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Abstract: In a C-core sandwich panel, the shear stiffness of the sandwich panel in the weak direction is much smaller. 
The deflection of a C-core sandwich beam consists of two parts: flexural deformation and shear deformation. The flexural 
deformation of a C-core sandwich beam can be calculated simply from beam theory while the shear deformation is rela-
tively difficult to calculate due to the mutual action between the facing plates and the C-core stiffener. Considering the 
contact between the flanges of the C-core and the facing plates, the shear deformation of a typical segment in a C-core 
sandwich panel is analyzed based on compatibility conditions. By using Castigliano’s second theorem, the equation for 
calculating the deflection caused by shear action of a C-core sandwich panel under bending is obtained. The accuracy of 
the presented equations for calculating the deflection of a C-core sandwich cantilever beam and a C-core sandwich panel 
under three-point bending is then verified by comparing with finite element and experimental results reported in the corre-
sponding reference. It is found that the predicted results from the presented equation agree quite well with finite element 
and experimental results, which shows the reliability and accuracy of the proposed equation. 
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INTRODUCTION 

A steel sandwich panel consists of two facing plates and 
a core between them. This type of structure has a high flex-
ural stiffness, light weight, and especially it has a high resis-
tance to dynamic and blast loads. Due to these advantages, it 
is widely used in ship and offshore engineering, such as ship 
and offshore platform decking, or double-skin vessels. There 
is also a potential application for this structure to be used in 
building and constructional industries. Combing with light 
weight materials, such as aluminum, the sandwich panels can 
be also used in terrestrial and space engineering.  

For a steel sandwich panel, the different types are classi-
fied according to the cores. Such commonly used types in-
clude web-core, C-core, Z-core, X-core, V-core and truss-
core etc. The cores are placed generally in a single direction, 
which causes the sandwich panel to have a different stiff-
nesses in the two length directions. In the direction of the 
core placement, the bending stiffness, the shear stiffness and 
the torsion stiffness are all very high. However, in the direc-
tion perpendicular to the core placement, or so-called trans-
verse direction, the shear stiffness is much weaker. The dif-
ference of the mechanical properties of a sandwich panel in 
two directions makes it difficult to analyze this structure in 
theory because it is essential to be a composite structure. In 
the literature, much effort has been tried to simplify a sand-
wich panel to be an equivalent orthotropic thick plate based 
on providing the appropriate solutions of some fundamental 
structural properties. Such early representative work was  
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conducted by Libove and Batforf (1948) [1], and Libove and 
Hubka (1951) [2]. Simplifying a 3D sandwich panel into a 
2D equivalent plate, it is necessary to give accurate solution 
of some elastic constants such as the bending stiffnesses in 
two directions, the twisting stiffnesses and the shear stiff-
nesses in two directions. Libove and Hubka (1951) derived 
the elastic constants for sandwich panels with a continuous 
corrugated core based on the assumption that the cross sec-
tion of the core-stiffeners is symmetrical about a vertical 
plane. Later on, many researchers spent a lot of effort in de-
riving accurate solutions of these elastic constants, such as 
the work reported in Refs. [3-8]. Based on these closed-form 
solutions of the elastic constants, the static behavior of 
sandwich panels can be analyzed theoretically and numeri-
cally. Cheng et al. (2006) [9] evaluated the accuracy of some 
elastic constants of sandwich panels with various cores by 
using finite element analysis. Chang et al. (2005) [10] stud-
ied the bending behavior of corrugated-core sandwich panels 
by using Mindlin-Reissner plate theory. Romanoff et al. 
(2006, 2007) [11-13] analyzed the bending behavior of web-
core sandwich beams by using the solutions of elastic con-
stants. Buannic et al. (2003) [14] also investigated the be-
havior of corrugated core sandwich panels by using a finite 
element method.  

In this paper, C-core sandwich panel under bending in 
weak direction is studied. The bending behavior of the  
C-core sandwich beam is then assessed from the load versus 
deflection relationship. In calculating the beam deflection, a 
simplified theoretical analysis for deriving the shear defor-
mation is obtained, and a closed form equation for calculat-
ing the deflection of the beam due to shear action is pre-
sented. The accuracy of this derived equation is then verified 
using finite element and experimental results. 
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THEORETICAL ANALYSIS 

Typical Segment in a C-Core Sandwich Panel 

A C-core sandwich panel consists of two facing plates 
and a series of C-channel cores, as shown in Fig. (1). The C-
cores are connected to the top and bottom facing plates by 
using laser spot weld or self-tapping screws. The C-cores are 
placed in parallel only in one direction (along x-axis). In the 
direction perpendicular to the placement of the C-cores, the 
sandwich panel has a relatively lower shear stiffness.  
 

 
Fig. (1). A C-core sandwich panel. 
 

In case that a C-core sandwich panel is subjected to uni-
form loading, a typical segment as shown in Fig. (2) can be 
isolated for analysis. It is assumed that each segment in a C-
core sandwich panel is similar to its adjacent one. This 
means the deformation of every segment is similar. There-
fore, the typical segment can be used to investigate its prop-
erty, and other segments can be analyzed by using the same 
method. In Fig. (2), the length of the top and the bottom fac-
ing plates in a segment is denoted by s. This length is also 
identical to the distance between any two adjacent C-cores. 
The distance between the mid-plane of the top and bottom 
facing plates is denoted by hp. Similarly, hc is used to repre-
sent the distance between the mid-plane of the two flanges of 
the C-core. The position of the connection between the fac-
ing plates and the C-core can be described by la and lb. For 
brevity, the thicknesses of the top and the bottom facing 
plates are assumed to be same, and such thickness is denoted 
by tp. The thickness of the C-core, which has a constant 
value, is denoted by tc. 
 

s

hphc
la lb

 
Fig. (2). Typical segment in C-core sandwich panel. 
 

For a C-core sandwich panel under bending, there are no 
axial forces in a segment while only shear forces and bend-
ing moments exist at the left and right cross-sections. As 
shown in Fig. (3), it is assumed that the bending moments at 
each end can be equivalently replaced by a couple forces. 
Hence, the bending moments M at the left end and M+ΔM at 
the right end can be replaced by a couple of axial forces in 
the top and bottom facing plates respectively.  
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Fig. (3). Equilibrium of segment. 
 

From Fig. (3), the following equations can easily be ob-
tained, 

 

M = Nh
p

M +!M = N +!N( ) h
p
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#
$

%$
                (1) 

From Eq. (1), it is found that the bending moments at the 
left and at the right end of the segment is not the same, and 
the difference is 

 
!M = !N " h

p
. To keep the equilibrium of 

the segment, the following equation must be satisfied, i.e. 

  
V 2 ! "V( )# s+ V 2+"V( )# s = "M                 (2) 

Eq. (2) can be simplified to the following equation: 

 
Vs = !Nh

p
                (3) 

Then, N!  can be determined from the following equa-
tion 

  
!N =Vs / h

p
                (4) 

It is noted here that the shear force at the top facing plate 
is not equal to the shear force at the bottom facing plate in 
Fig. (3). This assumption is based on the fact that there is a 
contact force between the facing plates and the flanges of the 
C-core as shown in Fig. (3). Such contact causes the differ-
ence of the shear forces at the top facing plate and at the bot-
tom facing plate. The contact positions are assumed to be 
located at the end of the C-core flange when shear deforma-
tion occurs in the segment, and the corresponding contact 
forces are denoted by 

  
F

c1
 and 

  
F

c2
 respectively. 

It can be seen that there are overall three unknowns 
  
F

c1
, 

  
F

c2
 and  !V once the shear force V at both ends of the seg-

ment is known since  !N  can be calculated from Eq. (4). 
The closed-forms of the three unknowns should be obtained 
from compatibility conditions. 

Compatibility Conditions Between Adjacent Segments 

The compatibility conditions of any typical segment are 
shown in Fig. (4).  
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Fig. (4). Compatibility condictions. 
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The following two assumptions are made: 
(1) There is no relative displacement between the facing 

plate and the C-core flange at contact point. This assumption 
is meaningful since there will be no separation between any 
contact points due to compression action. This assumption 
will produce the following two equations: 

  
!

p1
+!

p2
= 0   (5) 

  
!

Q1
+!

Q2
= 0   (6) 

(2) The relative displacement between the top facing 
plate and the bottom facing plate should be equal at the two 
ends of the segment. The following equation must be satis-
fied according to this assumption 

 
!

2
" !

1
= !

3
" !

4
  (7) 

Eqs. (5)-(7) can be used to derive the solutions of the 
three unknowns 

  
F

c1
, 

  
F

c2
 and  !V . 

Compatibility Equations 

As can be seen from Eqs. (5)-(7), the compatibility con-
ditions are essentially used to calculate the relative dis-
placement at some critical positions. This can be done by 
using Castigliano’s second theorem. To do so, the moment 
diagram of the segment in equilibrium as shown in (Fig. 3) is 
drawn first. For brevity, the bending moment Mt can be di-
vided into several parts:  

  
M
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where 
  
M
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are the moments caused by different loadings. 

The moment diagrams produced by 
  
M

a
V ,!N( ) , 

 
M

b
!V( ) , 

 
M

c
N( )  and 

  
M

d
F

c1
, F

c2( )  are shown in Figs. 
(5a-5d) respectively. It should be noted that the segment is 
always in equilibrium under the external forces as shown in 
Fig. (5a) to Fig. (5d) respectively.  

In Eq. (5), to calculate 
21 pp !+! , the moment diagram 

as shown in (Fig. 6) is generated. In Fig. (6), two unit loads 
are applied at the contact point between the top facing plate 
and the top C-core flange. Then 

  
!
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from the following equation 
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where ( )0,1
d

M  means the moment diagram by letting 
1

1
=

c
F  and 0

2
=

c
F ; E is the elastic modulus of the steel 

material, I is the second moment of area about the mid-plane. 
Substituting Eq. (9) into compatibility condition of Eq. 

(5), the following equation can be obtained,  
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where 
 
! = E

c
I

c
EI  is the ratio of bending stiffness of 

the C-core stiffener and the facing plates about their respec-
tive mid-plane in thickness direction, i.e. for unit width plate 
along x-axis, 

  
I

c
= t

c

3
/ 12  and 

  
I = t

p

3
/ 12 . 

Similarly, the compatibility condition at the contact point 
between the bottom facing plate and the bottom C-core 
flange can be calculated from the following equation 
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where 
  
M

d
0,1( )  is shown in Fig. (7). 

From Eq. (6), the following equation can be obtained 

  

F
c2
=

!

1+ !

3

2l
a

[(
s

2
"

l
a

3
)(

V

2
+#V )+

s

!
(
Vh

c

2h
p

+#V )]   (12) 

Compatibility condition Eq. (7) can be transformed into 
the following format 
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Fig. (5). Moment diagrams of segment. 
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Fig. (6). Moment diagram.  
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Fig. (7). Moment diagram.  
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Similarly, using the moment diagram ( )1
b

M  as shown in 
Fig. (8), the following equation can be obtained as well 
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Substituting the above equation into Eq. (7), the follow-
ing equation can be obtained  
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Fig. (8). Moment diagram ( )1
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From Eqs. (10), (12) and (15), it is easy to find that the 
three unknowns 

  
F

c1
, 

  
F

c2
 and  !V which can be calculated 

once the value of shear force V at two ends of the segment is 
known. The steps for calculating the three unknowns are 
shown in Fig. (9). 
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Fig. (9). Steps to calculate the unknowns. 
 
Shear Deformation in Vertical Direction 

After the unknowns are calculated, the shear deformation 
of the segment shown in Fig. (3) can be analyzed. To calcu-
late a sandwich panel under bending, only the deformation in 
vertical direction is analyzed, which is shown in Fig. (10). 
The shear deformation in vertical direction, Δs, of this seg-
ment is calculated from the following equation: 
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To calculate Δs, a moment diagram  M  shown in Fig. 
(11) is produced. Then Δs is obtained from the following 
equation: 
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Combining Eqs. (10), (12) and (15), the vertical dis-
placement Δs caused by shear action can be calculated from 
the following equation: 
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Fig. (10). Shear deformation of a segment. 
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Fig. (11). Moment diagram. 
 

If a sandwich panel consists of n typical segments, then 
the total vertical displacement of the sandwich panel, ws, is 
calculated from the following equation: 

ss
nw !=            (19) 

As the facing plates and the C-core stiffener in bending 
behave in a plane strain state, the elastic modulus E in all 
above equations should be replaced by

  
E 1! v

2( ) , where v is 
Poisson’s ratio. 

Bending Deformation in Vertical Direction 

For a C-core sandwich panel under bending in weak di-
rection, the bending deformation can be calculated simply 
from the beam theory. However, the second moment of area 
of the C-core sandwich panel in weak direction, Is, is calcu-
lated from the following equation: 

  
I

s
=

1

2
t

p
h

p

2            (20) 

Eq. (20) is obtained based on the assumption that the 
bending moment is sustained by the top and the bottom fac-
ing plates while the C-cores do not bear any bending mo-
ment. 



Prediction on Deflection of C-Core Sandwich Panels The Open Ocean Engineering Journal, 2013, Volume 6    63 

CASE STUDY 

To verify the presented method in calculating C-core 
sandwich panels under bending, two models reported by 
Fung et al. (1996) are used to assess the accuracy of Eqs. 
(18) and (19). The two C-core sandwich models include a 
cantilever beam and a three-point bending panel. The canti-
lever beam is shown in Fig. (12), and it consists of 11 C-
channels. The total length of the beam is 800 mm. For the C-
core sandwich panel shown in Fig. (13), the overall 12 C-
channels are placed between the facing plates. The length 
and width of the panel are 1000 mm and 495 mm respec-
tively. The other detailed dimensions of the cantilever beam 
and the panel are tabulated in (Table 1). For the cantilever 
beam, the top and the bottom facing plates are hinged at A 
and B, and a line load of 0.125 N/mm is applied at the tip (V 
= 0.125). For the panel, it is supported at both ends with a 
span of 1000 mm. The two ends are pinned by just placing 
them on two supporters. A line load is applied at the mid-
span of the panel, and the equivalent concentrated load is 5 
kN (V = 5.05 N/mm).  
 

 
Fig. (12). C-core sandwich cantilever beam. 
 

The overall deflection of the cantilever beam and the 
panel under bending consists of two parts: the deflection 
caused by bending wb and the deflection produced by shear 
ws. For the cantilever beam, the bending deflection can be 
simply calculated from beam theory as follow: 

  

w
b
=

VL
3

3EI
s

  (21) 

where L is the total length of the cantilever beam,  
L = 800 mm. 

Table 1.  Dimensions of a Cantilever Beam and a Panel for C-
Core Sandwich 

Parameter Cantilever Beam Panel 

s (mm) 75.0 82.2 

la (mm) 12.5 23.5 

lb (mm) 12.5 13.0 

hp (mm) 32.4 79.0 

hc (mm) 30.0 73.0 

v 0.3 0.3 

E (N/mm2) 68000 74400 

Ec (N/mm2) 68000 72230 

tp (mm) 1.2 3.0 

tc (mm) 1.2 3.0 

 
For the panel, the bending deflection is calculated from 

the following equation: 

  

w
b
=

VL
3

24EI
s

  (22) 

where L = 1000 mm. 
Using Eqs. (19), the shear deflection ws can also be cal-

culated. For the cantilever beam, the value of n in Eq. (19) is 
10.67, and such value is 5.0 for the panel. The total deflec-
tion of the cantilever beam and the panel, w, is the sum of wb 
and ws. 

Fung et al. (1996) provided the finite element result of 
the cantilever beam and the experimental result of the panel 
in their research work [4]. For comparison, the predicted 
results from present work are tabulated together with their 
results in (Table 2). 

 
Fig. (13). C-core sandwich panel. 



64    The Open Ocean Engineering Journal, 2013, Volume 6 Cui Mingjuan 

Table 2.  Comparison of the Deflection Between Different 
Results 

Parameter Beam Panel 

Overall deflection by experiment (mm) - 13.9 

Overall deflection w by FEM (mm) 6.233 - 

Deflection wS by present method (mm) 5.822 14.36 

Deflection wb by present method (mm) 0.453 0.27 

Overall deflection w by present method (mm) 6.275 14.61 

Shear force ΔV (N/mm) 0.0092 0.34 

Contact force Fc1 (N/mm) 0.107 4.585 

Contact force Fc2 (N/mm) 0.445 10.152 

 
From Table 2, it is found that the deflection of the canti-

lever beam and the panel calculated from this method shows 
a good agreement with the finite element or experimental 
results. A relative error between the results calculated from 
the present method and the results reported by Fung et al. 
(1996) is defined as follow: 

  

e =
w

1
! w

0

w
0

"100%            (23) 

Where w1 is the deflection calculated from the presented 
equations in this study, w0 is the results reported by Fung et 
al. (1996). 

For the cantilever beam and the panel, the values of the 
relative error are %67.0=e  and %0.5=e  respectively. 
The small errors show a good agreement between the theo-
retical results and the finite element or experimental results. 
This means the presented method in this study is reliable and 
accurate for predicting the bending behaviour of C-core 
sandwich panels. 

Additionally, it can also be found from the results in  
(Table 2) that deflection due to shear is very dominant in the 
overall deflection for both the cantilever beam and for the 
panel. The deflection caused by bending contributes only a 
small percentage. Thus, it is important to consider the shear 
deformation for a Core-sandwich panel under bending in its 
weak direction. 

CONCLUSIONS 

The bending behavior of C-core sandwich panel is inves-
tigated in the present study, and an equation for predicting 
the shear deformation of C-core sandwich panel in the weak 

direction is derived. Through case study, the following two 
conclusions can be made: 
1). The presented equation in this study is accurate and reli-

able in calculating the deflection of C-core sandwich 
panel under bending.  

2).  For C-core sandwich panel under bending in weak direc-
tion, the shear deformation is much bigger than the flex-
ural deformation.  
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