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Abstract: In this paper, equivalent stiffness and mass matrices of a beam to a frame with repeated lattice structure are  

obtained to permute a frame to an equivalent continuous beam. Static and dynamic results of the permutated beam are  

obtained and compared to ANSYS’s results for the original frames with good agreements. The technique can be usefully 

employed for analyzing the global behavior of a frame by permuting to a beam. The technique also leads to reducing  

significantly the degrees of freedom of frames and thus the computing time in their dynamic analysis.  
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1. INTRODUCTION 

Many offshore and land structures such as guyed towers, 
cranes booms, bridges and tall buildings are framed struc-
tures which consist of repeated lattice structures with a lot of 
discrete members. Obtaining static and dynamic responses of 
a frame mostly relies on numerical methods. Carrying out 
full-scale structural analysis for large frames requires much 
computational time, storage spaces and associated expanse. 
Approximate methods with sufficient accuracy for conduct-
ing structural analysis of large frames are of great value, 
especially during an iterative and preliminary design stage.  

There have been numerous studies on reducing the de-
grees of freedom of the structures with many discrete mem-
bers. Noor [1], Necib and Sun [2] and Sun and Juang [3] 
proposed continuum models with repeating lattice structures 
based on an equivalent energy method. Noor's model [1] 
replaced displacements and strain of the lattice structure by 
Taylor series expansions, based on the complicated kinetic 
relations and some assumptions. The model used by Necib 
and Sun [2] and Sun and Juang [3] is a Timoshenko beam 
which has 12 by 12 stiffness matrix for plane problems. 
Similar methods were also proposed for the structural analy-
sis of tall buildings by Chajes et al. [4, 5] using a reduced 
order continuum model with 9 degrees of freedom for plane 
problems. 

The authors developed a basic technique of permuting a 
frame to an equivalent in the previous work (Piao and Park, 
[6]). In this paper, the technique is further advanced for the 
analysis of static and dynamic responses of a frame. This 
technique is relatively simpler than other methods for reduc-
ing the degree of freedom of frames. The technique is useful 
for analyzing the global behavior of a frame by permuting to 
a beam, while it leads to reducing computing time and  
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associated storage spaces required in structural analysis of 
frames. This technique can be applied to a frame with  
linearly varying cross sections as well as with same cross 
sections. 

2. DERIVATION OF EQUIVALENT STIFFNESS AND 
MASS MATRICES 

For a structural analysis, stiffness and inertia terms are 
basically required in the governing equation. In the follow-
ing, the derivation procedure of obtaining equivalent stiff-
ness and mass matrices of a beam to a frame with repeated 
lattice structure is described.  

2.1. Derivation of Equivalent Stiffness Matrix 

The procedure of deriving equivalent stiffness matrix of a 
beam to a frame segment is as follows. First, a typical seg-
ment is isolated from an original frame with an assumption 
that each end cross-section remains in a plane. Fig. (1) shows 
a frame model, isolated segment frame and the node num-
bers on an end section. Then the stiffness matrix of the seg-
ment is derived based on the definition of stiffness of a beam 
element that the forces required to obtain the unit displace-
ment for the degree of freedom with all other degrees of 
freedom restrained to zero displacement.  

For a three-dimensional frame segment, a node located 
on an end cross-section of the frame segment has six degrees 
of freedom. It is imposed that the node on an end cross-
section moves along the global axis X or Y, Z, or rotates 
about the axis X or Y, Z to form unit displacements.  

These displacements of the nodes located on an end 
cross-section of the frame segment can be expressed as 
ID (i, j, k) in a matrix form which is referred as an imposed 
displacement matrix here, where i (1 ~ 6) represents the di-
rections of three displacements of X, Y and X directions and 
three rotations about X, Y and X axis, j (1 ~ 6) does the de-
grees of freedom of each node and k does node numbers on 
an end cross-section in the segment. 



56     The Open Ocean Engineering Journal, 2011, Volume 4 Park and Park 

 

For each translation direction of the equivalent beam 
element where i equals to1, 2, and 3, respectively, only the 
elements of the imposed displacement matrix ID corre-
sponding to the translation direction for the nodes located on 
the end cross-sections have unit values, when the other ele-
ments of ID  remain zero. For example, if the segment has 
unit displacement in X direction (i=1), all the five nodes on 
an end section will have one degree of freedom in X direc-
tion and the other degree of freedom will be zero. In the ma-
trix equation below, the column indicates the node numbers 
and row does the degree of freedom. 

ID(1, j, k) =

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 

If the frame section has different node numbers, the col-
umn numbers of the matrix will be changed. 

For X-directional translation degree of freedom ((i=1), a 
general form of the imposed displacement matrix can be 
written in a compact form as follows. 

ID(1, j, k) =
1

0

when j =1

otherwise
 (1) 

For Y-direction (i =2): 

ID(2, j, k) =
1

0

when j = 2

otherwise
 (2) 

and for Z-direction (i=3):  

ID(3, j, k) =
1

0

when j = 3

otherwise
 (3) 

In the case of rotation about X-, Y- or Z-axis, it is rather 
complex to obtain the imposed displacement matrix. For 
example, in the case of rotating about axis Z (i=6), the sub-
matrix ),,6( kjID of the imposed displacement matrix can be 
derived as follows. Let an arbitrary point A (xA, yA, zA) on an 
end cross-section of the frame segment rotates an angle  
(ex. =1rad) in counter-clockwise about the geometric center 
of the end-section, O’ (aa, bb, cc) (see Fig. 2). Here aa, bb, 
cc are the distances from O to O’ in X, Y, Z directions re-
spectively.  

Then the coordinate changes of the point A are 

xZ = BA = ssin = [(yA bb)sin + (xA aa)(1 cos )]  (4) 

yZ = BA' = scos = [(xA aa)sin (yA bb)(1 cos )]  (5) 

zZ = 0  (6) 

Z =  (7) 

where 

s = AA' = 2r sin( / 2)  (8) 

r =OA =OA'  (9) 

= / 2 [( ) / 2 ] = + / 2  (10) 

Eqs. (4) to (7) correspond to the components of ),,6( kjID  
for j=1, 2, 3, 6, respectively, and the other elements of 

),,6( kjID for j=4, 5 are zero, provided that the angle  
equals 1 radian. 

For the case of point A being rotated about axis Y (j=5), 
the components of ),,5( kjID  can be obtained in a similar 
way. That is to say, the components of ),,5( kjID  can be 
obtained by replacing the X, Y, and Z by Z, X, and Y in Eqs. 
(4) to (7) respectively, as follows. 

zY = [(xA aa)sin + (zA cc)(1 cos )]   (11) 

xY = [(zA cc)sin (xA aa)(1 cos )]   (12) 

yY = 0  (13) 

 

Fig. (1). Frame model (a), frame segment (b) and node numbers on 

a section (c). 

 

Fig. (2). Rotation of an arbitrary point. 

 

(a) 

 

 
(b)                       (c)     
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Y =   (14) 

Also for the point A rotating about axis X (i=4), the X, 
Y, and Z in Eqs. (4) to (7) should be replaced by Y, Z, 
and X respectively, as follows. 

yX = [(zA cc)sin + (yA bb)(1 cos )]   (15) 

zX = [(yA bb)sin (zA cc)(1 cos )]   (16) 

xX = 0   (17) 

X =   (18) 

 As the second step, for the each case above, the reaction 

vector 
s

R of the nodes located on two end cross-sections of 

the frame segment is calculated by using a simple numerical 

code. In the calculation of the reaction vector, the boundary 

condition is treated as fixed. In order to form the stiffness 

coefficients of the corresponding degrees of freedom, the 

reaction vector is then transformed to an equivalent force 

vector at a geometric center of end cross-section by using the 

following transformation relation. The transformation rela-

tion of forces ( FX,FY,FZ ,MX,MY,MZ ) of any point (x, y, z) to 

equivalent ones ( F 'X ,F 'Y ,F 'Z ,M'X ,M'Y,M'Z ) at the origin is  

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 z y 1 0 0

z 0 x 0 1 0

y y 0 0 0 1

FX
FY
FZ
MX

MY

MZ

=

F 'X
F 'Y
F 'Z
M 'X
M 'Y
M 'Z

 (19a) 

or 

T• F = F'  (19b) 

where the matrix T is a transformation matrix for one node. 
Hence the transformation matrix can be exactly expanded for 
other nodes on an end cross-section.  

As the final step, these transformed forces are combined 
along each degrees of freedom of the geometric center of the 
end cross-section. Then the resulting forces are the stiffness 
elements along each degree of freedom of the equivalent 
beam element as follows. 

Ke = T•Rs   (20) 

where Ke  is a stiffness matrix of the equivalent beam ele-
ment. 

In this study, the derived stiffness matrix of an equivalent 
beam element will be 12 by 12 since the Euler-Bernoulli 
beam theory is adopted. 

2.2. Derivation of Equivalent Mass Matrix 

In the previous section, equivalent stiffness matrix was 
derived using a static governing equation. Similarly, equiva-
lent mass matrix can be derived using a dynamic governing 
equation. 

 Mx = F    (21) 

As for the case of equivalent stiffness matrix, the im-
posed acceleration matrix IA(i, j, k) of the nodes located on 
one end cross section of the segment corresponding to unit 
acceleration along ith degree of freedom of the equivalent 
beam element can be calculated. The matrix IA is obtained 
in acceleration field and the unit translation and rotational 
accelerations can be obtained by the same procedure applied 
to the unit displacements. So, one can see that the resulting 
imposed acceleration matrix IA is the same as ID for the 
equivalent stiffness matrix.  

IA(i, j, k) = ID(i, j, k) (22) 

For the imposed accelerations of each degree of freedom 
of the equivalent beam element, the reaction vector of the 
nodes located on two end cross sections of the original frame 
segment is calculated under the boundary condition of fixed 
ends as was done for the case of equivalent stiffness matrix. 
Then the reaction vector mR  is transformed into equivalent 
force at the geometric centers of end cross sections by the 
following transformation relation to form the mass coeffi-
cients of corresponding degrees of freedom of the equivalent 
beam element.  

Me = T•Rm   (23) 

where Me is the derived equivalent mass matrix of the seg-
ment and is a consistent mass of 12 by 12 order.  

By using the beam permutation technique explained 
above, total degrees of freedom of frames can be signifi-
cantly reduced. For example, if a frame segment has eight 
nodes and each end cross section contains four nodes, then 
total number of degrees of freedom of the segment is 48, 
while a beam element has twelve degrees of freedom. Thus, 
the degrees of freedom can be reduced to one fourth of the 
original. This technique can be also applied to a frame with 
linearly varying cross sections. 

3. VERIFICATION AND DISCUSSION 

To verify the technique, the results of static analysis and 
modal analysis of an original frame are obtained and com-
pared with those of the equivalently permuted beam. The 
response of the original frames is calculated by a well-
known structural analysis package, ANSYS. 

In this verification, two different frame models are 

adopted shown in Fig. (3). Both models of A and B have ten 

segments of equal length and four nodes on the base are 

fixed. The model A is single-braced whereas the model B is 

double-braced. For convenience, the two models are com-

posed of pipe members. The diameter of pipe member is 

89.1mm, thickness is 3.5mm, and the elastic and shear mod-

ules are 210 GPa and 88GPa, respectively. 

3.1. Static Analysis 

Four static forces of 2500N are equally loaded at four 

corner of the model's top end in lateral and axial directions. 

Both models are permuted to equivalent beams by using the 

present permutation technique and then their static displace-

ments are obtained. The static displacements of the original 

frame models are directly obtained by using ANSYS pro-
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gram. The results of displacements at the top end of the 

models are presented in Tables 1 and 2. The maximum de-

viations between the two methods are less than 4.0%. It can 

be concluded that the equivalent beam stiffness matrices of 

the two models are satisfactorily close to the stiffness matri-

ces of original frame models.  

3.2. Modal Analysis 

In order to verify the equivalent mass matrix obtained by 

the permutation technique aforementioned, the natural fre-

quencies of the permuted beam need to be obtained and to 

compare with those of the original frame. 

As was done in the static analysis, both frame models in 

Fig. (3) are permuted to equivalent beams by using the pre-

sent permutation technique and then their natural frequencies 

of the beams are simply obtained. The natural frequencies of 

the original frame models are directly obtained by using 

commercial ANSYS software. 

The natural frequencies of first few vibration modes of 

the permuted beams and the original frame models are pre-

sented in Tables 3 and 4 and compared each other with good 

agreements. The maximum deviations between the two 

methods are less than 4.3%. It can be concluded that the 

equivalent beam mass and stiffness matrices of the two mod-

els are satisfactorily close to those of original frame models.  

4. CONCLUSIONS 

In this study, a technique of permuting a frame to an 

equivalent beam by obtaining an equivalent stiffness and 

mass matrices of a beam to a frame is introduced. The tech-

nique is verified by comparing static and modal analysis 

results for two different models by the present technique and 

ANSYS with good agreements. The technique is useful for 

 

Fig. (3). Sketch of models. 
 

Table 1. Comparison of Static Displacement Between Present 

Method and ANSYS for Model A 

End Displacement in Loading Direction (m) 

Loading 

Direction 
Present Method 

for Permuted 

Beam 

ANSYS 

 for Original 

Frame 

Deviation (%) 

X 0.249E-3 0.253E-3 1.6 

Y 0.136 0.137 -0.73 

Z 0.136 0.137 -0.73 

Table 2. Comparison of Static Displacements Between Present 

Method and ANSYS for Model B 

End Displacement in Loading Direction (m) 
Loading 

Direction Present Method for 

Permuted Beam 

ANSYS for 

Original Frame 
Deviation (%) 

X 0.104E-3 0.104E-3 0 

Y 0.0807 0.0838 -3.7 

Z 0.0807 0.0838 -3.7 

Table 3. Comparison of Natural Frequencies (Hz) Between 

Present Method and ANSYS for Model A 

Order Present Method ANSYS Deviation (%) 

1 

2 

2.2117 

2.2122 

2.1677 

2.1677 

2.0 

2.0 

3 

4 

12.734 

12.734 

12.401 

12.401 

2.7 

2.7 

5* 29.172 30.466 -4.3 

6 

7 

31.630 

31.630 

30.632 

30.632 

3.3 

3.3 

8 

9 

49.683 

49.683 

50.503 

50.503 

-1.6 

-1.6 

Super script, * represents torsion vibration mode, while others are bending modes. 

 

Table 4. Comparison of Natural Frequencies (Hz) Between  

Present Method and ANSYS for Model B 

Order Present ANSYS Deviation (%) 

1 

2 

2.4260 

2.4263 

2.3396 

2.3396 

3.7 

3.7 

3 

4 

14.1891 

14.1891 

14.1891 

14.1891 

2.5 

3.5 

5* 16.7538 16.529 1.4 

6 

7 

36.2783 

36.2785 

36.125 

36.125 

0.42 

0.42 

8* 50.3646 49.403 2.0 
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analyzing the global behavior of a frame by permuting to a 

beam. It also leads to reducing the degrees of freedom of 

frames and thus the computing time in their structural  

analysis. This technique can be applied to a frame with  

linearly varying cross sections as well as same cross sec-

tions. 

The present technique can be usefully employed in a  

preliminary design stage of frames. Further work is needed 

for frames with large displacements. 
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