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Abstract: Peculiarities of the spatial behaviour of the dislocation lines resulting from scattering of coherent radiation 

from random and fractal rough surfaces are studied. The technique of optical correlation is proposed for diagnostics of 

phase singularities in a complex speckle field by comparing the correlation lengths of amplitude and intensity of the local 

fields. It is shown that the dislocation lines in the field scattered by a fractal surface have fractal properties, while the dis-

location lines scattered off a random surface have no fractal properties. 

INTRODUCTION 

 Scattering of coherent optical radiation by inhomogene-
ous random objects and media leads to formation of complex 
spatial distribution of the field due to interference between 
partial waves with random amplitudes and phases. These 
intensity distributions are usually referred to as speckle-
patterns [1]. The points, where the amplitude of the field 
equals zero and - as a consequence - the phase is undeter-
mined, will appear at the transversal cross-section of such a 
field. These points are referred to as phase singularities, am-
plitude zeroes, or optical vortices. In the vicinity of these 
points, the wave front is of helicoidal form [2]. The spatial 
phase singularities form amplitude zero lines or dislocation 
lines. Please note that the term “zero net” is not true, while 
these lines do not cross in space, as shown later. The formed 
skeleton of the electromagnetic field is in general determined 
by the characteristics of the scattering object and, as so, car-
ries specific information of these objects [3]. 

 Imposing of an off-axis coherent reference wave onto the 
studied field (the interference technique) is a reliable tool for 
diagnostics of amplitude zeroes [4-6]. The interference 
fringes in the vicinity of the amplitude zeros will bifurcate 
and form so-called interference “forklets” which are easily 
diagnosed visually. However, detection of amplitude zeroes 
by the locations of interference forklets in the complex 
speckle fields is complicated and is hardly automated. Fur-
thermore, the forklet is shifted with respect to the point of 
zero amplitude by a half period of the interference pattern. 
Yet, precise location of amplitude zeroes is of high impor-
tance for problems of diagnostics of random objects and sub-
sequent reconstruction of their structure. That is why the 
development of new techniques for locating the phase singu-
larities within fields with the ultimate goal of automating this 
process and studying the phase singularities becomes an im-
portant problem. 

 In this paper, we recommend the optical correlation tech-
nique for diagnostics of amplitude zeroes and for studying  
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their behaviour in fields scattered by random and fractal 
rough surfaces. 

1. COMPUTER SIMULATION AND COMPUTATION 
OF THE FIELD 

 We have carried out computer simulations based on 
physical modelling of optical fields with phase singularities 
scattered by a rough surface, which is the most instructive 
example of light-scattering objects. Two types of surfaces 
have been modelled, viz. random non-fractal (RN) and ran-
dom fractal (RF) [7-9]. The heights of the inhomogeneities 
for the random object have been specified by a random gen-
erator giving a Gaussian distribution. 

 Modelling of the fractal surfaces have been performed 

using the algorithm of successive adding proposed by Voss 

[10]. Following this algorithm, a surface is formed as the 

square net with an edge of unitary length and the number of 

points at the edge equal to   2
n

+ 1,  where n  is the number of 

steps (cycles) of the modelling procedure. Firstly, one fixes 

the height at four angles of the net: 

(0,0) (0,1) (1,0) (1,1) 0.h h h h= = = =  Then, one uses a sub-

program generating independent Gaussian digits  with zero 

mean magnitude and decreasing variance as the number of 

cycles increase: 

  n

2
= (1 / 2)2nH

0

2 ,               (1) 

where 
 0

2
 is the initial variance and  H  is the Hearst index. 

 At the initial stage we obtain one magnitude of  that is 

used as the level of surface at the net centre, (1/2, 1/2). The 

heights at the points with coordinates (0, 1/2), (1/2, 0), (1/2, 

1), (1, 1/2), (1/4, 1/4), (3/4, 1/4), (1/4, 3/4) and (3/4, 3/4) are 

obtained by interpolation, as the arithmetic mean from the 

heights at the nearest points at the diagonals. Furthermore, 

13 independent random numbers 
  n=1

 with dispersion 
 1

2
 

are added to the heights, which are present at the mentioned 

points of the net. This procedure is repeated. The number of 

repetitions is determined by the desired fractal level. Each 

cycle of the algorithm doubles the number of points, where 
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the height is specified diminishing the distance between the 

points by  1 / 2.  The magnitude of the Hearst index is cho-

sen within the interval   0 < H < 1 . RN and RF of sizes 600 x 

600 pixels have been computed. 

 To provide a good approximation between the computer-
modelled surface and the real ones, which can be modelled 
physically, we use the procedure of two-dimensional 
smoothing of the height inhomogeneities by the Gaussian 
law with various dispersions. 

 Relief height probability density function and statistical 

parameters for random and fractal surfaces are presented in 

Fig. (1) as follows: the arithmetic-mean deviation of the pro-

file from the mean surface line, 
  
R

a
,  root-mean-square devia-

tion, 
  
R

q
,  asymmetry coefficient of the distribution,   Sk,  and 

excess coefficient,   Ku.  This example is with respect to the 

maximal interval of the surface inhomogeneity heights (the 

difference between the maximal and minimal heights)  

  
h

max
= 2

 
μm.  In the model experiment, 

  
h

max
 is changed from 

1
 
μm  to 100

 
μm,  which with the given wavelength corre-

sponds to a change of the phase differences from 5 rad to 500 

rad. 

 A rough surface with smooth inhomogeneities can be 

considered as a phase screen with a phase correlation func-

tion 
  

( ) =
0

2
K( ),  whose maximal magnitude is de-

termined by the phase variance of the transparent object, 

0

2 ,  and the lateral behaviour is determined by the correlation 

coefficient, 
  
K( )  [11]. The half-width of the correlation func-

tion gives the correlation length, 
  
l

0

.  The random phase object 

(RPO) model is based on the following assumptions: the object 

is infinitely extended and the lateral correlation length of the 

inhomogeneities is larger than the wavelength, 
  
l

0

> .  

 Infinite extension of the object is provided if all spatial 

frequencies resulting from light scattered by the probing 

beam at the object are present in the registration zone. This 

means that an increase of the object size does not lead to 

qualitative changes of the field within the registration zone. 

Of course, the object size must significantly exceed the cor-

relation length of the object phase. So, the registration zone 

must be within the cone shown in Fig. (2), with the base ra-

dius   a / 2  and height 
  
z

1
= kal

0
,  which is estimated from 

the condition of the diffraction minimum. For 
  
a >> l

0

,  the 

distance 
  
z

1
 corresponds to the far zone with respect to the 

isolated inhomogeneity. 

 The following procedure was implemented for comput-
ing the field scattered by a rough surface. 

 Let us consider a transparent object with a rough surface 

due to this case being simpler for experimental realization. 

 

Fig. (1). Relief, height distribution function and statistical parameters of random (a) and fractal (b) surfaces. 
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The approach for a reflecting object is the same, the only 

difference being in the phase delays of the partial beams: 

  
(x, y) = k(n 1) h(x, y)  for a transparent object and 

  
(x, y) = 2k h(x, y)  for a reflected object, where 

  
h(x, y)  is 

the relief of the rough surface, n  is the refraction index of 

the object with a rough surface, 
  
k = 2  is the wave num-

ber, and  is the wavelength. 

 

Fig. (2). Estimation of the field registration zone within the frame-

work of the RPS model. 

 The amplitude and phase distributions of the field result-
ing from scattering of a plane wave at the phase relief of a 
rough surface can be found using the double Rayleigh-
Sommerfeld diffraction integral [12]: 

  

U ,( ) =
z

i

F x, y( )

R
2 (x, y, z, , )

exp ik R(x, y, z, , ) + (n 1)h(x, y){ } dxdy

,           (2) 

where 
  
F(x, y)  is the aperture function corresponding to the 

amplitude transmittance of a rough surface; 

  
R(x, y, z, , ) = z

2
+ x( )

2

+ ( y )2
 is the distance 

from the object point to the point at the observation plane; z 

is the distance between the surface plane and the observation 

plane; 
  
x, y  and 

 
,  are the Cartesian coordinates at the ob-

ject plane and at the observation plane, respectively (cf. Fig. 

3). 

 

Fig. (3). Formation of the field scattered from a rough surface. 

 The integral (2) can be used for computation of the field 
at arbitrary distances from the object to the observation plane 
[12]. 

 In this study, we replace integration by summation, and 

divide the object and the observation plane in elementary 

cells. For obtaining reliable results, the distance between the 

points in which the object is divided must be less than  / 2.  

Computing the field of the scattered radiation 
  
U ( , ),  we 

find its real and imaginary parts, 
  
ReU ( , )  and 

Im ( , ).U  The complex amplitude of the field, 
  
U ( , ),  

the modulus of amplitude, 
  
A( , ),  the phase, 

 
( , ),  and 

intensity of the resulting field, 
  
I( , ),  are determined from 

the following equations: 

  
U ( , ) = Re U ( , ) + i Im U ( , ) ,            (3) 

  
A(( , )) = Re U ( , )

2

+ Im U ( , )
2

,          (4) 

  

( , ) = arctg
ImU ( , )

ReU ( , )
,             (5) 

  
I( , ) = Re U ( , )

2

+ Im U ( , )
2

.            (6) 

2. BEHAVIOUR OF THE DISLOCATION LINES IN 
THE OPTICAL FIELD 

 An example of the field scattered from a rough surface in 

the far zone with respect to the typical isolated inhomogene-

ity is shown in Fig. (4). The experimental parameters were: 

  
h

max
= 8 

 
μm;  object size – 400x400 

 
μm;  the number of pix-

els in the object – 1200x1200; the field size – 5 5
 
μm;  the 

number of pixels in the field – 1000  1000; z=100
 
μm.  One 

can see from the phase distribution of the field (Fig. 4b) that 

phase singularities are present in the field. These singulari-

ties are at the ends of the lines of phase discontinuities. Fig. 

(4c) also shows the lines 
  
Re U , Im U = 0  (green and yel-

low) whose crossings determine the coordinates of the phase 

singularities [2, 4, 13]. 

 It is traditionally supposed that the lines of the phase sin-
gularities are closed-loops, i.e. pairs of singularities arise and 
annihilate [14-16]. In practice it is not always so. In part, it 
has been shown [17, 18] that the dislocation lines in three-
dimensional space often form knotted and linked phase sin-
gularities. 

 To study the behaviour of the phase singularity lines for 

optical fields, we have developed dedicated computational 

software. To develop the algorithm for determination of the 

phase singularity coordinates, we use the fact that both the 

real and imaginary parts of the complex amplitude must 

change sign from one pixel to the next. Obtaining in such a 

manner the pixel coordinates we compute the field in some 

vicinity  L  of this point changing the distance from the 

object Z with some step z. Furthermore, we determine the 

coordinates of an amplitude zero for the obtained field am-

plitude distribution. If a phase singularity is absent for this 

distribution, one returns to the previous step, doubles the 
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observation area and determines the coordinates of another 

singularity that apparently annihilated with the first singular-

ity. Subsequently, the position of the second singularity is 

searched for in the opposite direction. 

 An example of a set of line phase singularities forming 

the skeleton of a field scattered from the same surface is 

shown in Fig. (5). Points at the singularity lines are deter-

mined with an interval of 20 nm along the z-axis. To im-

prove transparency, the planes separated with steps of 

2
 
μm are drawn in Fig. (5). Crossing of the dislocation lines 

with each plane are shown by points of the same colour. 

 

Fig. (5). Example of the set of line phase singularities forming the 

skeleton of a field scattered at a rough surface. 

 It can be seen from Fig. (5) that the phase singularities 
appear at the boundary field. Formation of two vortices of 
opposite signs is not accompanied, as a rule, by annihilation, 
while the probability of this process is very low, though a 
few closed lines are not excluded [18]. Discontinuities of the 
skeleton lines are absent within the considered region of the 
field, which is seen in the corresponding animation (avi 1). 
Line discontinuities are observed only at the output of the 
considered region. Thus, the phase dislocation skeleton of 
the scattered radiation field is a continuous line within the 
investigated region extending both in longitudinal and in 
transverse directions. 

 An example of a fragment of such line for the fractal 

rough surface is shown in Fig. (6). The experimental pa-

rameters are: maxh =8 
 
μm;  object size – 400x400 

 
μm;  the 

number of pixels in the object – 1200x1200; size of the field 

– 5x5 
 
μm,  the number of pixels in the field – 1000x1000. 

One can track the course of this line in the volume in the 

animation (avi 2). 

Fig. (6). Example of the fragment of the phase singularity skeleton 

for the field scattered by a fractal object. 

 We have analyzed the behaviour of the dislocation lines 

for fields scattered by random and fractal rough surfaces. It 

has been found that the dislocation lines for fractal rough 

surfaces have fractal properties, while such properties are 

absent in the case of random rough surface, as will be dis-

cussed next. The fragments of the dependencies of the trans-

verse shift of the phase dislocation line for passing this line 

along the z-axis with step size z for the fields scattered at 

random and fractal objects are shown in Fig. (7), fragments 

(a) and (b), respectively. 

 The power spectra for the dependency of the transversal 

shift of the phase dislocation line for passing this line along 

z-axis with the step size z for fields scattered by random 

and fractal objects are shown in Fig. (8), fragments (a) and 

(b), respectively. 

 One can ascertain the signatures of fractal behaviour of 
the dislocation line for the field scattered by the fractal sur-
face. This is clearly seen from the behaviour of the log-log 
dependence (Fig. 8 ), where the envelope of the power spec-
trum is almost a straight line. 

 

Fig. (4). Example of the field scattered off a rough surface: intensity distribution (a), phase distribution (b); the lines 
  
Re U , Im U = 0 , whose 

crossings determine the coordinates of the phase singularities (c). 

   
  a    b    c 
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Fig. (7). Fragments of the dependencies of the transversal shift of 

the phase dislocation line for passing this line along z-axis with 

steps z for the fields scattered off fractal (a) and random (b) 
objects. 

 It has been shown [19] that the power spectrum for the 
fractal curve can be represented in the following form: 

  
S( f ) = k / f = kf

2 H 1
.             (7) 

 On the other hand, following Mandelbrot [20], the fractal 
dimension of a two-dimensional surface fractal (curve) is 
determined based on the Hearst index H determining the 
double slope of the logarithmic dependence of the structure 
function in the following manner: 

  
D

f
= 2 H .              (8) 

 The logarithmic dependency of the power spectrum 

  
S( f )  is straight only for the curve corresponding to the frac-

tal object (Fig. 8). The magnitude of the fractal dimension 

for the specific fractal curve in Fig. (7a) is 
 
D

f
=1.52. The 

fractal dimension for the phase singularity lines for various 

heights of inhomogeneities is shown in Fig. (9). One ob-

serves an increase of the fractal dimension saturated at the 

level 
 
D

f
=1.62. 

 

Fig. (8). Power spectra for the dependencies of the transversal shift 

of the phase dislocation line for passing this line along z-axis with 

step size  z  for the fields scattered off fractal (a) and random (b) 
objects. 

 

Fig. (9). Dependency of the fractal dimension for the phase singu-

larity lines for various heights of the inhomogeneities of the fractal 

object. 
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 The behaviour of the fractal dimension of the phase sin-

gularity lines can be described within the framework of the 

notions of the generalized Brownian motion. The phase sin-

gularity lines for small height intervals of the fractal surface 

correspond to the classical Brownian motion ( H =0.5). In-

creasing the height interval leads to larger phase delays be-

tween the scattered waves and, as a consequence, to stronger 

chaostization of the phase fluctuations. This results in a de-

crease of the Hearst index  H < 0.5 and, correspondingly, in 

an increase of the fractal dimension 
  
D

f
> 1.5.  

 Thus, the phase singularity lines for a random field are 
continuous complex lines extending both in longitudinal and 
in transverse directions. The phase singularity lines for the 
field scattered by fractal surfaces possess fractal properties, 
while such properties are absent for scattering off non-fractal 
surfaces. 

 

3. DETERMINATION OF COORDINATES OF AM-
PLITUDE ZEROES AT MONOCHROMATIC 

SPECKLE FIELD 

 At the centre of the optical vortex, the intensity vanishes. 

That is why it seems that measuring of the field intensity is a 

simple and reliable technique for determination of the exact 

vortex coordinates. However, such measurements are not 

unambiguous, since the field contains points where the in-

tensity approaches zero but the phase does not comprise a 

singularity, cf. the intensity distribution 
  
I(x, y)  in Fig. 

(10a). Experimental discrimination of such points based on 

the points of zero amplitude is difficult. For example, the 

coordinate distribution of the intensity minima for the field 

represented in Fig. (10a) is shown in Fig. (10b). 

 Analyzing the phase distribution of this field, 
  

(x, y),  

(Fig. 10c) one can see that the number of intensity minima is 

larger (13) than the number of singular points (9). 

 

Fig. (10). Distributions of the parameters of the field scattered at a rough surface: intensity distribution 
  
I(x, y)  ( ); coordinate distribution of 

intensity minima (b); phase distribution 
  

(x, y)  (c); intensity distribution of the resulting field 
  
U (x, y) + U

0
 (d); distribution of the intensity 

gradient modulus of the resulting field 

  
U (x, y) + U

0

2
 (e); coordinate distribution of the phase singularities 

  
S(x, y) (f). 

   
  a    b     c 

   
  d    e     f 
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 For determination of the amplitude zero coordinates we 

impose a strictly coaxial reference wave 
  
U

0
 to the optical 

field 
  
U (x, y)  (Fig. 10d). The phase delay between the fields 

in this case can be arbitrary. As a result, non-zero gradient of 

intensity arises at the amplitude zero points; while the inten-

sity gradient at the intensity minima points without a phase 

singularity is in practice zero (Fig. 10e). For pixel-by-pixel 

division of the distribution of the resulting field gradient by 

the intensity of the input field one obtains the maximal mag-

nitudes of the distribution: 

  

F(x, y) =

U (x, y) + U
0

2

I(x, y)
. 

 Normalizing this function by its maximal value, 

  

F
n (x, y) =

F(x, y)

F
max

, 

and using the condition 

  

S(x, y) =
1,(F(x, y) + 1)

0,(F(x, y) + < 1)
 

highlights the coordinate distribution of amplitude zeroes 

(Fig. 10f), which strictly coincides with the amplitude zero 

distribution obtained from the phase distribution in Fig. 

(10c). Here  is the experimental noise of the CCD-camera 

or the computing errors during computer simulation. Increas-

ing  results in increasing the area within which the coordi-

nates of the amplitude zeroes lie. 

4. RECOGNITION OF STRONGLY SCATTERING 
OBJECTS 

 The above technique for diagnostics of amplitude zeroes 
is applicable for the model based on infinite random phase 
object as well, especially relevant in the case with a limiting 
aperture. 

 Determining the coordinate distribution of phase singu-
larities is useful in connection with the problem of strongly 
scattering objects. So, in the intensity distribution of a field 
(size 3x3 mm

2
) scattered by a strongly rough surface (size 

1x1 mm
2
) and registered at a distance of 40 mm from the 

 

Fig. (11). Intensity distribution of the field (a), phase distribution (b), and the magnified areas 1-3 of the phase distribution (c-e). 

   
   a      b 

   
  c    d    e 
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object within its geometrical shadow, the contours of the 
objects are not visualized (Fig. 11a). But the phase distribu-
tion of the field contains such information, as it is seen from 
Fig. (11b). A detailed analysis of the phase distribution leads 
to the conclusion that the density of amplitude zeroes for 
various areas of the field is approximately constant, though 
the curvature of the averaged phase front increases for areas 
at larger distances from the central part of the field (Fig. 11c-

e). 

 It has been shown [21] that a plane reference wave coax-
ially imposed onto such field causes a non-uniform spatial-
frequency distribution of the intensity. Holographic registra-
tion of objects placed at a large distance has previously been 
considered [22]. Due to interference addition of various spa-
tial-frequency components of the scattered field with the 
reference wave, the period of modulation within the geomet-
rical shadow of the object is two times larger than the period 
at the edges, which results in reconstruction of the object 
macro-form contoured by speckles of smaller dimensions. 
The object is recognized up to an angular size ~0.05 rad. For 
local measurements of the period of an interference pattern, 
the computer software for processing of an interference pat-
tern is needed, but implementation of such software for 
complex and volume objects is difficult. 

 We have now established that the distribution of the den-
sity of amplitude zeros for the field with a coaxially imposed 

plane reference wave provides visual information on the ob-
ject contours. The intensity- and phase distributions in case 
the intensity of the reference wave equals the average inten-
sity of the object field are shown in Fig. (12a, b), respec-
tively. One observes spatially non-uniform modulation of the 
distributions of intensity and phase of the resulting field with 
a radially decreasing period. This is caused by interference 
between various spatial-frequency components of the scat-
tered field with the reference wave. The phase distributions 
of the resulting field for various areas are shown in Fig. 
(12c-e). The amplitude zeroes are localized at the ends of the 
lines of a phase discontinuity. 

 The density of amplitude zeroes increases for areas away 
from the central part of the field. As a result, the macro-form 
of the studied object manifests itself (Fig. 13). 

 This fact can be illustrated for the model experiment, the 

results of which are represented in Fig. (14), where intensity- 

and phase distributions are shown. The reference wave is 

imposed onto the area of an optical field with a single phase 

singularity (Fig. 14a) under various angles  with respect to 

the direction of propagation of the illuminated wave. The 

angle  is changed from 0.02 rad to 0.2 rad. Increasing the 

angle  results in a decrease of the period of the interfer-

ence pattern and increasing of the number of amplitude ze-

roes for the resulting field, as it is seen in Fig. (14b-e). 

Fig. (12). Intensity distribution of the field with a reference wave (a), phase distribution (b), and magnified areas 1-3 of the phase distribu-

tion (c-e). 

   
   a      b 

   
  c    d    e 
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 Thus, the coordinate distribution of the phase singulari-
ties in the field with coaxially imposed reference wave pro-
vides visualization of strongly scattering objects. 

 

Fig. (13). Amplitude zero distribution. 

5. INVESTIGATION OF THE DEPENDENCE OF THE 
NUMBER OF AMPLITUDE ZEROS IN FIELDS 

SCATTERED FROM SURFACES WITH VARYING 

SURFACE ROUGHNESS 

 In the field scattered from a rough surface with limited 

irradiance width, the average number of amplitude zeroes 

must decrease for increasing distance from the object to the 

observation plane due to the spatial-frequency filtering. But 

we assume that a rough surface is an infinitely extended 

RPO. Let us consider the dependence of the number of am-

plitude zeroes in a field scattered from a rough surface de-

pendent on the position of the registration zone and depend-

ent on the maximal interval of heights, all within the frame-

work of the RPO model. Computer simulation of light scat-

tering of monochromatic radiation has been performed for a 

surface with a Gaussian height distribution and with the fol-

lowing parameters for the experiment: object size – 400x400 

 
μm,  the number of pixels in the object – 1200x1200, field 

size – 10x10 
 
μm,  the number of pixels in the field – 

1000x1000 [7-9]. 

 The coordinates of phase singularities are determined by 

the crossing of the lines   
Re U , Im U = 0  (green and yellow, 

respectively) (Fig. 4c). Subsequently, the total number of 

phase singularities in the analyzed field is counted. The func-

tional dependence between the surface roughness and the 

number of singularities are shown in Fig. (15). These de-

pendencies have two maxima for the maximal interval of 

heights from 2 to 20 
 
μm.  The first maximum is at the focus-

ing zone, and the second one is at the beginning of the 

Fraunhofer with respect to the isolated inhomogeneity zone. 

So, for surfaces with the intervals of heights 2, 5, 10 and 20 

 
μm  we obtain the position of the first maximum at the dis-

tances from the surface at 200, 80, 40 and 15 
 
μm,  respec-

tively. 

 The first maximum is absent for the heights of surface 

inhomogeneities from 30 to 100 
 
μm,  where both the focus-

ing zone and the Fraunhofer zone are very close to the object 

and thus are not well separated. Therefore, as the interval of 

heights of surface inhomogeneities increases, the maximum 

number of phase singularities in the field is saturated and 

reaches an approximate magnitude of 450 for the specified 

size of the area of analysis, here 10x10 
 
μm.  

 

Fig. (14). The model experiment in which a reference wave is imposed onto the area of an optical field with a single phase singularity (a) 
under angles : 0.02 (b); 0.05 (c); 0.1 (d) and 0.2 rad (e). Upper and lower rows show intensity- and phase distributions, respectively. 

     

     

a 

ϕ = 0 rad 

b 

ϕ = 0.02 rad 

c 

ϕ = 0.05 rad 

d 

ϕ = 0.1 rad 

e 

ϕ = 0.2 rad 
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 The maximum number of amplitude zeroes in the scat-
tered field as a function of the heights of the inhomogeneities 
for a rough surface depends on the size of the registration 
zone and may be approximated by the following empirical 
formula: 

  
N

max
= 4L

2 (1 exp(
h

/ ))2 / e
2

,          (9) 

where  L  is the field size;  e  is the Euler number; 
 h

 is the 

dispersion of heights of surface inhomogeneities (root-mean-

square deviation of a profile from a mean surface line), 

which equals 
  
h

max
/ 4.  

 

Fig. (15). The number of phase singularities in the registration zone 

as a function of the distance from the surface for the surface rough-
ness 2-10 

 
μm (a) and 20-100 

 
μm (b). 

 The results of computer simulation compared with the 
above approximation for the maximum number of phase 
singularities in the scattered field from a rough surface is 
shown in Fig. (16). Thus, one can determine the root-mean-
square roughness of a surface by measuring the maximum 
number of phase singularities in the scattered field and using 
Eq. (9). 

6. INVESTIGATION OF THE BEHAVIOUR OF 
PHASE SINGULARITIES BY MEASURING THE 

CORRELATION FUNCTION OF A FIELD 

 The transverse correlation functions of the field and of 
the intensity for an optical field with phase singularities are 
different from each other with respect to the transverse scale. 
The correlation length of the field in this case is larger than 
the correlation length of the intensity. These correlation 
lengths are equal to each other in fields without phase singu-
larities. 

 

Fig. (16). Simulated dependency of the maximum number of phase 

singularities in the field for varying heights of surface inhomogeni-

ties (Mod) and the approximating curve (Appr). 

 Let us write the correlation function for the field in the 
form [12]: 

   
, z( ) = u

1
, z( )u

*

2
, z( ) . 

 The intensity correlation function is of the form: 

   
I

, z( ) = I
1
, z( ) I

2
, z( ) , 

where 
  1 2

is based on the assumption of stationarity. 

The normalized correlation functions for field and intensity 

are given by the correlation coefficients, 
   
K ( , z)  and 

   
K

I
( , z),  respectively, the use of which provides the possi-

bility to compare the transverse scales of fields. 

 We have developed a program for computing the trans-
verse correlation function of intensity and the transverse co-
herence function of a field. The computing procedure con-
sists of: 

A. Determination of the Correlation Length of the Inten-
sity 

 One forms a two-dimensional matrix I, the elements of 
which correspond to the intensity of a field at specified spa-
tial positions. Further, shifting this matrix with respect to 
itself in the transverse direction at some number of steps l, 
one obtains the correlation function: 
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F
cor

l( ) =

I
i, j

I
i+l , j( )

i, j

I
i, j

i, j

I
i+l , j

i, j

. 

 Then, one finds the shift 0l  for which ( )0 0.5
cor

F l >  giv-

ing the half-width of the correlation function, i.e. the correla-

tion length of the field intensity: 

  

R
cor

=

k
0.5 F

cor
l( )

F
cor

l 1( ) 0.5

1+
0.5 F

cor
l( )

F
cor

l 1( ) 0.5

. 

B. Determination of the Field’s Correlation Length 

 One separately adds and subtracts the real and imaginary 

parts of the complex amplitude of a field forming the inten-

sity extrema 
  
I

max
l( )  and 

  
I

min
l( )  for shift l, respectively: 

  

I
min

l( ) = U
i, j

re
U

i+l , j

re

( )
2

+ U
i, j

im
U

i+l , j

im

( )
2

i, j

, 

  

I
max

l( ) = U
i, j

re
+ U

i+l , j

re

( )
2

+ U
i, j

im
+ U

i+l , j

im

( )
2

i, j

. 

 Further, one obtains the coherence function by dividing 

difference of the intensity extrema 
  
I

max
l( ) , 

  
I

min
l( )  by their 

sum: 

  

F
coh

l( ) =
I

max
l( ) I

min
l( )

I
max

l( ) + I
min

l( )
. 

 One finds the step 
  
k

1
 for which 

  
F

coh
(k

1
) > 0.5  and de-

termines the half-width of the correlation function: 

  

R
coh

=

l
0.5 F

coh
l( )

F
coh

l 1( ) 0.5

1+
0.5 F

coh
l( )

F
coh

l 1( ) 0.5

. 

 Study of the dependence of the correlation lengths of the 
field and its intensity in the observation plane has been per-
formed for random and fractal surfaces. 

 The field and intensity correlation coefficients for scatter-

ing from a random rough surface with the interval of heights 

20 
 
μm observed at a distance of 100 

 
μm from an object are 

presented in Fig. (17). 

 One observes considerable difference between the corre-

lation lengths: 0.206
 
μm  and 0.302

 
μm.  Thus, the ratio of 

the correlation lengths of intensity and field, 
 
a = l

I
l , can 

be considered as the criteria of the presence of amplitude 

zeroes for the optical field: if   a < 1,  then zero amplitudes are 

present in the field. 

 The dependencies of the correlation lengths for intensity, 

 
l

I
, and for a field, 

  
l ,  as well as their ratio a  are presented 

in Fig. (18), as function of the distance between the object 

and the observation plane. These correlation lengths are 

equal to each other at the boundary object field. As the dis-

tance from the object to the observation plane increases, the 

field correlation length is almost unchanged, while the inten-

sity correlation length rapidly decreases at the focusing zone 

and reaches a stable magnitude at the Fraunhofer zone. Note, 

for   z > 150
 
μm  both correlation lengths increase due to spa-

tial-frequency filtering, and their ratio is approximately con-

stant. 

 

Fig. (17). Field 
   
K ( , z)  and intensity 

   
K

I
( , z)  correlation coef-

ficients of a field scattered from a random rough surface with the 
interval of heights 20 ì m and probed at a distance of 100 ì m from 

the object. 

 

Fig. (18). Dependencies of the correlation lengths of intensity, 

  
l

I
, and of a field, 

  
l , and their ratio,   a, on the distance to the regis-

tration zone for a field scattered at random rough surface with the 
interval of heights 20 

 
μm.  

 For larger intervals of heights for a rough surface, the 
behaviour of the correlation lengths of the scattered field is 
similar (Fig. 19). 

 For a fractal surface, the ratio of the correlation lengths 

 
a = l

I
l approximately stays constant as the distance from 
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an object to the registration plane increases (Fig. 20). The 

correlation lengths increase much more monotonically with 

no extrema. This is explained by the absence of a clearly 

pronounced focusing zone in the field scattered from a frac-

tal rough surface. 

 In practice, the ratio of the correlation lengths is saturated 
in the far field at the level 0.66-0.70 for all intervals of 
heights of a rough surface. This means that the use of the 
ratio of the correlation lengths with diagnostic purposes is 
not convenient. However, knowing the field correlation 
length, one can estimate the number of speckles (inhomoge-
neities of intensity) and number of inhomogeneities of a field 
for various zones of registrations. 

 

Fig. (19). Dependencies of the correlation lengths of intensity, 

  
l

I
, and field, 

  
l , and their ratio,   a, on the registration zone for a 

field scattered from a random rough surface with the intervals of 
heights 30 

 
μm (a) and 50

 
μm (b). 

 Obviously, the number of amplitude zeroes and the num-
ber of speckles in the field are interconnected. It is believed 
that in a random field the number of speckles equals the 
number of phase singularities [4, 5]. We will consider the 
correlation between the number of speckles and the number 
of phase singularities in a field scattered from a rough sur-

face in more details, within the framework of the RPO 
model. 

 Generally, the number of speckles in a field attains its 

maximum when the speckle size is minimum, i.e. in the case 

when speckles are formed by the oppositely directed beams. 

In this case, the size of a speckle does not exceed / 2.  For 

 
= .6328μm

 
the smallest speckle size is 

 
= 0.315μm.  To 

count the number of speckles, one must fill the observation 

area with speckles. The densest filling takes place in the case 

when the contours of speckles are of hexagonal form. In this 

case, an area of the field 
 

2 3 / 2  corresponds to the 

speckle with area 
 

2 / 4, and the ratio of these areas deter-

mines the coefficient of filling of the area of observation by 

speckles. 

 

Fig. (20). Dependencies of the correlation lengths for intensity, 

  
l

I
, and for the field, 

  
l , and their ratio, ,a as a function of the dis-

tance to the registration zone for a field scattered at fractal rough 
surface with the intervals of heights 20

 
μm.  

 The maximum number of speckles, 
  
N

max
, that can be 

placed in the area of the field ,S 10x10 
 
μm2

 is determined 

by the ratio 

  

N
max

=
c S

s
min

, 

where  is the coefficient of filling of an area by speckles, 

  
s

min
 is the minimum area of a speckle, and this number will 

equal 1155. 

 Computer simulation of scattering of optical radiation 

from a rough surface gives the maximum number of speckles 

for the interval of heights if inhomogeneities of a rough sur-

face 100 
 
μm  (when one already observes saturation of the 

dependence of the number of speckles on the interval of 

heights of inhomogeneities) equal to 452. This number of 

speckles is much smaller than predicted by theory, even for 

the highest density of speckles. This is connected with the 

fact that the role of low spatial frequencies in formation of a 

speckle field is much larger than the role of high spatial fre-

quencies, while the intensity of a field is proportional to 
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1/R
2
, where  R  is the distance from an object point to the 

point of observation. 

 Fig. (21) shows the number of computed amplitude ze-

roes in the observation plane for a size of 40x40
 
μm2

. The 

correlation length of the scattered intensity is
 
2μm.  

 In the far field with respect to an isolated inhomogeneity 
of a rough surface one observes almost twice the number of 
amplitude zeroes than the number of computed speckles. 
Such a correlation of the number of speckles and the num-
bers of amplitude zeroes is possible in the case of hexagonal 
form of speckles. Though, as the registration zone is further 
displaced from the object, both the number of speckles and 
the number of amplitude zeros decrease, so that in the far 
field with respect to the entire object, these numbers ap-
proach each other. 

 

Fig. (21). The dependency of the number of amplitude zeroes in the 

registration plane determined for a model experiment, and the com-

puted number of speckles found from the correlation length of in-

tensity for a random rough surface with the interval of heights 2 

 
μm.  

 For a fractal object with height intervals of 2 
 
μm,  the 

dependency of the number of speckles in the registration 

zone within an area of 40x40 
 
μm2

 are similar to the depend-

ency obtained for a random rough surface (cf. Fig. 22). 

 

Fig. (22). The dependency of the number of amplitude zeroes in the 

registration plane determined in a model experiment and the com-

puted number of speckles found from the intensity correlation 

length for a fractal rough surface with the interval of heights equal 
to 2 

 
μm.  

 The results of determination of the maximal number of 

phase singularities, 
  
N

max
,  and the maximal number of 

speckles estimated from the intensity distribution, 
  
N

i
,  for 

random rough surfaces with the intervals of heights 

  
h

max
from 5 to 100

 
μm  for a field area of 10x10 

 
μm2

 are 

presented in Table 1. One observes the correlation between 

the maximal number of phase singularities and the maximal 

number of speckles, in correspondence with the results pre-

sented in Fig. (21). 

Table 1. Determination of the Coordinates of Phase Singu-

larities of a Field 

 

maxh  
I

l  maxN  
i

N  

5 0.47 65 36 

10 0.3 144 89 

20 0.215 280 172 

30 0.18 361 246 

50 0.17 432 275 

100 0.17 451 275 

 

 Using position-sensitive detectors and modern computer 
techniques facilitates an experimental algorithm for deter-
mining the coordinates of phase singularities for optical 
fields. This technique consists in the determination of the 
intensity correlation function for local areas of size several 
pixels (minimum two), followed by computation of the ratio 
of their correlation lengths, and pixel-by-pixel connection of 
these parameters for the entire field. 

 The transverse correlation functions of a field and inten-
sity can be determined experimentally. Correlation functions 
of a local field are determined for areas that are much 
smaller than the integral correlation length of the entire field. 
This means that the number of amplitude zeroes within one 
analyzed area can not exceed unity. 

 If an amplitude zero is absent, then the correlation 
lengths for intensity and for the field are equal. When an 
amplitude zero is present, then the correlation lengths of am-
plitude and intensity for this area are considerably different. 
This is the criterion for estimation of the presence of an am-
plitude zero within the analyzed area of the field. 

 The experimental steps for determining the coordinate 
distribution of phase singularities in the field are: 

• the intensity distribution is registered by a CCD-
camera; 

• the maximal and minimal magnitudes of intensity of 
the resulting field are registered for shifts setting at 
the transverse shift interferometer – 1, 2, 3, …, N pix-
els; 

0 1000 2000 3000
0

100

200

300

400

N
um

be
r

z, microns

 zeroes
 speckles

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

600

N
um

be
r

z, microns

 speckles
 zeroes



42    The Open Optics Journal, 2009, Volume 3 Angelsky et al. 

• the intensity- and field correlation functions for local 
areas of size NxN pixels are computed with step size 
of one pixel; 

• the ratio of the correlation lengths being less than 0.8 
means that an amplitude zero is present within the 
analyzed area. 

 Let us consider the procedure for determining the coordi-
nates of amplitude zeroes by analyzing the magnitudes of the 
correlation lengths of intensity and a field for local areas of a 
field. 

 The correlation function and coherence function for the 

field are computed for each pixel with coordinates 
  

x, y( )  for 

specified shifts
   
0 k 3.  

 The intensity correlation function is determined by the 
following equation: 

  

F
cor

l( )
x ,y

=

I
x+k ,y+k

I
x+k+l ,y+k( )

k

I
x+k ,y+k

k

I
x+k+l ,y+k

k

, 

where 
  
I

x ,y
 is the intensity at 

  
x, y( ).  Further, one finds a 

half-width of the corresponding intensity correlation func-

tion: 

  

R
cor

x, y( ) =

k

0.5 F
cor

k( )
x ,y

F
cor

k 1( )
x ,y

0.5

1+

0.5 F
cor

k( )
x ,y

F
cor

k 1( )
x ,y

0.5

. 

 For the same pixel as for the initial point one writes the 

minimal and maximal magnitudes of intensity, 
  
I

min
x, y( )  

and 
  
I

max
x, y( )  resulting from interference of the field of this 

pixel with one of the adjacent pixel  k (for the transverse 

shifts setting at the shift interferometer – 1, 2, 3,.., N pixels). 

 One obtains the transverse coherence function for the 

next three pixels. Then, one finds the coherence function by 

dividing the difference of 
  
I

min
x, y( )  and

  
I

max
x, y( )  by their 

sum: 

  

F
coh

l( )
x ,y

=
I

max
x + k + l, y + k( ) I

min
x + k + l, y + k( )

I
max

x + k + l, y + k( ) + I
min

x + k + l, y + k( )k

. 

 Further, one determines the half-width of the obtained 
function: 

  

R
coh

x, y( ) =

k

0.5 F
coh

k( )
x ,y

F
coh

k 1( )
x ,y

0.5

1+

0.5 F
coh

k( )
x ,y

F
coh

k 1( )
x ,y

0.5

. 

 Estimating the ratio of the correlation length of inten-

sity,
  
R

cor
x, y( ) ,  to the correlation length of a field, 

  
R

coh
x, y( ) ,  one obtains a pixel-by-pixel distribution of the 

phase singularities of the field. 

 The intensity distribution of a field, including the coordi-
nates of phase singularities determined from the behaviour of 
the local correlation length of field and intensity, is presented 
in Fig. (23). 

 

Fig. (23). Intensity distribution of a field with the coordinates of 

phase singularities determined from the behaviour of local correla-

tion length of field and intensity. 

CONCLUSIONS 

 The results of studying the peculiarities of the behaviour 
of amplitude zeros for fields scattered by fractal and random 
surfaces have been presented. It has been shown that the 
phase singularity lines are continuous lines, which in prac-
tice are not self-closing. Moreover, it has been shown that 
the phase singularity lines in the field scattered at fractal 
surfaces properties possess fractal properties; the phase sin-
gularity lines in the field scattered off non-fractal surfaces do 
not possess such properties. The optical correlation tech-
nique for diagnostics of phase singularities for complex 
speckle fields by comparing the correlation lengths of ampli-
tude and intensity of the local fields has been proposed. 
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