, which can cause membrane-disturbing activities. Other studies suggested that this volatile compound was responsible for the inactivation of an enzyme implicated in syntheses of structural constituents [32]. Our results suggest that the use of thyme and honey together acted synergistically against the tested bacterial strains .The synergistic effect of honey and other compounds have been reported by many studies done by Boukraâ et al. [33-35].

CONCLUSION

The extensive use of antibacterial chemicals in medical area has led to the selection of resistant bacterial strains. So, to overcome this problem, it is necessary to find out alternative medicines that could be efficient and safe for use. *Thymus ciliatus* and honey are natural products which may be used jointly to treat superficial infections.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflicts of interest.

ACKNOWLEDGEMENTS

None declared

REFERENCES

- Mau JL, Huang PN, Huang S-J, Chen C-C. Antioxidant properties of methanolic extracts from two kinds of Antridia camphorate mycelia. Food Chem 2004; 86: 25-31.
- [2] Bouhdid S, Idaomar M, Zhiri A, Bandoux D, Skali NS, Abrini J. Thymus essential oiles: chemical composition and *in vitro* antioxidant and antibacterial activities 2006. Congres international de biochimie. 2006 May 9-12; Agadir: Morocco 2006.
- [3] Bouzouita N, Kachouri F, Halima MB, Chabouni MM. Composition chimique et effet antibacteriens et antioxydant de l'huile essentielle de *Juniperus phoenicea*. J Soc Chim Tunisie 2008; 10: 119-25.
- [4] Hulin V, Mathot AG, Mafart P, Dufossé L. Les propriétés antimicrobiennes des huiles essentielles et composés d'arômes. Sci Aliments 1998; 18: 563-82.
- [5] Guillén MD, Cabo N, Burillo J. Characterization of the essential oils of some cultivated aromatic Plants of industrial interest. J Sci Food Agric 1996; 70: 359-63.
- [6] Morales R. Synopsis of the genus *Thymus* L. in the Mediterranean area. Lagascalia 1997; 19(1-2): 249-62.
- [7] Pedersen JA. Distribution and taxonomic implications of some phenolics in the family Lamiaceae determinedby ESR spectroscopy. Biochem Syst Ecol 2000; 28: 229-53.
- [8] Zargari A. Medicinal Plants. Vol. 4. Tehran: Tehran University Publications 1990; pp. 28-42
- [9] Tepea B, Sokmenb M, Akpulata HA, Dafererac D, Polissiouc M, Sokmen A. Antioxidative activity of the essential oils of *Thymus* sipyleus subsp. Sipyleus var. sipyleus and *Thymus sipyleus* subsp. sipyleus var. rosulans. J Food Eng 2005; 66(44): 447-54.
- [10] Duke JA. CRC Handbook of medicinal herbs. Boca Raton: CRC Press 1989; pp. 483-4.
- [11] Newall CA, Anderson LA, Phillipson JD. Herbal medicines: A guide for health-. professionals. London: The Pharmaceutical Press 1996; pp. 3-121.
- [12] Matta MK, Paltatzidou K, Triantafyllidou H, et al. Evaluation of the anti-herpes simplex virus activity of *Thymus longicaulis* L. (Lamiaceae). Planta Med 2007; 73(9): 988.
- [13] Dob T, Dahmane D, Benabdelkader T, Chelghoum C. Composition and antimicrobial activity of the essential oil of Thymus fontanesii. Pharm Biol 2006; 44(8): 607-12.
- [14] Marino M, Bersani C, Comi G. Antimicrobial activity of the essential oils of *Thymus vulgaris* L. Measured using a bio impedo metric method. J Food Prot 1999; 62(9): 1017-23.
- [15] Ryman D. Aromatherapy: The encyclopaedia of plants and oils and how theyhelp you. London, UK: Piatkus 1992; pp. 163-5.
- [16] Schwarz K, Ernst H, Ternes W. Evaluation of antioxidative constituents from thyme. J Sci Food Agric 1996; 70(2): 217-23.
- [17] Allen KL, Molan PC, Reid GM. A survey of the antibacterial activity of some New Zealand honeys. J Pharm Pharmacol 1991; 43: 817-22.
- [18] Cooper RA, Molan PC, Harding KG. Antibacterial activity of honey against strains of Staphylococcus aureus from infected wounds. J R Soc Med 1999; 92: 283-5.
- [19] Molan PC. Potential of honey in the treatment of wounds and burns. Am J Clin Dermatol 2001; 2: 13-9.
- [20] Skiadas PK, Lascaratos JG. Dietetics in ancient Greek philosophy: Plato's concepts of healthy diet. Eur J Clin Nutr 2001; 55: 532-7.
- [21] Molan PC. The antibacterial properties of honey. Chem NZ 1995; 59: 10-4.
- [22] Weston RJ, Bronchlebank LK, Lu Y. Identification and quantitative levels of antibacterial components of some New Zealand honeys. Food Chem 2000; 70: 427.

- 178 The Open Nutraceuticals Journal, 2012, Volume 5
- [23] Snowdon JA, Cliver D. Microorganisms in honey. Int J Food Microbiol 1996; 31: 1-26.
- [24] Ettayebi K, El Yamani J, Rossi-Hassani B. Synergitique effet of nisin and thymol on antimicrobial activites in *Listeria monocytogenese* and *Bacillus subtilus*. FEMS Microbiol Lett 2000; 183: 191-5
- [25] Ultee A, Slump RA, Steging G, Smid EJ. Antimicrobial activity of carvacrol toward *Bacillus cereus* on rice. J Food Prot 2000; 63(5): 620-4.
- [26] Amarti F, Satrani B, Ghanmi M, et al. Composition chimique et activité antimicrobienne des huiles essentielles de *Thymus algeriensis* et *Thymus ciliatus* du Maroc. Biotechnol Agron Soc Environ 2009; 14(1): 141-8.
- [27] Dorman HJD, Deans SG. Antimicrobial agents from plants: antimicrobial activity of plant volatile oils. J Appl Microbiol 2000; 88: 308-16.
- [28] World Health Organization. Monographs on selected medicinal plants. Geneva, Switzerland: WHO 1999.
- [29] Lambert RJW, Skandamis PN, Coote P, Nychas GJE. A study of the minimum inhibitory concentration and mode of action of oreg-

Received: April 05, 2012

Revised: July 13, 2012

Accepted: July 16, 2012

© Abdellah et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3. 0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

ano essential oil, thymol and carvacrol. J Appl Microbiol 2001; 91: 453-62.

- [30] Juven BJ, Kanner J, Schved F, Weisslowiez H. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J Appl Bacteriol 1994; 76: 626-31.
- [31] Helander IM, Alakomi HL, Latva-Kala K, et al. Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem 1998; 46: 3590-5.
- [32] Trombetta D, Castelli F, Sarpietro MG, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 2005; 49(6): 2474-8.
- [33] Boukraâ L. Additive activity of royal Jelly and honey against *Pseudomonas aeruginosa*. Altern Med Rev 2008; 13(4): 330-3.
- [34] Boukraâ L, Benbarek H, Aissat S. Synergistic action of starch and honey against *Pseudomonas aeruginosa* in correlation with diastase number. J Altern Complement Med 2008; 14(2): 181-4.
- [35] Boukraâ L, Amara K. Synergistic Effect of starch on the antibacterial activity of honey. J Med Food 2008; 11(1): 195-8.