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Abstract: This paper presents and demonstrates a method to determine wave field modifications resulting from elliptic 

bathymetric anomalies (pit or shoal) with gradual transitions in depth. The analytic (semi-numerical) method is valid for 

linear waves in a uniform depth domain with an arbitrary number of concentric elliptic forms of different, but uniform, 

depths combined to represent either a pit or a shoal. Sections present the theory, formulation, and results in the form of 

contour plots of the relative amplitude in the presence of the depth anomaly. The elliptic forms in the model induce wave 

transformation through processes of wave refraction, wave diffraction, and wave reflection with asymmetry in the solution 

for oblique incident wave angles. The results investigate the effect of the incident wave angle on the resulting wave field. 
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INTRODUCTION 

Construction of beach nourishment projects requires 
large volumes of sediment often obtained by the removal 
from borrow pits located in reasonably shallow water. These 
modifications of the nearshore bathymetry have the potential 
to affect wave transformation processes and thus to alter the 
equilibrium shoreline planforms on the landward side of the 
borrow areas. Recent cases of erosional hot spots (EHS) as-
sociated with beach nourishment projects have increased 
interest in the prediction of the mechanisms of borrow pit 
alteration of the local wave field. Currently, a need exists for 
a better understanding of how borrow pit characteristics such 
as size and depth interact with the incident wave field to de-
termine the effect of the pits on the nourished beach and to 
anticipate the effects of various designs.  

An analytical (semi-numerical) solution to the three-
dimensional pit/shoal problem is obtained using the general 
method of Takano [1] for an elliptical pit/shoal. The method 
develops gradual transitions in depth as a series of steps of 
uniform depth as in Bender and Dean [2, 3] where axisym-
metric forms with gradual transitions were studied. The pre-
sent method employs a series summation of Mathieu func-
tions for the case of an elliptic depth anomaly instead of the 
series summation of Bessel functions as in the axisymmetric 
case of Bender and Dean [3]. 

The analytic model developed within this study will not 
replace or supersede the more complex numerical schemes 
that allow arbitrary bathymetry and more complex wave-
related processes, but provides an alternative model with an 
analytic (semi-numerical) solution. 
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PREVIOUS STUDIES 

Combe and Soileau [4] and Williams [5] — at full scale 
— and Horikawa et al. [6], Motyka and Willis [7], and Wil-
liams [5] —in the laboratory — have shown the significance 
of borrow pit effects on adjacent shoreline planforms. The 
capability to predict the effects of borrow pits on the land-
ward shoreline has not been demonstrated. 

A number of investigators employing various methods 
have studied the problem of waves propagating over a finite 
pit of uniform depth — Black and Mei [8], Williams [9], 
Williams and Vasquez [10], McDougal et al. [11]. These 
studies have shown that a significant wave shadow zone can 
occur landward of the pit with a standing wave pattern sea-
ward of the pit. Bender and Dean [3] have extended previous 
work by developing a semi-numerical method that allows for 
axisymmetric bathymetric anomalies with gradual transition 
in depth as a series of steps of uniform depth. Incorporating 
an analytic one-line shoreline change model has demon-
strated possible equilibrium shoreline planforms in the lee of 
such depth anomalies. The capability to model elliptic forms 
with gradual depth transitions allows investigation of depth 
anomalies of more natural shape (i.e. other than axisymmet-
ric and/or vertical sidewalls). 

Little previous work in the coastal engineering literature 
employs Mathieu functions or elliptic coordinates. Chen and 
Mei [12] investigate exciting forces and moments of incident 
waves on vertical cylinders with a finite draft and elliptical 
cross section. The article develops solutions via numerical 
application of Mathieu functions and includes the formula-
tion of the diffraction problem for long waves in elliptic co-
ordinates.  

A recent Gutiérrez-Vega et al. [13] study provides a vis-
ual analysis of general Mathieu function behavior with sev-
eral applications including water waves traveling in elliptic 
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domains. The study highlights similarities between Mathieu 
function behavior and Bessel function solutions in cylindri-
cal domains.  

FORMULATION AND THEORY 

The model developed herein investigates the three-
dimensional motion of monochromatic, small-amplitude 
water waves in an inviscid and irrotational fluid of arbitrary 
depth. The waves propagate in an infinite otherwise, uniform 
depth domain containing a three-dimensional elliptic anom-
aly (pit or shoal) of finite extent. The elliptic analytic step 
method is an extension of Bender and Dean [3] — valid for 
axisymmetric anomalies — that determines the wave trans-
formation in arbitrary water depth for domains in elliptic 
coordinates with gradual transitions in depth that are ap-
proximated by a series of steps of uniform depth. This addi-
tional capability to analytically investigate an elliptic form 
with gradual transitions in depth provides many new, and 
more practical, possibilities for study compared to the 3-D 
axisymmetric model domains. 

Fig. (1) presents a definition sketch for the case of an el-
liptic pit with an abrupt depth transition. The parameters a 
and b define the semi-major and semi-minor axes of the el-
lipse. The elliptic coefficient, hc, equals (a

2 
– b

2
)

0.5
 and al-

lows transformation from Cartesian (x,y) to elliptic coordi-
nates (u,v). The method divides the domain into regions with 
the bathymetric anomaly and its projection comprising Re-
gions 2 Ns+1 where Ns is the number of steps approximat-
ing the depth transition slope and the rest of the domain, of 
depth h1, in Region 1. For the case of an abrupt transition in 
depth, the bathymetric anomaly occurs in Region 2 of uni-
form depth h2, where abrupt is defined as one step either 
down or up. For the case of a gradual depth transition, steps 
divide the bathymetric anomaly into subregions with the 
depth in each subregion equal to hj for each step j = 2 Ns+1. 

The step method extends the previous works for abrupt 
depth transitions by allowing a domain of arbitrary depth 
that contains a depth anomaly with gradual transitions 
(sloped sidewalls) between regions. Instead of having a “step 

 

Fig. (1). Definition sketch for elliptic pit with abrupt depth transitions. 

Fig. (2). Definition sketch for boundaries of gradual depth transitions. 
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down” from the upwave direction for a pit or a “step up” for 
the case of a shoal, in the step method a series of steps either 
up or down, of uniform depth, are connected by a uniform 
depth region for u < uNs. A sketch of a domain with a stepped 
pit is shown in Fig. (2) indicating the location and definition 
of the velocity potentials and boundaries for a pit with Ns = 
3. 

Each region has a specified depth and each interface be-
tween regions has a specified u location where the matching 
conditions must be applied. At each boundary the matching 
conditions depend on whether the boundary is a “step up” or 
a “step down.” Specifying the incident wave allows the for-
mation of a set of equations with 2NsNe(M+1) unknown co-
efficients where Ne is the number of non-propagating modes 
and M is the number of Mathieu function modes in the solu-
tion. 

The solution starts with the definition of an incident ve-
locity potential in the form of a plane progressive wave valid 
in elliptic coordinates: 

I u, v, z, t( )

= MI

mcem (v,q1 )cem ( ,q1 )Jem (u,q1 ) +
m=0

msem (v,q1 )sem ( ,q1 )Jom (u,q1 )
m=1

cosh k1 h1 + z( )
cosh k1h1( )

e i t (1)

 

where m = 1 for m = 0 and 2i
m

 otherwise, MI =
igH

2
, u 

equals the radial distance from the center of the bathymetric 

anomaly to the point in the fluid domain, v equals the angle 

to the point measured counter-clockwise from the origin as 

shown in Fig. (1), H equals the incident wave height with 

angle of approach ,  equals the angular frequency, and g 

equals the acceleration due to gravity.  

The terms cem and sem represent even and odd angular 
(regular) Mathieu functions of the first kind. The Jem and Jom 

terms represent even and odd radial (modified) Mathieu 
functions of the first kind. Appendix A provides details on 
the calculation of the angular and radial Mathieu functions. 

The scattered velocity potential consists of reflected 
modes that persist with substantial distance from the pit and 
evanescent (non-propagating) modes, which decay rapidly 
with distance from the pit: 

S u, v, z, t( ) =

Acmcem (v,qj )cem ( ,qj )Mem
1 (u,qj ) +

m=0

Asmsem (v,qj )sem ( ,qj )Mom
1 (u,qj )

m=1

cosh k1 h1 + z( )
cosh k1h1( )

e i t (2)

 

+

cj ,m,ncem (v, qj ,n )cem ( , qj ,n )Kem (u, qj ,n )
cos j ,n hj + z( )
cos j ,nhj( )n=1m=1

+ s j ,m,nsem (v, qj ,n )sem ( , qj ,n )Kom (u, qj ,n )
cos j ,n hj + z( )
cos j ,nhj( )n=1m=1

e i t

 

with Me
1

m indicating the Mathieu-Hankel function of the 
first kind and m

th
 order — Jem + i Nem — where the Nem 

represents the even radial (modified) Mathieu functions of 
the second kind. The terms Kem and Kom represent even and 
odd Modified Mathieu equation terms that demonstrate be-
havior similar to the Modified Bessel equation term Km. In-
side the pit, the velocity potential is given by the form 

T u, v, z, t( ) =

Bcmcem (v,qj )cem ( ,qj )Jem (u,qj ) +
m=0

Bsmsem (v,qj )sem ( ,qj )Jom (u,qj )
m=1

cosh k1 h1 + z( )
cosh k1h1( )

e i t (3)

 

+

cj ,m,ncem (v, qj ,n )cem ( , qj ,n )Iem (u, qj ,n )
cos j ,n hj + z( )
cos j ,nhj( )n=1m=1

+ s j ,m,nsem (v, qj ,n )sem ( , qj ,n )Iom (u, qj ,n )
cos j ,n hj + z( )
cos j ,nhj( )n=1m=1

e i t

 

The terms Iem and Iom represent even and odd Modified 
Mathieu equation terms that demonstrate behavior similar to 
the Modified Bessel equation term Im. In Eqs. 2 and 3, Acm, 

 

Fig. (3). Comparison of axisymmetric method (Bender and Dean [3]) to elliptic method for case of circular pit with two steps and three evanescent modes; pit 

geometry shown in inset diagram. 
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Asm, Bcm, and Bsm, are unknown amplitude coefficients for 
the even and odd propagating waves and cm, sm, cm, and 

sm, are unknown amplitude coefficients for the even and 
odd non-propagating (evanescent) waves that one must de-
termine for each Mathieu function mode included in the so-
lution. 

Table 1. Convergence Test for Elliptic pit with Three Steps 

Showing Dependence on the Number of Mathieu 

Function Modes and the Number of Evanescent 

Modes taken in Solution 

# of 

Mathieu 

Function 

Modes

0 1 2 3

4 0.8326 0.8326 0.8326 0.8326

9 1.2875 1.2878 1.2880 1.2881

14 1.0054 1.0057 1.0060 1.0061

18 0.9487 0.9490 0.9492 0.9493

22 0.9465 0.9468 0.9470 0.9471

26 0.9465 0.9468 0.9470 0.9471

30 0.9465 0.9468 0.9470 0.9471

34 0.9465 0.9468 0.9470 0.9471

38 0.9470 0.9473 0.9475 0.9476

42 0.9849 0.9853 0.9855 0.9856

46 7.1967 7.1972 7.1974 7.1976

50 297.9236 297.9241 297.9243 297.9244

# of Evanescent Modes

Elliptic Pit with Three Steps (a 1 = 15.8 m, b 1 = 7.3 m) 

Depth = 2, 2.3, 2.6, 3 m; T = 12 s, h c = 14

 

Matching conditions for the velocity potential and hori-
zontal velocity with depth at the interfaces (u = Uj) between 
regions allow solution of the equations via truncated series. 
Applying the matching conditions results in a truncated set 
of independent integral equations each of which is multiplied 
by the appropriate eigenfunction; cosh[kj(hj+z)] or 
cos[ j,n(hj+z)]. The proper eigenfunction to use depends on 
whether the boundary results in a “step down” or a “step up” 
as u approaches zero; thereby making the form of the solu-
tion for a pit different than that of a shoal.  

At each boundary (Uj) the appropriate evanescent mode 
contributions from the adjacent boundaries (Uj-1, Uj+1) are 
taken into account. The resulting set of simultaneous equa-
tions is solved as a linear matrix equation with the values of 
M, Ne and Ns sufficiently large — approximately 40, 3, and 
3 (linear slope) for the cases presented — to ensure conver-
gence of the solution. 

The numerical solution of the Mathieu and Modified 
Mathieu functions applies numerical programs and theory 
from Zhang and Jin [14]. Specifically the method employs 
expansion coefficients calculated with computer code from 
Zhang and Jin [14] and applies these expansion coefficients 
to develop values of the Mathieu and Modified Mathieu 
functions. The Appendix contains further details of the equa-
tions applied. 

RESULTS 

Solution of the three-dimensional models establishes the 
complex velocity potential anywhere in the fluid domain. 
The complex velocity potential allows calculation of the 

wave height and direction accounting for the wave transfor-
mation processes of refraction, diffraction, and reflection 
that act on a planar wave when encountering a depth transi-
tion. The modeling effort focused on the effect of the varia-
tion in the longshore and cross-shore extent of the elliptic 
form on the wave field modification. The study includes 
depth anomalies with gradual transitions in depth to more 
accurately represent forms found in nature. 

COMPARISON TO AXISYMMETRIC SOLUTION 

Comparing the model developed herein for an elliptic 
form with equal semi-major and semi-minor axes (circle) to 
the model of Bender and Dean [3] — valid for axisymmetric 
depth anomalies — provides verification of the elliptic 
model. Fig. (3) presents results for both the elliptic model 
and the model from Bender and Dean [3] shown as relative 
amplitude for a pit of circular form with the pit extent shown 
by the dashed line. For this comparison the pit has two steps 
with inner and outer radii of 21.0 and 24.8 m. The inset fig-
ure indicates a cross-section of the pit geometry through the 
centerline. The main figure indicates almost identical solu-
tions upwave, downwave and inside of the pit. Other com-
parisons with different circular geometries indicate similar 
agreement in the relative amplitude values. 

CONVERGENCE OF ELLIPTIC STEP METHOD 

Application of the Mathieu function solutions developed 
reveals convergence to a stable solution for up to approxi-
mately 30 Mathieu function modes. Table 1 presents results 
of tests completed for the case of an elliptic pit with a1 = 
15.8 m, b1 = 7.3 m and three steps from 2 m depth to 3 m 
depth. For 0, 1, 2, and 3 evanescent modes, the table presents 
relative amplitude values at a location 100 m downwave of 
the ellipse center for an incident wave period of 12 s. For 
this configuration and wave conditions, the solution shows 
convergence as the number of evanescent modes increases 
with little improvement from 2 to 3 modes. The solution 
stabilizes for cases with more than 22 Mathieu function 
modes. However, more than 34 Mathieu function modes 
cause the solution to deviate and for greater than 46 modes 
the solution begins to diverge significantly. Convergence 
problems for higher orders of Mathieu functions are not an 
uncommon problem. The methods developed for the applica-
tions presented in this paper allow solution prior to conver-
gence problems degrading the solution. 

ELLIPTIC PIT 

The following figures demonstrate the wave transforma-
tion caused by elliptic pits with various side slopes as plots 
of the relative wave amplitude. The depth anomaly consists 
of five ellipses of uniform depth with the largest having a 
semi-major axis (a) length of 33 m and a semi-minor axis (b) 
length of 16 m. Fig. (4) presents a planform view of the el-
liptic anomaly. The slopes of the depth transitions equal 1:3 
and 1:10 for the semi-major and semi-minor axes. The do-
main has a uniform depth of 2 m outside the depth anomaly 
and depths of 2.2, 2.4, 2.6, 2.8 and 3 m for each elliptical 
step. Fig. (5) presents transects parallel to the x- and y-axis 
through the centerline of the elliptic form. 

Fig. (6) presents a contour plot of the wave amplitude 
field normalized by the incident wave amplitude for an ellip-
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tic pit with sloped sidewalls as shown in Figs. (4 and 5). In 
Fig. (6) the incident waves propagate from left to right, par-
allel to the x-axis (major) labeled in the figure. This figure 
clearly shows the divergence of the wave field caused by the 
pit with a large area of wave sheltering evident directly 
shoreward of the pit. Two bands of relative wave amplitude 
greater than one, from the converging wave field at these 
locations, flank this area. The relative amplitude values show 
symmetry about Y=0. 

Employing an oblique incident wave angle in a domain 
with an elliptic depth anomaly creates asymmetry in the re-

sulting wave field. The asymmetry develops from the inter-
action of the even and odd Mathieu and Modified Mathieu 
function solutions. Fig. (7) presents a contour plot of the 
relative wave amplitude for an incident wave angle of 45 
degrees with the same depth anomaly as in Fig. (6). Fig. (7) 
contains similar features as those of the previous figure with 
an area of wave sheltering downwave of the depth anomaly 
flanked by two areas of increased relative amplitude.  

Applying an incident wave traveling in the direction of 
the semi-minor axis demonstrates the influence of the elliptic 
shape on the wave field. Fig. (8) presents a contour plot of 

 

Fig. (4). Planform view of elliptic pit applied in wave transformation modeling; specifics of pit geometry listed in figure. 

 

Fig. (5). Cross-sectional view taken along semi-major and semi-minor axes of elliptic pit (planview in Fig. 4) applied in wave transformation 

modeling; specifics of pit geometry listed in figure. 
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the relative amplitude for an incident angle of 90 degrees 
with the same depth anomaly as the two previous figures. A 
symmetric wave pattern develops with increased reflection 
and downwave sheltering as compared to the conditions of 
Fig. (6).  

Fig. (9) presents the relative amplitude along transects 
taken in the direction of wave propagation through the center 

of the elliptical forms for incident angles of 0, 45, and 90 
degrees. The figure highlights the influence of the elliptic 
shape on the wave transformation processes resulting from 
the interaction of the wave field with the depth anomaly. To 
focus attention on the relative amplitudes outside of the el-
liptic form, Fig. (9) and following plots with results along a 
transect present results outside of the interior of the 
bathymetric anomaly (pit or shoal). To facilitate comparison 

 

Fig. (6). Contour plot of relative wave amplitude for elliptic pit with five depth transitions and incident wave angle equal to 0 degrees; labels 

on figure provide model parameters. 

 

Fig. (7). Contour plot of relative wave amplitude for elliptic pit with five depth transitions and incident wave angle equal to 45 degrees; la-
bels on figure provide model parameters. 
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between the three cases, the plots along the x-axis in Fig. 
(10) are shifted relative to the semi-major axis of the largest 
ellipse for each case, a1. The transect plots only present rela-
tive amplitude values. 

With an incident angle of 90 degrees the wave field en-
counters a depth anomaly that is much wider relative to the 

wave direction resulting in larger reflection and sheltering 
than for the case of a 0 deg incident wave, which faces a 
more streamlined depth anomaly. A unique behavior of the 
wave incident from 90 degrees is a relative amplitude greater 
than one on the downwave edge of the pit. For this case the 
relative amplitude is shown to decrease dramatically as 
downwave distance from the pit increases. 

 

Fig. (8). Contour plot of relative wave amplitude for elliptic pit with five depth transitions and incident wave angle equal to 90 degrees; la-

bels on figure provide model parameters. 

 

Fig. (9). Relative wave amplitude along transects in the direction of wave propagation (0, 45, and 90 deg) through the center of the elliptic 

pit; labels on figure provide model parameters. 
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ELLIPTIC SHOAL 

The method developed also allows investigation of 
bathymetric anomalies in the form of elliptic shoals with 
gradual transitions in depth. Figs. (11 and 12) present plan-
form and cross-sectional views of the shoal geometry applied 
in the following figures. The depth anomaly consists of five 
ellipses of uniform depth with the largest having a semi-
major axis (a) length of 22.6 m and a semi-minor axis (b) 
length of 10.4 m. The transitions in depth are 1:3 for the 

semi-major axis and 1:6 for the semi-minor axis. The domain 
has a uniform depth of 3 m outside the depth anomaly and 
depths of 2.7, 2.4, 2.1, 1.8 and 1.5 m for each elliptical step 
that comprise the shoal. 

Fig. (13) presents a contour plot of the relative amplitude 
for an elliptic shoal with sloped sidewalls. In this figure the 
incident waves propagate with an angle of 45 degrees. The 
convergence of the wave field caused by the shoal is shown 
clearly in Fig. (13) with a large area of wave focusing evi-

 

Fig. (10). Relative wave amplitude along transects in the direction of wave propagation (0, 45, and 90 deg) through the center of the elliptic 

pit shifted to a1; labels on figure provide model parameters. 

 

Fig. (11). Planform view of elliptic shoal applied in wave transformation modeling; specifics of shoal geometry listed in figure. 

-150 -100 -50 0 50 100 150
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Distance From Center of Ellipse Relative to a1 (m)

R
el

at
iv

e 
A

m
pl

itu
de

Transect Along Direction of Wave Propagation PIT

Theta 0 deg
Theta 45 deg
Theta 90 deg

Waves 

T = 12 s  
h1 = 2 m 
h2 = 3 m 
5 steps   
          
hc = 30   
a1 = 33 m 
b1 = 16 m 

-20 -15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

Y
 D

ire
ct

io
n 

(m
)

X Direction (m)

Planview of Shoal Geometry

hc = 20    
h1 = 3 m   
h2 = 1.5 m 
5 steps     
            h = 3 m 

h = 1.5 m 



52    The Open Ocean Engineering Journal, 2011, Volume 4 Bender and Dean 

 

dent downwave of the shoal. Two bands of relative wave 
amplitude less than one, caused by the diverging wave field, 
flank this area.  

Fig. (14) presents a comparison of the relative amplitude 
along transects in the direction of wave propagation and 
through the center of the elliptical forms for three incident 

wave angles — 0, 45, and 90 degrees. To facilitate compari-
son between the three cases the distance along the x-axis is 
shifted relative to the semi-major axis of the largest ellipse 
for each case, a1. This figure indicates a significant differ-
ence in the reflection for an incident wave angle of 90 de-
grees compared to 0 degrees. With the shape of the elliptic 

Fig. (12). Cross-sectional view taken along semi-major and semi-minor axes of elliptic shoal (shown in Fig. 11) applied in wave transforma-

tion modeling; specifics of shoal geometry listed in figure. 

 

Fig. (13). Contour plot of relative wave amplitude for elliptic shoal with five depth transitions and incident wave angle equal to 45 degrees; 

labels on figure provide model parameters. 

0.8

0.85

0.9

0.95

1

1.05

1.1

-150 -100 -50 0 50 100 150

-100

-50

0

50

100

X Direction (m)

Y
 D

ire
ct

io
n 

(m
)

Contour Plot of Relative Amplitude SHOAL ~ Theta 45 deg

T = 12 s    
h1 = 3 m   
h2 = 1.5 m 
5 steps     
            

hc = 20     
a1 = 22.6 m 
b1 = 10.4 m 

Waves 

-25 -20 -15 -10 -5 0

1.5

2

2.5

3

X Distance (m)

D
ep

th
 (m

)

Transect Parallel to X-Axis Through Center of Shoal

-25 -20 -15 -10 -5 0

1.5

2

2.5

3

Y Distance (m)

D
ep

th
 (m

)

Transect Parallel to Y-Axis Through Center of Shoal



Application of Mathieu Functions to Solve Wave Field The Open Ocean Engineering Journal, 2011, Volume 4    53 

 

shoal, waves propagating from 90 degrees encounter an ob-
struction 1.5 m below the water surface and 40 m wide. In 
comparison, waves propagating from 0 degrees encounter an 
obstruction only 8 m wide at the same depth. 

DISCUSSION AND CONCLUSIONS 

The elliptic analytic (semi-numerical) step method de-
termines the wave field in the presence of an elliptic 
bathymetric anomaly with gradual transitions in depth and 
incorporating the wave transformation processes of refrac-
tion, diffraction, and reflection. Varying the incident wave 
angle allows one to view the influence of the elliptic form on 
wave transformation. For the cases presented, depth anoma-
lies with their major axes parallel to wave crests result in 
larger reflection and sheltering than for depth anomalies with 
their major axes perpendicular to the wave crests. 

Future work will compare the elliptic analytic step 
method to more complex, numerical models that allow arbi-
trary bathymetry. Additionally, coupling the transformed 
wave fields landward of the depth anomalies to a simple 
shoreline change model will allow investigation of shoreline 
impacts caused by elliptic depth anomalies. 

APPENDIX 

Zhang and Jin [14] present the Mathieu and Modified 
Mathieu function equations employed to develop the results 
applied in the model. Please consult Zhang and Jin [14] for 
the full set of equations; a brief list of the even functions of 
order 2n follows: 

ce2n = Aej (q) cos 2 j 1[ ] v( )
j=1           (A.1) 

se2n+2 = Bej (q)sin 2( j 1)+ 2[ ] v( )
j=1          (A.2) 

Je2n =
1

A0
( 1) j 1+n Aej J j 1 v1( ) J j 1 v2( )

j=1         (A.3)  

Jo2n+2 =
1

B2
( 1) j 1+n Bej J j 1 v1( ) J j 1+2 v2( ) J j 1+2 v1( ) J j 1 v2( )( )

j=1

(A.4) 

Ne2n =
1

A0
( 1) j 1+n Aej J j 1 v1( )Yj 1 v2( )

j=1        (A.5) 

No2n+2 =
1

B2
( 1) j 1+n Bej J j 1 v1( )Yj 1+2 v2( ) J j 1+2 v1( )Yj 1 v2( )( )

j=1

                   (A.6) 

Ie2n =
1

A0
( 1) j 1+n Aej I j 1 v1( ) I j 1 v2( )

j=1

       (A.7) 

Io2n+2 =
1

B2
( 1) j 1+n Bej I j 1 v1( ) I j 1+2 v2( ) I j 1+2 v1( ) I j 1 v2( )( )

j=1

                   (A.8) 

Ke2n =
1

A0
Aej I j 1 v1( )K j 1 v2( )

j=1

          (A.9) 

Ko2n+2 =
1

B2
Bej I j 1 v1( )K j 1+2 v2( ) I j 1+2 v1( )K j 1 v2( )( )

j=1

                 (A.10) 

 

Fig. (14). Relative wave amplitude along transects in the direction of wave propagation (0, 45, and 90 deg) through the center of the elliptic 
shoal shifted to a1; labels on figure provide model parameters. 
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In Equations A.1 – A.10, n equals the Mathieu function 

order developed with summation of j terms, Ae and Be equal 

the expansion coefficients; v equals the angle to the point 

measured counter-clockwise from the origin as shown in Fig. 

(1); 1 equals (q)
0.5

e
-u

; 2 equals (q)
0.5

e
u
; q equals (kh)

2
/2 

where k equals the wave number and h equals the elliptic 

coefficient; u equals the radial distance from the center of the 

bathymetric anomaly to the point in the fluid domain; J and 

Y equal Bessel functions, and I and K equal modified Bessel 

functions. 

REFERENCES 

[1]  K. Takano, “Effets d’un obstacle paraléllélépipédique sur la propa-

gation de la houle”, Houille Blanche, vol. 15, pp. 247, 1960.  

[2]  C.J. Bender and R.G. Dean, “Potential shoreline changes induced 

by three-dimensional bathymetric anomalies with gradual transi-

tions in depth”, Coastal Eng., vol. 51, no. 11-12, pp. 1143-1163, 

2004. 

[3]  C.J. Bender and R.G. Dean, “Wave transformation by axisymmet-

ric three-dimensional bathymetric anomalies with gradual transi-

tions in depth” Coastal Eng., vol. 52, no. 4, pp. 331-351, 2005. 

[4]  A.J. Combe and C.W. Soileau, “Behavior of man-made beach and 

dune: Grand Isle, Louisiana”, Proceedings of Coastal Sediments 

1987, New Orleans, Louisiana, pp. 1232-1242, 1987. 

[5]  B.P. Williams, Physical modeling of nearshore response to offshore 

borrow pits, Masters Thesis, Department of Civil and Coastal En-

gineering, University of Florida, 2002. 

[6]  K. Horikawa, T. Sasaki, and H. Sakuramoto, “Mathematical and 

laboratory models of shoreline change due to dredged holes”, J. 

Faculty Eng. Univ. Tokyo, vol. 34, no. 1, pp. 49-57, 1977. 

[7]  J.M. Motyka and D.H. Willis, “The effect of refraction over 

dredged holes”, Proceedings 14th International Conference on 

Coastal Engineering, Copenhagen, pp. 615-625, 1974. 

[8]  J.L Black and C.C. Mei, “Scattering and radiation of water waves”, 

Technical Report No. 121, Water Resources and Hydrodynamics 

Laboratory, Massachusetts Institute of Technology, 1970.  

[9]  A.N. Williams, “Diffraction of long waves by a rectangular pit”, J. 

Waterway, Port, Coastal, Ocean Eng., vol. 116, pp. 459-469, 1990. 

[10]  A.N. Williams and J.H. Vasquez, “Wave interaction with a rectan-

gular pit”, J. Offshore Mechanics Arctic Eng., vol. 113, pp. 193-

198, 1991. 

[11]  W.G. McDougal, A.N. Williams, and K. Furukawa, “Multiple pit 

breakwaters”, J. Waterway, Port, Coastal, Ocean Eng., vol. 122, 

pp. 27-33, 1996. 

[12]  H.S. Chen and C.C. Mei, “Wave forces on a stationary platform of 

elliptical shape”, J. Ship Res., vol. 17, no. 2, pp. 61-71, 1973.  

[13]  J.C. Gutiérrez-Vega, R. M. Rodríguez-Dagnino, M. A. Meneses-

Nava, and S. Chávez-Cerda, “Mathieu functions, a visual ap-

proach”, Am. J. Phys., vol. 71, no. 3, pp. 233-242, 2003. 

[14]  S. Zhang and J. Jin, “Computation of special functions”, John 

Wiley and Sons: New York, p. 717, 1996. 

 

 

Received: January 27, 2011 Revised: February 23, 2011 Accepted: February 23, 2011 

© Bender and Dean; Licensee Bentham Open. 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the 

work is properly cited. 

 


