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Abstract: The object of this study is to determine the short-term burst pressure and time of metal cylinders under short-
term dynamic loading conditions. A simplified theoretical model to calculate these dynamic burst time and pressure of cy-
lindrical shells has been developed and the results are compared with finite element analysis (FEA) results via the use of 
the LS-DYNA code [1]. Based on the agreement between the two results, it can be concluded that a properly formulated 
simplified theoretical model can be employed with sufficient accuracy to determine the short-term dynamic burst pres-
sures of metal cylinders.  
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INTRODUCTION 

The cylindrical shell is a basic structure that is used all 
over the world in the shipping, petrochemical, power, and 
aerospace industries as well as in others. Environmental pol-
lution, property damage, personal injury, and even death can 
occur when a pressurized cylindrical shell bursts. Therefore, 
an accurate determination of the burst pressure of cylindrical 
shells is a critical parameter in the design process. Consider-
able work has been carried out to determine the static burst 
pressure using either analytical solutions, experimental stud-
ies, or finite element analysis. Dynamic loading such as wa-
ter or steam hammer phenomena is also very common in a 
pipeline or piping.        

In the 1950’s, Cooper [2] developed an analytical equa-
tion to predict the static burst pressure for cylinders made of 
an isotropic ductile material. This equation provided the de-
sired relationship between the burst pressure, material char-
acteristics, original dimensions, and ultimate tensile strength 
of the material. At the same time, Svensson [3] derived a 
solution of the burst pressure for an arbitrary thick end-
capped pipe based on the von-Mises yield criterion. Tadmor 
et al. [4] developed an analytical expression of the burst 
pressure of multilayered cylinders. They performed a large 
strain analysis, taking into consideration the elastic-plastic 
deformation with the Hill yield function and arbitrary hard-
ening. An overall effective modulus was used to determine 
the onset of bursting, and they then derived the relations for 
thin-walled cylinders with the neglect of the elastic strains. 
Klever [5] presented an analytical model to determine the 
burst strength of the thin-wall uncorroded and corroded pipe-
lines. The model results compared well with those of an un- 
corroded pipe test. Stewart et al. [6] re-examined the funda-
mental relationships that govern the equilibrium and stability 
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of a pipe under increasing internal pressure. Both Tresca’s 
and von-Mises’ yield criteria were considered. The authors 
concluded that their analytical model is suitable for both thin 
and thick-wall cases. Adachi et al. [7] proposed a mathe-
matical solution for pipe elastic stress based on the assump-
tion of one-dimensional propagation of the pressure and the 
quasi-static deformation of the pipe to calculate the elastic 
stresses in a tube due to water hammer. Leishear et al. [8-10] 
presented both an analytical solution and a finite element 
analysis to determine the dynamic pipe stress due to the vi-
brations created by water hammer with the assumptions that 
the material is linearly elastic and the water hammer load has 
been limited to a step pressure increase instead of a ramped 
pressure increase. He concluded that the maximum dynamic 
stress is twice that of the static stress when damping is ig-
nored. Neither Adachi nor Leishear considered dynamic 
plastic deformation. Only a limited amount work has been 
published to determine the dynamic elastic stress in pipes, 
but no literature is available on the dynamic burst pressure of 
cylindrical shells.   

SIMPLIFIED THEORETICAL MODEL        

To make easily understand the effect of factors such as 
the pressure vs. time function, and the diameter vs. thickness 
ratio on the burst pressure as well as examine the consistency 
of the FEA results, a theoretical analysis method based on a 
simplified, thin-walled cylinder geometry is developed. Con-
sider a thin-walled axisymmetric cylinder under uniform 
dynamic internal pressure. The geometry and behavior of 
this cylinder can be described by use of cylindrical coordi-
nates ( )zr ,,! . Assume plane strain behavior. Assume fur-

ther that the hoop stress !" is the dominant stress and that it 
can be taken to be constant throughout the thickness of the 
cylinder. 

With reference to Fig. (1), the summation of forces in the 
radial direction for an element of volume dldrh !!! " is,  



2    The Open Ocean Engineering Journal, 2009, Volume 2 Cheng and Widera 

 

!
"

#
$
%

&
''''('''=)

2
sin2)(

*
+* *

d
dlhdlrdtPF

r
      (1) 

Assume that the mass of this small volume of the cylin-
der will remain constant; it can, therefore, be expressed as, 
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In the above, h  is the instantaneous wall thickness,
0
h  

the initial wall thickness, dl the increment of cylinder 
length, !  the density, r the instantaneous inside radius, 

0
r the initial inside radius, and !d  the small increment in 

arc angle. Define the radial acceleration in 
r
a as  
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When !d is very small, the equation (4) can be established, 
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Because the cylinder is assumed to be thin-walled, the 
acceleration can be taken to be constant throughout the 
thickness. The equation of motion in the radical direction for 
the volume element can thus be written as  
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The assumption of volume constancy during the defor-
mation process satisfies the following equation: 
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Equation (5) can now be written as 
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For a very small increment of the radial strain, one can 
write   

r

dr
d
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One can integrate both side of the equation and obtain 

 
!

r
=

1

r
" dr =

r
0

r

# ln( r )$ ln( r
0

)                                        (11) 

which yields 
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With a consideration of the existence of strain rate ef-
fects, the following equation can be developed to fit the ma-
terial data relating stress, strain and strain rate curves by us-
ing MathCAD [11] software: 
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Here, !  is the effective von-Mises stress, and ! the ef-
fective von-Mises strain. Further, z, k , q  and n are con-
stants for a particular material. 

The assumption of volume constancy during the defor-
mation, also leads to the following equation: 

0=++
zr
!!! "                                                                    (14) 

For plane strain, 
z
! = 0 and thus, 

r
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The effective von-Mises strain is defined by the following 
equation: 
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For plane strain, it becomes 
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Fig. (1). Simplified Geometry and Loading Condition of Cylinder. 
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For a thin-walled cylinder, radius r is much larger than 
the thickness h and the radial stress 

r
!  is small compared to 

the other two stresses. Therefore, one can assume, 

r
! =0                                                                                           (18)   

Also,    
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The effective von-Mises stress ! is defined by the fol-
lowing equation: 
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With the assumptions made, this expression can be solved 
for !" , and becomes 
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Equating the equation (21) to the equation (9), one obtains 
Substituting equations (7), (17) and (19) into the equation 

(22) results in: 

Here,  
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r
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The most general approach for the solution of the dy-
namic response of structural systems is the direct numerical 
integration of the dynamic equilibrium equations. Equation 
(23) is a very complicated differential equation based on the 
variable r . It cannot be solved directly by using the regular 
central difference method or the Newmark method [12].  
Here, a similar explicit numerical method is developed based 
on the general central difference method. Thus, 
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Combine the expressions of (24) with the equation (23), 
to obtain the equation (25): 

heoretically, one can solve the equation (25) using the initial 
conditions of 

0
r  and 

1
r . Here, 

0
r  is the known initial inside 

radius. Radius 
1
r  can be solved from following equations: 
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Combining equations (26) and (27) with the equation (25), 
one obtains equation (28): 

In equation (28), the only unknown variable is 
1
r . There-

fore, theoretically, it is solvable. However, due to the high 
non-linearity, it is difficult to solve this equation manually. 
Equation (28), and then equation (25), can be solved using a 
commercial mathematics software such as MathCAD [12]. 
To make sure that the equation (25) is always solvable, the 
incremental time step should be very small. However, when 
the time step is smaller than the minimum precision of the 
MathCAD software, the solution will be unstable.  

A sample calculation is performed by using MathCAD. 
The material is ASTM106 steel [13]. The material descrip-
tion is listed in Table 1. The stress, stain and strain rate 
curves are shown in Fig. (2). By fitting the stress, strain, and 
strain rate curves one can get the material coefficients of k, n, 
z and q. The pressure vs. time curve is taken as the ramped 
curve shown in Fig. (3). Here, the time td is pressure pulse 
duration. 

Table 1. ASTM A-106B Material Description 

Chemical Analysis, % Ω Condition 

C Mn P S Si  

0.17 0.77 0.010 0.025 0.25 Seamless hot-rolled 

In the sample calculation, the cylindrical shell has an out-
side diameter of 14 inches and a wall thickness of 0.165 
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Fig. (2). Stress-strain Curve of A-106B Steel at Different Strain 
Rates. 
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inches. The resulting burst time is about 5.04897 millisec-
onds when the peak pressure is 2200 psi.  

To confirm these calculations a finite element analysis 
(FEA) is carried out using the dynamic computer code, LS-
DYNA [1]. In developing the FEA mesh, the eight node 
solid element is employed and the guidelines stated in refer-
ence [14] are followed. In particular, the mesh has three ele-
ments across the thickness (see Fig. 5) and the element size 
is 0.197 in. The boundary conditions and loading (see Fig. 4) 
are as follows: 

1) One end is fixed, the other end is free. 
2) Internal pressure is a function of time (see Fig. 3) with 

the maximum amplitude taken as 2500, 2200, 2000, 1800, 

1760 and 1720 psi. A dynamic force equal to the pressure 
multiplied by the inside area of the cylinder is added at the 
free end.  

3) Gravity acts along the Y axis. 

In the FEA simulation, the burst criterion is based on the 
maximum plastic strain at different strain rates. Once the 
plastic strain of an element reaches the maximum plastic 
strain for a certain stain rate, the element is deleted from the 
calculation. The burst pressure and time can be recorded 
from the output of the FEA model. More detailed setup, 
mesh, results and configurations can be found in reference 
[15]. 

Table 2 clearly shows that the burst pressure predicted by 
FEA is 1800 psi while that predicted by theoretical method is 
1760 psi for the cylinder under consideration. The burst 
times are close as well.  

SUMMARY 

A simplified explicit numerical method to calculate the 
dynamic burst pressure and time of a thin-walled cylindrical 
shell is developed. A sample result from the use of this 
method is compared with FEA results and it is shown that 
the present simplified theoretical method can be used to ac-
curately determine the burst pressure and time of a thin-
walled cylindrical shell.   

 

 

 

 

 

 

 
Fig. (3). Pressure (psi) vs. Time (second) Curve. 

 

 

 

 

 

 

 

Fig. (4). FEA Model Loading and Boundary Conditions. 

 

 

 

 

 

 

 

Fig. (5). FEA Mesh. 

Table 2. Comparison of Equation (23) and FEA Results 

OD (inch) Thickness (inch) d
t  

(ms) 
Peak Pressure 

(psi) 
FEA Burst Time (ms) 

Equation (23) 

Burst Time (ms) 

14 0.165 3.9 2500 3.678 4.435 

14 0.165 3.9 2200 3.939 5.049 

14 0.165 3.9 2000 4.269 5.794 

14 0.165 3.9 1800 5.011 6.795 

14 0.165 3.9 1760 No burst 7.392 

14 0.165 3.9 1720 No burst No burst 

ttd td

( )tP

Symmetric

Fixed
Dynamic Pressure Inside Dynamic Force
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