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Abstract: A major problem often encountered in design sea-state prediction is the limited amount of available extreme-

type wave data. The Annual Maxima model is consistent with the conditions of the mathematical background of Extreme 

Value Theory, yet its application raises statistical uncertainties in cases where the initial data population is limited. Due to 

this, alternative models of similar theoretical background have been developed to describe extreme values, including the 

“r-largest maxima method”. A main problem in applying this model refers to the appropriate selection of a sample com-

prising the r  independent maxima within each year of the available time series: since in nature environmental extremes 

tend to appear in clusters, the native time series under examination should be appropriately “de-clustered” to satisfy the 

independency assumption. Some established declustering procedures refer to: a) the selection of a “Standard Storm 

Length”, b) the combination of a run length k  and a relatively high threshold value u  (Runs declustering), c) the estima-

tion of wave energy reductions between consecutive sea-state systems (DeClustering Algorithm) and d) the selection of 

the three largest monthly maxima of each year of the initial significant wave height time series (triple annual maximum 

series). The aim of this paper is to assess the effect of the aforementioned declustering procedures on the numerical results 

obtained by the r-largest model. 
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1. INTRODUCTION 

The term “extreme events” has not been compactly de-
fined in literature and its use depends on the purpose and the 
subject of each particular study. The scarcity of appearance, 
the magnitude and the socio-economic impacts of an extreme 
event can be some of the factors which should be considered 
when defining these events. One persuasive definition, 
which embodies many of these factors and is often used in 
statistics, is that extremes are the events corresponding to the 
tail of the probability distribution of the process under study. 
In modern literature, great concerns have been expressed for 
such events in many diverse areas of application and there-
fore the statistical analysis of their behaviour has been of 
primary interest. 

The branch of probability theory which, through a firm 
theoretical foundation, provides the stochastic description of 
such events is known as “Extreme Value Theory” (EVT). 
The most important result of EVT states that, under appro-
priate conditions, the normalized maximum of a stochastic 
sequence of independent and identically distributed (iid) 
random variables converges in distribution to a random vari-
able which follows the Generalized Extreme Value (GEV) 
distribution family, [1]:  
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where - μ< < is the location parameter, 0>  is the 
scale parameter and - < <  is the shape parameter. The 
above parameters are to be estimated from the data available 
and this is usually done using the method of maximum like-
lihood.  

In most applications though, the available data is usually 
in the form of time series and do not necessarily satisfy the 
conditions of the classical extreme value theory. The most 
important hindrance, especially in environmental applica-
tions, is that serial dependence is almost always an inherent 
characteristic of the time series. It is highly related to the 
time interval between consecutive events: the smaller the 
time interval, the higher the dependence while events sepa-
rated by larger time lags could be assumed to be independent 
[2]. In this connection, although EVT cannot be directly ap-
plied on the routinely collected physical data, under some 
statistical pre-processing it is possible to use its results on 
appropriately selected independent sub-series of the original 
data set, consisting of extreme-type data. For example, a 
most commonly used approach in this respect is to segment 
the initial data set into large blocks of the same size and ex-
tract the maximum value of each block. Attempting to be 
compatible with the theoretical assumptions, these blocks are 
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usually chosen to correspond to a time period of one year (or 
season) and the corresponding extreme value model is 
known as the “Block (Annual) Maxima Model” (hereafter 
AMM).  

Having attained an iid sample comprising the, say, an-
nual or seasonal maxima, the EVT implies that these maxima 
follow the GEV distribution; hence estimates of extreme 
quantiles of the distribution of the block (annual) maximum 
can be obtained by inverting equation (1.1), [1]: 

  

H
GEV

1
1 p;μ, ,( ) = x

P
=

μ 1 ln 1 p( ){ } , 0,

μ ln ln 1 p( ) ,  = 0,

                    (1.2) 

where 
  
H x

P( ) =1 p . 

In equation (1.2), the term 
P

x  essentially denotes the 
level which, to a reasonable degree of accuracy, is expected 
to be exceeded in average once every 1 p  years and thus, it 
is commonly referred to as the return level (or the design 
value) associated with the return period 1 p .  

This approach, however, despite its unchallengeable 
benefits, raises in practice significant statistical uncertainties, 
since the sample size of the required extreme-type data (i.e. 
the block maxima series) is usually very small. Additionally, 
a common objection to this approach is that by taking into 
account, for example, only the annual maximum, some of the 
excluded (for being the second, third, etc annual largest) 
values can be greater than the maximum of another year. To 
this end, alternative methods have been developed that allow 
the extraction of larger sets of extreme-type data, the most 
important of which is the Excesses-over-Threshold family of 
models and the r-largest maxima model; see [1], [3-5]. The 
theoretical origin of these methods is based on the frame-
work of EVT and thus, though they utilize larger and en-
riched extreme-type data sets, the independency assumption 
is still a prerequisite. As a result, prior to extreme value 
analysis, the time series under examination should be appro-
priately “declustered” to satisfy the independency assump-
tion, since in nature extremes tend to appear in clusters (i.e., 
exhibiting strong dependency in neighbouring extreme val-
ues).  

Under this concept, a main problem in applying the r-

largest maxima model, concerns the selection of the sample 

comprising the r  independent maxima within each year of 

the available time series; thus a declustering procedure is 

required. In environmental applications, a frequently used 

declustering method refers to the selection of a “Standard 

Storm Length” (abbreviated hereafter as SSL), which is es-

sentially the minimum time distance required between suc-

cessive events (maxima) in order for them to be considered 

as statistically independent. In the available literature, the 

selection of SSL is elaborated in a more or less arbitrary 

way, since there is a lack of physical explanation concerning 

the presumed statistical independency of the clusters’ 

maxima. Another available declustering procedure is the 

Runs Declustering, which, though oriented for generating 

extreme-type data for the Peak-Over-Thresholds (POT) and 

the Generalized Pareto Distribution (GPD) models, it is a 

typical method which can be also applied for obtaining 

maxima of independent clusters from any given time series. 

This procedure comprises the combination of two decluster-

ing parameters, a threshold u  and a run length k , assuming 

that “distant enough” excesses of a “high enough” threshold 

can be considered as independent. Apparently, special care 

should be taken in the determination of u  and k , but, as in 

the SSL case, there is no formal procedure to do so and the 

selection is performed using common sense. In addition to 

the above, a new declustering algorithm is introduced tai-

lored especially for discriminating independent clusters (sea 

state systems) in significant wave height (
S

H ) time-series 

[5]. The Declustering Algorithm (DeCA) involves the esti-

mation of wave energy reductions (ER) from one sea-state 

system to the next sea-state system, pleading that if the wave 

energy content falls under a specified percentage, the corre-

sponding sea state systems can be (safely) considered as in-

dependent clusters. Finally, in the present paper the method 

of the “triple annual maximum series” (hereafter referred as 

TAM) [6], is also treated as a very simple declustering pro-

cedure, since it involves the selection of the three largest 

monthly maxima of each available year of the initial 
S

H  

time series, assuming that they are statistically independent. 

Let us note here that declustering for stationary series is also 

an important problem, theoretically resolved by introducing 

the extremal index, denoted as . In a way, in this case there 

exists a firm theoretical basis for efficiently dealing with 

clusters; however, the statistical estimators for  are yet not 

devoid of problems, in the sense that the selection of some of 

the involved parameters is largely arbitrary [7].   

The present paper aims at the assessment of the effect of 
the aforementioned declustering procedures on the numerical 
results obtained by the r-largest model. The structure of the 
paper is as follows: after a short review of the r-largest 
method (Section 2), the declustering procedures are intro-
duced and described in some detail in Section 3. The nu-
merical results regarding the design values of significant 
wave height and the associated return periods, obtained by 
implementing the various declustering procedures and apply-
ing the r-largest model, are presented and discussed analyti-
cally in Section 4. Finally, in Section 5 some concluding 
remarks are provided.  

2. THE r-LARGEST MAXIMA MODEL 

The Annual Maxima model, though adequately aligned 
with the conditions of the mathematical background of EVT, 
raises significant statistical uncertainties in cases where the 
initial data population is limited, as only a small fraction of 
the available extreme-type data is used. In an attempt to 
overcome this difficulty, alternative statistical models of 
similar theoretical background have been developed, includ-
ing the “r-largest maxima method”. For a review on the al-
ternative extreme value methods see for example [1]. The r-
largest maxima model, firstly introduced by Weissman [8], is 
actually an alternative method for estimating the parameters 
of the GEV distribution taking into account not only the first, 
but also the second, third, etc largest values of each available 
year, expanding in this way the extreme-type data set used 



36    The Open Ocean Engineering Journal, 2011, Volume 4 Soukissian and Arapi 

 

for the statistical inference. Applications of this method can 
be found in [9-11], while a theoretical description of the r-
largest maxima model is given below, see also [1]: 

Let 
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As stated in equation (1.3), under appropriate normaliza-

tion, as  n  the k -th order maximum of 
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For 
 

0 , eq. (1.4) reduces to: 
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Apparently, for 1r = , eq. (1.4) reduces to the GEV dis-
tribution and eq. (1.5) to the Gumbel cdf.  

To estimate the model parameters in eq. (1.4) the maxi-
mum likelihood is used. In this case, the likelihood function 
is: 
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and the maximization of the corresponding log-likelihood 
function is performed numerically. See for example [1] and 
references cited therein.  

As noted above the parameters of eq. (1.4) correspond di-
rectly to those of the GEV distribution of the maximum and 
therefore the r-largest maxima model is essentially an im-
proved way to estimate them. At this point we must point out 
that the above results concern the largest values of a se-
quence, the terms of which are iid random variables. Since, 
in practical applications, the physical data rarely if ever are 
statistically independent, they cannot be used directly as re-
corded; therefore a declustering procedure is required. In 
addition to that, special care must be taken while selecting r  
to avoid issues of high variance (produced due to lack of 
large sample size) or bias (produced due to the violation of 
the asymptotic support of the model). 

3. DECLUSTERING PROCEDURES 

In nature, the extremes of most physical processes tend to 
occur consecutively (in clusters), a fact that violates the main 
assumption in EVT, i.e. that the variables under study are iid. 
To this end, the first step in the analysis of environmental 
characteristics, such as spectral characteristics of wind waves 
(e.g. significant wave height, spectral peak period, etc.), is to 
identify the independent clusters within the examined time 
series, or, as it is frequently expressed, to ‘de-cluster’ the 
time series. As a result, a number of declustering techniques 
have been developed, i.e., procedures that lead to identifying 
peak events in the data record which can be reasonably con-
sidered independent. In this context, since the r-largest 
maxima model shares the assumption that the involved vari-
ables are iid, the use of such procedures is required in this 
case as well.  

However, declustering procedures involve a great deal of 
subjectivity, as Ferro and Segers [7], strongly support 
through their very explicit statement: “All declustering 
schemes proposed in the literature require an auxiliary pa-
rameter, the choice of which is largely arbitrary”. It is, there-
fore, evident that special care should be taken in the applica-
tion of any declustering scheme. In the next sections, the 
main techniques used for the declustering of significant wave 
height time series are presented, while their effect on the 
selection of the r  largest maxima is assessed and discussed 
in Section 5.  

3.1. The Standard Storm Length Model  

Tawn suggested a simple procedure for the extraction of 
the r  largest independent values, adopting the rational as-
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sumption that distant enough peak values can be considered 
as independent, see [11]. In particular, the time series is con-
sidered as a sequence of separate independent storms, each 
having a standard storm length (SSL), say . Under this 
assumption, the extraction of the maximum value within 
each storm for each year of the examined time series is ex-
pected to provide a series of independent extreme values. 
The r -largest of such values for each year could be essen-
tially the required r  largest independent annual events. For 
a given standard storm length , the algorithmic scheme 
proposed is the following: 

1. Pick out the largest annual value from within the 
year of interest. 

2. Discard all values lying at a distance (lag) less or 
equal to / 2  from either side of the time instant 
where the value was chosen from.  

3. Select the largest value of the remaining data. 

4. Repeat steps 2 and 3 until the time series data is ex-
hausted. 

5. Repeat steps 1-4 for all the years of the available 
time series.  

It is obvious that the selection of  is of great impor-
tance: low values of  could lead to inclusion of dependent 
extreme events (i.e., events occurring within the same storm-
cluster), while high values of  would generate few extreme 
type data leading thus to high variance in the obtained esti-
mates. An important drawback of this method is that, in 
many cases, the storm length is chosen in an essentially arbi-
trary way, as, for example, from “typical” standard storm 
length values proposed in the relevant literature. Such sug-
gestions can be found, for example in [12] where three 
choices of SSL, namely 24, 48 and 72h were explored; in 
[13] where the value of 72h was adopted; in [14, 15] where 
SSL was chosen equal to 30h, or in [16] where SSL was se-
lected to vary from 5 to 7 days. Aiming at a less subjective 
choice of SSL value, Tawn [11] suggested estimating  by 
examining the autocorrelation structure of the variable of 
interest. In particular, he suggested that a rationally selected 

 could be the lag after which the process becomes very 
weakly correlated, see also [17]. In [18] this approach was 
utilized on time series of significant wave height from the 
North Sea, concluding, after a close examination of the auto-
correlation function, that 480h would be an appropriate value 
for . 

At this point, however, it should be noted that, for most 
environmental parameters, as for the significant wave height, 
the assumption of almost equally sized storms-clusters is not 
realistic, while the correlation structure could vary signifi-
cantly between different annual data-sets, rendering the con-
sideration of a constant and unique de-correlation time (SSL) 
for the entire population highly debatable. For some applica-
tions of this declustering model see [18-21]. 

3.2. Runs Declustering 

Another declustering technique frequently applied on en-
vironmental data is Runs Declustering. It is based on the 
assumption that all values successively exceeding a selected 
threshold may be considered as a separate independent clus-

ter, as long as they do not occur within a given time interval, 
[22]. This procedure was originally developed to generate 
extreme-type subseries particularly for the POT and the GPD 
models, but it can also be used to extract, from any given 
time series, the extreme-type sample required for any of the 
(extreme value) models which share the iid assumption.  

The inductive scheme proposed in this case is the follow-
ing: 

1. Specify a “high enough” threshold u  such that the values 
of the process which exceed it to be considered as ex-
treme-type events and specify an appropriate number of 
observations, say k (known as run length).  

2. Specify clusters: The cluster begins when the threshold 
u  is exceeded for the first time and ends once at least 
k  consecutive observations fall below the threshold. 
Namely, two excesses of the threshold (are considered 
to) belong to the same storm (cluster) if they are sepa-
rated by less than k  consecutive non-exceeding values.    

3. Extract the maximum value of the cluster and proceed to 
identify the next cluster (using steps 2 and 3). 

4. Terminate the procedure when the time series data is ex-
hausted. 

5. Repeat steps 2-4 for all the available (annual) time series.  

The advantage of this method, as described in [23], is 
that it allows both the duration (persistence) of storms and 
the duration of intervals between them to vary according to 
the data, reflecting the inherent natural variability of these 
quantities. However, as in the SSL case, there are important 
issues regarding the selection of both the threshold u  and 
the run length k , as improper choices can lead to either bias 
or to high variance. In absence of a more formal procedure, 
the selection of u  and k  is based on common sense judge-
ment; thus, as suggested in [1], the method should be applied 
for several choices of u  and k  and the sensitivity of the 
results should be carefully examined. In cases where this 
declustering technique is used before applying the GPD 
method, the appropriate threshold values are selected by as-
sessing and rating the fit of the GPD. In particular, in such 
cases, the appropriate threshold values are indicated by the 
stability of parameters’ estimates, in addition to the linearity 
in the mean residual life plot, making use of the fact that if 
GPD is the correct model for a (high enough) threshold 
value, say 

0
u , the mean excesses of u , for 

0
u u> , form a 

linear function of u . Under this concept, for example, in [24, 
25], u  was selected as an appropriate quantile of the data; 
this decision was supported by using the mean residual life 
plot. The run length value, on the other hand, is adopted fol-
lowing suggestions from the relevant literature. The ration-
ale, under these selections, demands the run length to be 
large enough to cover the time period required for the phe-
nomenon to be fully developed. In previous offshore studies 
[14, 15, 24, 26-30], these values were found to vary from 24 
to 60h.  

3.3. The Declustering Algorithm (DeCA) 

Soukissian and Kalantzi [5] developed a declustering al-

gorithm in order to locate sequences of approximately inde-

pendent maxima from native 
S

H  time series. The rationale 
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under this procedure is that significantly large wave energy 

reductions (hereafter ER) between local 
S

H  maxima and the 

subsequent 
S

H  minima indicate the transition to a different, 

approximately independent, “sea-state system”. The extrac-

tion of the maximum from each such system results to the 

collection of the required independent extreme-type data. 

Apparently, as in the RL case, the persistence (duration) of 

the sea state systems (clusters) is not taken a priori as con-

stant: being essentially considered as a random variable, the 

corresponding (random) sample is directly obtained from the 

data after a simple de-noising (filtering) procedure. In con-

trast to the other declustering approaches, in this case, the 

physics of the phenomenon is taken into account, by dis-

criminating the independent clusters based on wave energy 

reductions between successive sea states.  

A detailed presentation of the procedure is given in Table 
1, while the main steps are as follows: 

1. Filter (de-noise) the time series twice using 

monotonicity. 

2. Identify local maxima and minima, as well as their 

energy content (
2

S pH T  or simply 
2

S
H ). 

3. Estimate the relative difference between the energy 

content of each local maxima and the one of its 

subsequent local minima, i.e. the energy reduction 

(ER).  

4. Once this ER falls below a predefined percentage, 

the cluster is terminated and the following value 

starts a different independent cluster.  

5. Extract the maximum of each cluster.  

6. Repeat steps 1-5 for all the available (annual) time 

series.  

Table 1. Flow-chart of the Declustering Algorithm (DeCA), see [3] 
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As a result, the parameter which can be considered as 

subjectively selected in this case is the ER percentage, while 

values over 80% have been proved, in practice, to be ra-

tional.  

3.4. Triple Annual Maxima Series Approach 

Sobey and Orloff [6] proposed a different and very sim-

ple approach on how to produce the data set, on which the r-

largest maxima model would be applied. In particular, they 

used the series of monthly maxima, obtained from the initial 

S
H -time series and selected the three largest among them 

for each climate year. The resultant time series was named 

“triple annual maximum series”, thus this method is referred 

to as the “triple annual maximum” (TAM) method (or 

model). Using arguments from the order statistics theory, the 

joint probability density function of the annual maximum, 

the annual second largest monthly wave and the annual third 

largest monthly wave were calculated, in order to produce 

the corresponding likelihood function. For each of the three 

maxima series they assumed the GEV or the log-normal dis-

tribution. Let us note that although this method resembles 

very much the r-largest maxima model, it is actually based 

on different principles. Under the same concept, in [31] the 

parameters of the GEV distribution were estimated using the 

four largest monthly maxima of each year.  

4. NUMERICAL RESULTS AND DISCUSSION 

As mentioned in previous sections, extreme value analy-
sis can be used to estimate the design values (return levels 
for determined return periods) for a properly processed data 
set of significant wave height. In the present work, inde-
pendent extreme-type data sets were extracted from buoy 
observations, using the procedures presented in Section 4, 
and the return levels associated with return periods of 10, 20, 
… and 100 years were estimated using the r  largest maxima 
model. In this section, the procedures used for the analysis, 
the corresponding results and their comparison are discussed 
in detail.  

4.1. Data Pre-processing and Declustering 

The data examined in the present study consist of hourly 
buoy observations of significant wave height and the corre-
sponding average period retrieved from the National Oceanic 
and Atmospheric Administration (NOAA)/National Data 
Buoy Center (NDBC) website 
(http://www.ndbc.noaa.gov/). In particular, from the 
NDBC buoy data available, the time series were extracted 
from the station 44005 located in the gulf of Maine 78 NM 
east of Portsmouth, moored at a depth of 201.2m. 

As in most applications of extreme value theory, the data 

was firstly formed into “climate years”, i.e. from June to 

May. The available buoy observations cover the time period 

from 1978 to 2008, but there is a number of values missing. 

The “valid” climate years, that formed the final time series, 

were selected based on the data availability: a year was only 

taken into account when the percentage of missing values 

was below 20%. Application of this criterion resulted in 16 

valid years which formed our primary 
S

H  time series, on 

which the declustering procedures presented in Section 3 

were applied.  

In particular, the algorithmic scheme of SSL procedure, 

presented in Section 3.1, was applied considering four char-

acteristic storm length values ( ), namely 72h, 168h, 336h 

and 480h. The run length procedure, on the other hand, is 

provided through a number of functions by the R toolkit 

which were utilized, in the present work, for a total of nine 

(3x3) u - k  (threshold- interval) combinations. Specifically, 

the cluster intervals 24, 72 and 168 hours were adopted fol-

lowing the suggestions in the available relevant literature, 

while the threshold values 1.2m, 1.9m and 2.4m were se-

lected corresponding to the 50, 75 and 85% quantiles of the 

entire data set respectively. DeCA ran for ER 80, 85, 90 and 

95% (ER was calculated for both energy content estimations 
2

S P
H T  and 

2

S
H ), while for the TAM approach, the first, sec-

ond and third largest monthly maxima of each year were 

directly extracted. 

The declustered annual data sets were then sorted and 
new series comprising the first, second, etc largest maxima 
for each available year were obtained to be further used in 
the r  largest maxima analysis.  

4.2. Application of the r  -largest Maxima Model 

This data, in particular, were the input argument of the R 
toolkit through which the r-largest model was fitted, estimat-
ing the GEV parameters with the corresponding standard 
errors for different values of r  ( 1,2,...,10r = )

1
, using the 

maximum likelihood method. The diagnostics of these fits 
were then created in the form of a probability plot, a quantile 
plot, a return level plot and a histogram of data with fitted 
density. After an assessment of the obtained results, com-
bined with theoretical arguments from the relevant literature, 
the value 5r =  was adopted as the most appropriate for the 
three declustering approaches, while, evidently, for the TAM 
series the analysis was applied for 3r = .  

Subsequently, the diagnostic plots for 5r =  were closely 
examined and the declustering parameter combinations that 
produced the “best fit” for each declustering procedure were 
determined. More precisely, the best fits were obtained as 
follows: in the SSL approach for ssl=480h, in the Run 
Length approach for u =1.9m, k =24h, and in DeCA for 
ER=90%.  

The Probability-Probability and the Quantile-Quantile 

Plot corresponding to the above fits are presented in Fig. (1). 

At this point, we should note that the results of the DeCA 

approach presented in this Section refer to the ones obtained 

by calculating the energy content as 
2

s p
H T . This case was 

chosen for producing a slightly better fit than the one which 

ignores the spectral peak period.  

The GEV parameter estimates followed by the corre-
sponding standard errors for each approach are presented in 
Table 2. In the cases of SSL, Run Length and DeCA, the 

                                                
1
 Except for the Triple Annual Maxima case where r  is taken a priori equal 

to 3. 
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presented results were produced using the declustering pa-
rameters selected above by applying the best-fit criterion.  

Since the focus of this paper is on the effect of the differ-
ent declustering approaches on the obtained results, in Table 
2 we should firstly concentrate on the standard errors. In this 
context, we notice that the largest standard errors occur for 
the TAM approach, the lowest for the Run Length approach, 
while the standard errors of the SSL, Run Length and DeCA 
approaches are of comparable magnitude. Let us also note 
that, in contrast to the other declustering procedures, the 

TAM approach is robust, in the sense that it finally results in 

a unique combination of GEV parameters.  

The sensitivity of the SSL, Run Length and DeCA ap-

proaches with regard to the selection of the required subjec-

tive parameters, i.e. SSL, u - k  and ER respectively, was 

also explored. In this respect, the GEV estimates ( μ ,  and 

), which were produced for various values of the afore-

mentioned parameters, were plotted for each declustering 
procedure and are presented in Fig. (2). 

 

SSL approach  

 

RL approach 

 

DeCA approach 

Fig. (1). The Probability (left) and Quantile (right) plots produced for the selected (best fits) of the SSL, RL and DeCA approaches. 
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Table 2. The Maximum Likelihood Estimates of the GEV Parameters and the Corresponding Standard Errors for each Declustering 

Method 

 μ  std error  std error  std error 

SSL 7.1455 0.2194 1.0504 0.1159 -0.1570 0.0952 

RL 7.2575 0.2049 0.9875 0.1030 -0.1688 0.0852 

DeCA 7.2312 0.2111 1.0138 0.1082 -0.1672 0.0905 

TAM 7.0757 0.2536 1.1325 0.1264 -0.1954 0.1222 

AMM 7.0961 0.3159 1.1349 0.2208 -0.2166 0.1738 

 

  
 

Fig. (2). GEV estimates produced using SSL (left), RL (centre) and DeCA (right) for the various values of declustering parameters. 

  

Fig. (3). The return levels estimated by the various approaches (left) and the widths of the corresponding confidence intervals (right) against 

return periods of 2 to 100 years. 
 

As can be seen, the results obtained from the SSL and the 
DeCA approaches are very robust, as the GEV parameters 
exhibit very slight variations for the different values of SSL 
and ER respectively. More precisely, the resulted estimates 
for the SSL procedure exhibit a maximum deviation of 
0.1338 in the values of μ , 0.0708 in the values of  and 
0.0201 in the values of , while for DeCA the relevant val-
ues are 0.0425, 0.1084 and 0.0988 respectively. On the con-
trary, there is high variation among the results of the RL ap-

proach (1.6335 in μ , 0.9097 in  and 0.3002 in ), re-
vealing that this approach is highly sensitive to the selection 
of u  and k . 

Finally, the estimated GEV parameters obtained from all 
declustering procedures were used to calculate design values 
of significant wave height. The return levels obtained from 
the TAM, the AMM and the selected best fits of SSL, RL 
and DeCA approaches were plotted against return periods of 
up to 100 years (Fig. 3, left). The widths of the correspond-
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ing confidence intervals, i.e. the differences between the 
upper and the lower confidence limit, obtained from all five 
approaches, are presented in Fig. 3 (right).  

As can be seen in Fig. 3 (left), the calculated return levels 

do not exhibit significant differences among the various ap-

proaches, but in relation to the corresponding results of the 

AMM, they can be considered as slightly overestimating the 

obtained design values. In particular, for the return periods 

over 20 years, the TAM approach predicts the largest values 

of significant wave height, while the RL, of which the results 

are almost identical to those of the AMM, predicts the low-

est. The return levels produced by the SSL and the DeCa 

approaches were in between the results of the TAM and RL. 

We should point out that the maximum relative deviation of 

the 100-year 
S

H
 
design value is produced by the AMM and 

the TAM approaches and is approximately 2% (10.4 to 

10.6m). On the other hand, as is depicted in Fig. (3) (right), 

the width of the confidence intervals varies significantly 

among the various approaches. In particular, the wider con-

fidence intervals occur for the SSL and the TAM methods, 

while the narrower for the RL procedure. The confidence 

intervals obtained for the DeCA and the AM approaches are 

of moderate width.  

5. CONCLUDING REMARKS 

In this paper, the effect of the declustering procedures on 
the numerical results obtained by the r-largest maxima model 
was investigated. This model is more vulnerable to devia-
tions from the iid assumption than the classical extreme 
value approaches (such as e.g. the annual maxima method), 
see [32] and therefore, the discrimination of independent 
cluster maxima in the initial time series is crucial. However, 
as mentioned in previous sections, almost all relevant declus-
tering procedures involve the selection of a, more or less, 
arbitrary parameter. In the present study, the Standard Storm 
Length approach, the Run Length, the Triple Annual 
Maxima Series and the Declustering Algorithm were imple-
mented, using a number of different values for the corre-
sponding (subjectively selected) declustering parameters and 
the results were analytically examined.  

In particular, a 16 year long time series of significant 

wave height was declustered by implementing the aforemen-

tioned procedures and the r-largest maxima model was ap-

plied on the obtained extreme type data in order to estimate 

the n -year design 
S

H  sea-states, for 10,20, ,100n = …  
years. The log-likelihood function was numerically maxi-

mized and the GEV distribution parameters with the corre-

sponding standard errors were estimated. In this connection, 

the Run Length approach gave the lowest values of standard 

errors, while DeCA performed equally well, providing 

slightly larger values. Furthermore, the SSL and DeCA ap-

proaches exhibit a less dependent behaviour concerning the 

variation of the declustering parameters involved in the cal-

culations with respect to the variability of the GEV distribu-

tion parameters. More precisely, both declustering proce-

dures provided more stable GEV distribution parameters for 

different values of the declustering parameters. 

On the other hand, regarding the design sea-state predic-
tion, all declustering procedures provided very similar return 
periods -

S
H -design value curves, as the maximum relative 

deviation was approximately 2%. Specifically, for return 
periods up to 20 years the obtained curves are almost indis-
tinguishable. For return periods greater than 20 years, the 
SSL approach provides the largest design values (for 
SSL=480h), followed by the triple annual maxima method. 
The curve obtained by the RL procedure coincides with the 
curve obtained by the AMM, while DeCA provided slightly 
overestimated 

S
H -design values, in respect to the AMM.  

Finally, more striking differences in the effect of the de-
clustering procedures were detected in the confidence inter-
val widths of the estimated design values. More precisely, 
the confidence interval width obtained by DeCA was found 
directly comparable to the one of the AMM for all values of 
the return period. The SSL and the TAM methods provided 
the widest confidence intervals, while the RL procedure gave 
the narrowest. 
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