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Abstract: Evidence shows bidirectional crosstalk between neurons and glia, suggesting that glia play an active role in 

synaptic plasticity leading to chronic pain. Importantly, gliosis has been implicated in the development and maintenance 

of hyperalgesia or allodynia following chronic inflammation or nerve injury. Anandamide (AEA) and 2-

arachidonoylglycerol (2-AG), or the lipoamino acid N-arachydonoyldopamine (NADA), are fatty acid derivative neuro-

transmitters, named endocannabinoids (eCBs). These perform several biological actions, via the activation of cannabinoid 

type 1 and 2 (CB1/CB2) receptors belonging to the G-protein-coupled receptor family. The eCBs are produced on de-

mand by neurons or glial cells and it has been suggested that they might be involved in the crosstalk between astrocytes, 

microglia, oligodendrocytes and neurons. In chronic pain, the modified glial or neural activity also seems to be associated 

with changes in eCB levels in pain processing areas either in the spinal cord or the brain. The activation of the eCB sys-

tem in microglia or astrocytes could be crucial in modulating axonal growth and synaptogenesis at the base of neural phe-

notypic changes. Furthermore, changes in eCBs levels have been suggested to affect the destiny of cells: death or survival 

may depend on a specific pain condition. Thus, although eCBs are emerging as neurotransmitters responsible for the regu-

lation of glia-neuron crosstalk in chronic pain, the precise mechanisms leading to eCB production, the origin and the time-

course of eCB release, the eCB release switch from one cell type to the other and their movement or catabolism across the 

glial or neural cell membrane nevertheless still remain unknown. These issues together with alternative eCB targets will 

be addressed in the current review. 
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INTRODUCTION 

 Neuropathic pain is a debilitating condition which has a 
serious impact on the quality of life. It is a devastating and 
difficult-to-manage consequence of injury to the peripheral 
or central nervous systems (PNS or CNS) that results in the 
enhanced transmission of pain messages [1, 2]. Conse-
quently, noxious stimuli are perceived as more painful (hy-
peralgesia), whereas normal, harmless stimuli elicit pain 
(allodynia). Therefore, neuropathic pain constitutes a real 
dysfunction of the nervous system that is characterized by as 
yet poorly-defined neurophysiological changes. Very few 
pharmacological strategies exist to treat neuropathic pain, 
which is very often refractory even to morphine and its de-
rivatives, possibly because it is associated with plastic rear-
rangements of nociceptive pathways at both spinal and su-
praspinal level.  

 Among the pharmacological strategies that have been 
suggested for neuropathic pain management, the activation 
of cannabinoid receptors, either directly by natural or syn-
thetic agonists, or indirectly by selective inhibitors of the 
inactivation of endogenous cannabinoids receptor ligands 
(endocannabinoids), is widely supported by recent pre-
clinical studies in animal models [3-5]. Evidence shows that 
cannabinoid receptor agonists can be effective in several  
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animal models of neuropathic pain [3, 6-10]. However, in 
spite of evidence that neuropathic pain leads to increased 
endocannabinoid levels at spinal and supraspinal sites [11], 
the role of endocannabinoids within the brain “pain matrix” 
need to be further clarified.  

 Until recently, pain had been thought to arise primarily 
from the dysfunction of neurons. Recent evidence, however, 
suggests that neuroimmune changes might contribute to pain 
following injury to the nervous system as well. Glial cells 
involved in mediating inflammatory processes are resident 
within the spinal cord and include both astroglia and micro-
glia, the latter of which has been directly implicated in the 
initiation of peripheral injury-induced pain [12]. Moreover, 
microglia have been shown to express cannabinoid receptors 
[13-16], and to produce and inactivate endocannabinoids 
[15, 17, 18]. 

THE ENDOCANNABINOID SYSTEM AND PATHO-
LOGICAL PAIN 

 Among the several neurotransmitters that have been sug-
gested to be involved in neuropathic pain, endocannabinoids 
have been strongly highlighted and heavily investigated over 
the last decade. The endocannabinoid system consists of the 
G-protein coupled cannabinoid (CB) receptors, CB1 and 
CB2, the endogenous ligand anandamide (arachidonoyletha-
nolamide, AEA) and 2-arachidonoylglycerol (2-AG), and 
their synthetic and metabolic machinery [19]. The CB1 re-
ceptor is localized preferentially in several brain areas such 
as periaqueductal grey (PAG), cerebellum, hippocampus, 
cortex). Despite the general opinion which had up until re-
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cently believed CB2 receptors to be exclusively expressed in 
peripheral tissues and inflammatory cells [20-23], there is 
now convincing evidence to suggest that they are also ex-
pressed in the CNS [24]. Indeed, an increased expression of 
CB2 receptors has been shown in microglial cells, as well as 
in astrocytes, in neuropathic pain conditions [25, 26]. It has 
been underlined that CB2 receptors play a crucial role in the 
regulation of central immune responses during neuropathic 
pain [27, 28]. Besides the well characterized CB1 and CB2 
receptors, several reports have shown the existence of other 
receptors that represent potential targets to be included in the 
endocannabinoid system (eCBSS). Thus, the orphan G pro-
tein-coupled receptor 55 (also called GPR55) could represent 
a third CB receptor [29-32]. However, studies performed so 
far remain inconsistent and further efforts are required to 
link GPR55 to the eCBSS. Another receptor identified that 
could belong to the eCBSS is the abnormal-cannabidiol 
(abn-CBD) receptor (also known as anandamide receptor) 
[33]. This receptor, also found in microglial cells, is acti-
vated by abn-CBD while cannabidiol (CBD) antagonizes it 
[33-35, 15]. The endocannabinoid system includes lipid 
transmitters serving as endogenous ligands for the cannabi-
noid receptors, and the enzymes for their biosynthesis and 
inactivation. The first endocannabinoid to be discovered was 
the N-arachidonoyl-ethanolamine (AEA), also called anan-
damide from the Sanskrit “internal bliss” [36]. This finding 
was followed by the observation that an already known en-
dogenous metabolite, 2-arachidonoyl-glycerol (2-AG), also 
exhibits high affinity with CB1 and CB2 receptors [36, 37]. 
Anandamide, which is synthesized by a phospholipase D 
(NAPE-PLD) specific for N-acylphosphatidylethanolamine 
binds both CB1 and CB2 receptors and behaves mostly as a 
partial agonist [38-40]. Biological inactivation of anan-
damide occurs through a rapid uptake followed by intracellu-
lar hydrolysis mediated by the enzyme fatty acid amide hy-
drolase (FAAH) [41]. 2-AG, which is more abundant than 
anandamide in the brain [42], binds to CB1 and CB2 with a 
lower affinity than anandamide but behaves like a full ago-
nist since it shows higher intrinsic activity [37, 43, 42, 15]. 
2-AG is synthesized by the enzyme diacylglycerol lipase 
(DGL) in a Ca

2+
-dependent pathway [44, 45]. Other alterna-

tive mechanisms of 2-AG synthesis have also been proposed 
[46]. Biological inactivation occurs through uptake followed 
by hydrolysis mediated by the enzyme monoacylglycerol 
lipase (MGL). Other enzymes have been indicated for 2-AG 
metabolism, including cyclooxygenases (COXs), lipooxy-
genases (LOXs) and FAAH [47, 48].  

 The first evidence of the analgesic properties of cannabis 
was observed in 1899 by Ernest Dixon [49]. In the last few 
decades, scientists have focused their attention on the endo-
cannabinoid system in the treatment of chronic and neuro-
pathic pain. Indeed an increasing amount of evidence shows 
that the cannabinoid receptor system is involved in the 
pathogenesis of various pain states. CB1 receptor mediated 
analgesia is associated with adverse psychoactive effects 
such as sedation, dependence, cognitive impairment and 
psychotic-like behaviour [50, 51], due to the overall activa-
tion of this ubiquitous receptor. However, CB2 receptor 
stimulation is also effective in alleviating inflammatory [52-
54, 10] and neuropathic pain [25, 55-59]. Intriguingly, the 
CB2-mediated antinociceptive effects seem devoid of any 
central action (which are CB1 receptor-mediated), and are 

likely mediated by several mechanisms, and peripheral sites 
of action of CB2 agonists in both inflammatory and neuro-
pathic pain models have been recognized [52, 53, 55, 56]. 
Among these, a peripheral release of endogenous opioids 
from keratinocytes has also been shown [55, 56]. Con-
versely, other evidence shows that the release of endogenous 
opioids is not involved in CB2 agonist-mediated analgesia in 
a model of neuropathic pain, [57]. On the other hand, more 
recent studies have shown the involvement of CB2 receptors 
within the central nervous system in the analgesic effect of 
CB2 agonists in neuropathic pain models [60, 61]. These 
data are supported by reports demonstrating an up-regulation 
of CB2 receptor mRNA and/or protein in the spinal cord [25, 
61, 28] in neuropathic pain conditions. In these studies, an 
up-regulation of CB2 receptors has been found on the acti-
vated microglia in the ipsilateral dorsal horn of spinal cord. 
Another strategy for obtaining analgesia while avoiding the 
central psychotic effect of cannabinoids is to target the EC 
turnover such as that of AEA [36], 2-AG [37, 42] and 
NADA [62, 63], whose increase inhibits nociception by act-
ing on CB1 and CB2 receptors [4]. This approach would 
have the benefit of cannabinoid receptor activation at sites of 
high EC turnover without interfering with all CB1 receptors 
which can cause side effects. Indeed, endocannabinoids are 
synthesized on demand [64] in certain patho-physiological 
conditions including inflammatory and neuropathic pain [5, 
65]. In neuropathic pain, changes in the levels of ECs and 
related compounds have been reported in several regions of 
ascending and descending pain pathways. Jhaveri and cowork-
ers (2007) have shown that the levels of AEA and another 
endovanilloid compound N-oleoylethanolamine (OEA), but 
not of 2-AG, were higher in the ipsilateral hindpaw of neu-
ropathic rats, compared to the ipsilateral hindpaw of sham 
rats. Similarly, levels of AEA and 2AG, but not palmitoyl-
tanolamide PEA, were increased in the spinal cord, PAG and 
rostral ventromedial medulla (RVM) in neuropathic rats [11]. 
In the dorsal raphe nucleus, which has reciprocal projections 
to the PAG, levels of AEA, but not 2-AG, increased in the 
chronic constriction injury model of neuropathic pain [8]. 
Collectively, these studies provided evidence that the endo-
cannabinoid system may be a suitable target for neuropathic 
pain treatment. 

NEURON-MICROGLIA AND PATHOLOGICAL 
PAIN: A PUZZLING NETWORK  

 Spinal cord microglial cells are the earlier-activated cell 
type in response to peripheral inflammation or nerve injury. 
In physiological conditions, these cells show a “resting” 
phenotype which is believed to be responsible for the con-
tinuous immune surveillance of their milieu [66, 67]. After 
peripheral nerve injury “resting” microglia quickly change 
their phenotype and function, a process identified as “micro-
glial activation” (Fig. 1). This activation process consists of 
distinct cellular functions aimed at repairing damaged neural 
cells and eliminating debris from the damaged area [68]. 
Damaged cells release chemo-attractant molecules that both 
increase the motility (i.e. chemokinesis) and stimulate the 
migration (i.e. chemotaxis) of microglia, the combination of 
which recruits the microglia much closer to the damaged 
cells [69]. Microglial activation in the spinal cord can be 
promoted by sciatic nerve ligation [70], spinal nerve ligation 
[71], sciatic nerve inflammation [72], traumatic nerve tran-
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section [28] and autoimmune diseases such as autoimmune 
encephalomyelitis and neuritis (EAE, EAN) [73, 74]. Once 
microglia become activated, they can exert both pro-
inflammatory or anti-inflammatory, neuroprotective func-
tions depending on the combination of the stimulation of 
several receptors and the expression of specific genes [68, 
18]. Thus, the activation of microglia following a peripheral 
injury can be considered as an adaptation to tissue stress and 
malfunction [75] that contributes to the development and 
subsequent maintenance of chronic pain [61, 76]. Spinal mi-
croglia respond quickly to injury, up-regulating cell surface 
proteins and increasing synthesis and the release of inflam-
matory mediators, including cytokines and proteases that can 
sensitize neurons, thereby establishing positive feedback 
which helps to facilitate nociceptive signalling [77]. Accord-
ingly, the inhibition of microglial targets can reduce hyper-
sensitivity in neuropathic pain states. 

 The signals responsible for neuronal-microglial and/or 
astrocytic communication are being extensively investigated 
as they may represent new targets for chronic pain manage-
ment. The first candidates are substances released by acti-
vated nociceptive primary afferent fibers, such as glutamate 
and substance P (SP), which are able to activate microglia 
[78, 79]. Glutamate activates microglia by stimulating 
NMDA channels [79], although other mechanisms involving 
metabotropic glutamate receptors (mGluRs) cannot be ruled 
out since they appear expressed on microglial cells [80-82]. 
SP acts mostly by activating microglial neurokinin-1 (NK1) 
receptors. Many mechanisms have been proposed for neu-
ron-microglia crosstalk. Among these, the fractalkine (FKN, 
CX3CL1), a member of CX3C class of chemokines and its 
receptor CX3CR1 have been extensively investigated [83]. 
FKN is constitutively expressed by spinal cord and sensory 
neurons in the dorsal root ganglia (DRGs) [84-86], while 
CX3CR1 is exclusively expressed by microglial cells [85] 
and, after peripheral nerve injury it is widely up-regulated in 
microglia [85]. FKN produces nociceptive behaviour by ac-
tivating CX3CR1 on microglia and p38 mitogen-activated 
protein kinase (MAPK)-mediated pathways [86, 87]. A 
mechanism for a cleavage of neuronal membrane-bound 
FKN has been elegantly demonstrated [86]. Briefly, neuronal 
FKN is cleaved by cathepsin S (CatS), a proteolitic enzyme, 
which is expressed and released by activated microglia [86]. 
Same authors have demonstrated that the liberation of frac-
talkines in the dorsal horn requires CatS to be released from 
microglia [88]. However, the CX3CL1/CX3CR1 pathway, 

which represents a pro-nociceptive non adaptive process 
seems to perform a neuroprotective role in neurodegenera-
tive diseases [89]. Another candidate for neuronal-microglial 
crosstalk is ATP, which is produced by neurons as well as by 
glial cells. ATP exerts its effect by activating the purinergic 
ionotropic P2X4 and P2X7, as well as the metabotropic 
P2Y6 and P2Y12 receptors on microglia [90]. P2X4 activa-
tion seems to be involved in the development of neuropathic 
pain by inducing the release of brain derived neurotrophic 
factor (BDNF) [91, 92]. P2X4 receptor activation occurs ear-
lier than that of P2X7 channel due to the greater affinity of 
ATP to bind to P2X4 receptor. Indeed, P2X7 is involved in 
the maintenance of microglial activation. The P2X7 receptor 
appears to be a functionally unique ionotropic receptor 
among the P2X receptor family since its activation is able to 
stimulate the release of the pro-inflammatory cytokine inter-
leukin-1  (IL-1 ), as well as a variety of other proinflam-
matory cytokines. Recent studies have revealed that P2Y12R 
is also crucial in neuropathic pain induction and mainte-
nance. It has been found that the expression of P2Y12R 
mRNA and protein are markedly enhanced in the spinal cord 
ipsilaterally to spinal nerve injury [93] or to sciatic nerve 
partial ligation [94]. The cellular location of this receptor in 
the spinal cord was heavily restricted to microglia and re-
cently has been purported to participate in the motility of 
microglial cell bodies and processes [95]. It is therefore pos-
sible that P2Y12R activity in microglia affects their ability to 
extend the branched processes toward neighboring neurons 
of the pain matrix, which, in turn, may interfere with micro-
glia-neuron communications. A metabotropic adenosine re-
ceptor A2A has also been shown to be involved in the micro-
glial process retraction occurring during microglial activa-
tion [96]. The up-regulation of Gs protein-coupled adenosine 
A2A receptor on activated microglia seems to occur concomi-
tantly to down regulation of Gi-protein coupled P2Y12 re-
ceptor [96]. Furthermore, the adenosine A1 and A3 receptors 
have been found to be expressed in microglial cells [97, 98]. 
Another chemokine implicated in neuron-glia communica-
tion is the chemokine (C-C motif) ligand 2 (CCL2, MCP-1), 
which is de novo expressed by sensory neurons as early as 
the day after peripheral injury [99]. Once released, CCL2 
activates microglia via interaction with CCR2 receptors, and, 
accordingly, mice lacking CCR2 receptors display a reduc-
tion in nerve injury-induced tactile allodynia [100]. The ac-
tion of the monocyte chemoattractant protein 1 (MCP-1) at 
the spinal level has also been demonstrated by the intrathecal 

 

 

 

 

 

 

Fig. (1). A confocal image of resting microglia labeled with Iba-1 (A). Single activated microglial cell modified from Luongo et al., 2009 

(B). 
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administration of an MCP-1 neutralizing antibody, which 
proved able to inhibit neuropathic pain symptoms [99]. 

ROLE OF ENDOCANNABINOIDS IN NEURON-GLIA 
INTERACTIONS 

 In the complex scenario of neuropathic pain, which in-
volves microglial cell-induced synaptic plasticity, the endo-
cannabinoid system may represent an interesting target for 
modulating microglia-neuron communication. Indeed, endo-
cannabinoids could be released on demand by neurons as 
well as by astrocytes and microglial cells [101, 15]. It should 
be emphasized that microglial cells produce 20-fold higher 
amounts of endocannabinoids (expressed in picomoles per 
nanogram of protein) compared to neurons and astrocytes 
[15]. In particular, the role of 2-AG in microglial modulation 
has been investigated [15, 17, 28]. The increased level of 2-
AG after noxious stimulation has been studied at spinal and 
supraspinal level in different models of chronic pain [11, 
65]. Moreover, analgesic and neuroprotective effects of 2-
AG have been reported in several models of brain injury 
[102, 5]. A recent study has highlighted the neuroprotective 
effect of 2-AG on the excitotoxic lesion on dentate gyrus 
granule cells via abnormal-cannabidiol-sensitive receptors on 
microglial cells [103]. It has been demonstrated that the pro-
duction of 2-AG in microglial cells is a Ca

2+
-dependent phe-

nomenon that involves P2X7 receptor activation [104]. Im-
portantly, the EAE model of multiple sclerosis does not lead 
to an increase in 2-AG [105], although the microglial CB2 
receptors are functionally active [106]. This lack of 2-AG 
increase in the EAE has been explained by the abnormal 
release of interferon-gamma (IFN ) due to a T cell “inva-
sion” of the CNS which, in turn, impairs the functionality of 
P2X7 [105]. Intriguingly, 2-AG seems to play a role in the 
regulation of microglia proliferation and migration. Indeed, 
it has been shown that microglial cells are able to synthesize 
this endocannabinoid which increases their proliferation 
through the activation of CB2 receptors in vitro [17]. 
Moreover, 2-AG also stimulates the migration of microglial 
cells towards dying cells. Once again the CB2 receptors, as 
well as the abn-CBD receptors on microglia seem to be in-
volved in these mechanisms [15]. Furthermore the role of the 
endocannabinoids on microglia has been investigated. 
Navarrete and coworkers have recently shown that NADA is 
a potent inhibitor of prostaglandin E2 (PGE2) synthesis and 
of free radical formation in primary lipopolysaccharide 
(LPS) stimulated microglial cells [107]. Consistently, anan-
damide is capable of enhancing the anti-inflammatory cyto-
kine interleukin 10 (IL-10) and regulating other cytokine 
production such as IL-12 and IL-23 in activated microglia by 
targeting CB(2) receptors [108, 109].  

PATHOLOGICAL OR PROTECTIVE: A HAMLETI-
CAL QUESTION! 

 The pathological and protective roles of glia have re-
cently been reviewed by Milligan and Watkins [76]. A re-
cent study also defined the markers of two distinct pheno-
types of microglia, pro-inflammatory (M1) and anti-
inflammatory (M2) [110]. This evidence provides new tools 
for investigating the contribution of the immune response in 
neuropathic pain. 

Recent reports, focused on understanding the mechanisms 
involved in neurodegenerative diseases, have suggested that 

microglia and astrocytes can also be neuroprotective by re-
leasing several factors that have been demonstrated to have 
sensitizing actions in neuropathic pain conditions [111]. On 
this subject, we have already mentioned that the same pro-
nociceptive pathway CX3CL1/CX3CR1 is neuroprotective 
in neurodegenerative diseases [89]. Both microglia and as-
trocytes can recognize ‘danger signals’ and can remove the 
pathogen or cellular debris through phagocytosis, which also 
represents the ongoing activity of these cells in healthy con-
ditions. Indeed, astrocytes and microglia express pattern-
recognition receptors that recognize surface proteins, thus 
priming the phagocytosis of ‘altered’ cells. This process 
seems to be associated with a down-regulation of pro-
inflammatory cytokines to reduce damage to neighboring 
healthy tissue [112]. On this subject, a study with transgenic 
TNF -knockout mice demonstrated that microglial TNF , a 
known pro-inflammatory cytokine, was critical in the resolu-
tion of an inflammatory response and excitotoxic cell death. 
In addition, while the lack of TNF  reduced microglial acti-
vation within 6 hours, an exaggerated microglial activation 
was measured 4 days later [113]. These data have high-
lighted not only that a “dark side” of the glia exists, but that 
in some cases, preventing glial activation in the CNS is un-
desirable as it could amplify or create pathological pain. 
Thus, stimulating the anti-inflammatory features of glial ac-
tivation represents a more powerful approach to controlling 
pain signaling than exclusively preventing glial activation. 
With this purpose cannabinoids are being investigated as 
therapeutic targets for inflammatory neurodegenerative dis-
eases and neuropathic pain for their immunomodulatory 
properties [27, 28]. , Discrepancies among different studies 
have however highlighted that further efforts are necessary 
to be able to include the cannabinoid system in the neuron-
glia crosstalk during the neuropathic pain establishment. 
Indeed, evidence that endocannabinoids stimulate the prolif-
eration and migration of microglia may appear in contrast 
with their anti-inflammatory properties. Indeed, it is worth 
noting that another anti-inflammatory endogenous lipid me-
diator, palmitoylethanolamide (PEA), which exerts its action 
mostly by activating the peroxisome proliferator-activated 
receptor alpha (PPAR ) [52], is also able to potentiate mi-
croglial cell motility [114]. Several studies in recent years 
have focused on CB2 receptor activation in different neuro-
pathic pain models [27, 28, 115, 19]. Such studies have 
highlighted the role of CB2 receptor in the modulation of 
immune response involved in the development of neuro-
pathic pain. CB2 receptor activation exerts antiallodynic and 
antihyperalgesic effects by modulating microglial responses. 
In one of our recent studies [28], we demonstrated that CB2 
receptor stimulation induced an analgesic effect associated 
with a reduction in the pro-inflammatory (IFN-  and IL-1 ) 
and an enhancement of anti-inflammatory (IL-10) mediators 
within the spinal cord. In the study, we also demonstrated 
that the number of microglial profiles was not reduced by a 
CB2 receptor agonist. Moreover, the two 2-AG biosynthetic 
enzymes, DAGL  and MGL, were enhanced by the CB2 
agonist treatment assuming that an enhanced turnover of 2-
AG occurs. One can thus speculate that a critical role of en-
docannabinoids (i.e. 2-AG) on microglia is to shift their phe-
notype from pro- to anti-inflammatory, and to recruit more 
anti-inflammatory microglia to the site of injury (Fig. 2) 
[18].  
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 However, several other questions remain unanswered: i) 
how do CB2 receptor agonists stimulate microglial cell pro-
liferation and/or migration in vivo; ii) what phenotype is the 
CB2 receptor-recruited microglia; iii) which molecular sig-
nals are involved in the microglial phenotypical change ex-
pected to be produced in vivo (from pro- to anti-
inflammatory [68]). 

CONCLUSIONS 

 The data available on endocannabinoid signaling in glial 
cells have shown that the endocannabinoid system could be a 
excellent candidate for the understanding of neuron-glia 
communication both in physiological and pathological con-
ditions. Moreover, endocannabinoids are also employed in 
the neurodegenerative diseases associated with motor im-
pairments or demyelinating diseases such as multiple sclero-
sis [116, 117]. This could be due to the protective effect of 
endocannabinoids on oligodendrocytes since their loss is 
responsible for the progressive demyelination observed in 
spinal cord injured rats, leading to chronic motor impair-
ment [118]. However, further investigation of the molecular 
mechanisms involved in the cannabinoid-mediated immune 
response is needed in order to identify a specific target in 
managing chronic diseases, such as abnormal pain percep-
tion.  
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a morphological change, expresses receptors involved in the active pro-inflammatory state (i.e. CX3CR1,  A2A), retraction of processes and 

release of pro-inflammatory cytokines (IL-1 , TNF ). Stimulation of CB2 receptors on activated microglia causes a shift from pro- to anti-

inflammatory phenotype M2 which releases anti-inflammatory (IL-10) and neuroprotective (2-AG) molecules and even further up-regulates 

CB2 receptor which seems to be critical for recruiting further anti-inflammatory M2 microglia at the site of lesion. 
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