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Abstract: Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a common dose-limiting side effect of many che-

motherapeutic drugs, including platinum-based compounds (e.g., cisplatin and oxaliplatin), taxanes (e.g., paclitaxel), 

vinca alkaloids (e.g., vincristine), and the first-in-class proteasome inhibitor, bortezomib. Among the various sensory 

symptoms of CIPN, paresthesia, dysesthesia, spontaneous pain, and mechanical and thermal hypersensitivity are promi-

nent. Inflammation, oxidative stress, loss of intraepidermal nerve fibers, modifications of mitochondria, and various ion 

channels alterations are part of the several mechanisms contributing to CIPN. Because attempts to mitigate chemothera-

peutic-induced acute neuronal hyperexcitability and the subsequent peripheral neuropathy have yielded unsatisfactory re-

sults, a more in-depth understanding of the mechanism(s) responsible for the neurotoxic action of anticancer drugs is re-

quired.  

Some members of the transient receptor potential (TRP) family of channels, as the TRPV1 and TRPV4 (vanilloid), 

TRPA1 (ankyrin) and TRPM8 (melastatin) are expressed on the plasma membrane of primary sensory neurons (nocicep-

tors), where they are activated by an unprecedented series of physical and chemical stimuli. There is evidence that 

TRPV1, TRPV4, TRPA1 and TRPM8 are prominent contributors of mechanical and thermal hypersensitivity in models of 

CIPN. In particular, in vitro and in vivo studies have pointed out the unique role of TRPA1 and oxidative stress in the 

mechanism responsible for cold and mechanical hyperalgesia in rodent models of CIPN.  
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INTRODUCTION 

 Peripheral neuropathy is an adverse effect common to 
various chemotherapeutic agents, including vincristine, pa-
clitaxel, oxaliplatin, cisplatin, bortezomib, and thalidomide 
[1]. Chemotherapy-induced peripheral neuropathy (CIPN) 
represents a dose-limiting adverse reaction, which negatively 
affects the quality of life of a relevant part of treated patients 
and their therapeutic management. The incidence of CIPN is 
lower in patients treated with a single agent (3–7%), but can 
rise up to 38% in patients treated with combination regimens 
[2]. The occurrence and severity of CIPN depend on many 
factors, including dose intensity, treatment duration, cumula-
tive dose, prior or concurrent treatment with other neurotoxic 
drugs, and co-existing conditions which give an independent 
risk of neuropathy, such as diabetes and alcohol abuse.  

 The platinum-based anticancer drugs cisplatin, car-
boplatin, and oxaliplatin are successfully used for the treat-
ment of lung, colorectal, ovarian, breast, head and neck, 
bladder, and testicular cancers. Cisplatin neurotoxicity is 
predominantly characterized by sensory neuropathy, which 
principally produces pain and paresthesia in the extremities. 
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This sensory neuropathy may have a delayed onset, appear-
ing weeks after treatment initiation and, in advanced stages, 
it may progress to severe neuropathic pain and sensory 
ataxia. The third generation platinum drug oxaliplatin, which 
is the most active for the treatment of colorectal cancer [3], 
shows a dramatic reduction in renal toxicity and ototoxicity 
[4, 5], but exhibits a unique neurotoxic profile. Oxaliplatin 
induces an acute painful neuropathy which appears soon 
after administration [6]. Patients complain about paresthesia, 
more often localized periorally and/or to the extremities, and 
severe cold hypersensitivity. In about 90% of patients, expo-
sure to cold triggers or enhances an acute, transient syn-
drome characterized by cramps, paresthesia, and dysesthesia. 
A chronic peripheral neuropathy resembling that linked to 
cisplatin often develops after multiple treatment cycles with 
oxaliplatin.  

 Paclitaxel is a microtubule-targeting agent labeled for the 
treatment of a wide variety of solid neoplasms currently un-
der investigation to assess its efficacy to treat additional ma-
lignant tumors. Paclitaxel-induced neurotoxicity typically 
presents as a sensory neuropathy with the most common 
complaints being numbness, tingling, and burning pain. 
More pronounced symptoms are tingling and allodynia 
which typically occur in a “glove and stocking” distribution. 
Sensory symptoms usually start symmetrically in the feet, 
but also appear simultaneously in both hands and feet [7]. 
Many cases resolve briefly after paclitaxel discontinuation, 
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but the sensory abnormalities and pain can be long-lasting 
[8].  

 Among other anticancer drugs, the vinca alkaloid vincris-
tine is a widely used antineoplastic agent administered alone 
or in combination with other drugs in the treatment of many 
tumor types [9, 10]. Bortezomib is a modified dipeptidyl 
boronic acid authorized for the treatment of multiple mye-
loma and mantle cell lymphoma [11-13]. Recently, thalido-
mide has received a great deal of attention due to its remark-
able therapeutic efficacy in the treatment of multiple mye-
loma [14]. Vincristine, bortezomib, and thalidomide can also 
cause CIPN. 

 Various mechanisms have been suggested to play a role 
in the development of CIPN and have been explored in ro-
dent models. Different mitochondrial pathways, including 
regulation of intracellular calcium [15], generation of reac-
tive oxygen species (ROS) [16], and apoptotic signaling 
[17], have been proposed to contribute to the development of 
CIPN [18]. Indeed, paclitaxel-evoked painful peripheral neu-
ropathy is associated with increased swollen and vacuolated 
axonal mitochondria [19]. Moreover, paclitaxel appears to 
gate the multi-molecular complex containing the voltage-
dependent anion channel, defined as mitochondrial perme-
ability transition pore (mPTP) [19], thus causing a toxic cal-
cium release from the mitochondria [20]. In accordance with 
this observation, calcium chelating agents are able to reverse 
paclitaxel-evoked pain [21], and acetyl-l-carnitine, which 
prevents mPTP opening [22], reduces the development of 
paclitaxel-induced neuropathic pain [23]. Administration of 
bortezomib leads to intracytoplasmatic vacuolization in dor-
sal root ganglia (DRG) satellite cells, probably due to mito-
chondrial and endoplasmic reticulum enlargement [24]. All 
these intracellular modifications are probably related to the 
ability of bortezomib to activate mitochondrial-based apop-
totic pathways, including activation of caspases [25] and 
dysregulation of calcium homeostasis [26]. Inhibitors of the 
mitochondrial electron transport chain (mETC) attenuate 
mechanical hyperalgesia in both CIPN models and after tu-
mor necrosis factor-  (TNF- ) treatment [17]. The relevant 
role of mETC in peripheral pain mechanisms is further cor-
roborated by the effect of inhibitors of adenosine triphos-
phate (ATP) synthesis to attenuate neuropathic pain [17]. 
Moreover, it has been demonstrated that the antioxidant 
agent -lipoic acid, by regulating essential mitochondrial pr-
oteins with antioxidant and chaperone properties, exerts neu-
roprotective effects against chemotherapy-induced neurotox-
icity in sensory neurons [27]. Finally, significant changes in 
the expression of various genes, including those controlling 
mitochondrial dysfunction associated with vincristine- and 
bortezomib-evoked peripheral neuropathy, have been dem-
onstrated in humans [25].  

 Impaired mitochondrial calcium uptake, or increased 
leakage of mitochondrial calcium, could exaggerate calcium 
signals and, eventually, calcium-dependent processes which 
participate in the neuropathy mechanism. For instance, it has 
been observed that administration of vincristine and pacli-
taxel, by raising neuronal calcium levels in the nerves, in-
duces mitochondrial changes, associated with neuronal hy-
perexcitability [28, 29]. Accordingly, drugs, which reduce 
intracellular calcium levels are able to reverse the negative 
effects of altered mitochondrial calcium regulation and neu-

ropathic pain [20, 21]. Furthermore, paclitaxel- and vincris-
tine-evoked neuropathic pain is reduced by both the T-type 
channel calcium blocker, ethosuximide, and the 2  calcium 
channel subunit antagonist, gabapentin [30, 31]. In addition, 
paclitaxel has been reported to increase the expression level 
of 2 -1 mRNA in the dorsal spinal cord [30, 32]. Accord-
ingly, it has been proposed that 2 -1 subunit in the spinal 
dorsal horn and DRG is a main site where gabapentin inhib-
its paclitaxel-induced allodynia [33]. Thus, different lines of 
evidence indicate that dysregulation of intracellular calcium 
levels represents an additional factor contributing to the 
pathogenesis of CIPN. 

 A number of studies suggest a role of sodium channels in 
CIPN. Exposure of DRG neurons to oxaliplatin increases 
sodium currents, which are antagonized by the sodium chan-
nel blocker carbamazepine [34]. The oxaliplatin metabolite 
oxalate probably alters the functional properties of voltage-
gated sodium channels, resulting in a prolonged open state of 
the channels and, finally, in the hyperexcitability of sensory 
neurons [35]. Further, oxaliplatin administration has been 
described to slow sodium channel inactivation kinetics [1, 
34]. A change in sodium channel properties may predispose 
to ectopic activity, leading to paresthesia and fasciculations 
[36]. Cold exposure affects sodium channel kinetics [37] 
and, accordingly, sodium channel dysfunction is aggravated 
by cold temperatures [38]. Cold hypersensitivity is a typical 
feature observed in acute oxaliplatin-induced neurotoxicity. 
It has been shown that acute modulation of sodium channels 
influences the severity of oxaliplatin-induced neurotoxicity 
[39, 40]. The involvement of sodium channels is also re-
ported in paclitaxel-induced neuropathic pain, where low 
doses of tetrodotoxin result able to prevent pain induced by 
taxane [41]. In contrast with these previous findings, an-
tisense oligodeoxynucleotides targeting the Nav 1.8 channel 
does not seem to interfere with vincristine-induced neuro-
pathic pain [42]. 

 An important function of inflammatory mediators has 
been described in models of CIPN [29, 43]. A recent study 
demonstrated a correlation between the increase in 
interleukin 6 (IL-6) and the appearance of bortezomib-
induced neuropathic pain [44]. Further, the administration of 
the prostaglandin E1 (PGE1) analog, limaprost, attenuated 
mechanical allodynia induced by paclitaxel and oxaliplatin 
(but not by vincristine) [32]. An increase in skin Langerhans 
cells (LC) has been associated with the development of pain 
in vincristine- and paclitaxel-evoked neuropathy [21]. LC 
cells may contribute to pain development by different 
mechanisms including release of nitric oxide (NO) [45], pro-
inflammatory cytokines [46], and neurotrophic factors [47], 
that in turn cause spontaneous neuronal discharge, nocicep-
tor sensitization, and mechano-hypersensitivity. It has also 
been demonstrated that paclitaxel-induced neuropathic pain 
is associated with TNF-  and IL-1  induction in lumbar 
DRGs [48]. Glial cell inhibitors attenuate paclitaxel- and 
vincristine-induced neuropathic pain [49, 50], supporting a 
role for activated glial cells in this condition.  

 In vincristine- and paclitaxel-evoked neuropathy [21], 
and more recently in oxaliplatin-induced neuropathy [51], a 
loss of intraepidermal nerve fibers in the plantar hind paw 
skin region of the sensory neuron peripheral terminal arbors, 
similar to that documented in other neuropathic pain syn-
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dromes, has been shown. Neuropathy also seems to be char-
acterized by a loss of the cutaneous A  and C fibers (cool- 
and warm-specific) [52] and of A  cool-specific fibers, 
which seem to contribute to cold allodynia [53]. Oxidative 
stress has been repeatedly proposed to play a central role in 
the mechanism of CIPN. The effect of antioxidants, includ-
ing acetyl-l-carnitine, -lipoic acid, and vitamin C, which 
seem to partially reverse the hyperalgesia, represents indirect 
proof of the role of oxidative stress in oxaliplatin-induced 
neuropathy [54, 55]. Recently, administration of the free 
radicals scavenger, phenyl N-tert-butylnitrone, has been 
shown to reduce mechanical allodynia in paclitaxel-induced 
neuropathic pain in rats [56]. Moreover, it has been demon-
strated that bortezomib increases ROS in DRG neurons [57], 
and that vitamin C or N-acetyl-l-cysteine administration al-
leviates the cytotoxicity in Schwann cells, but not in mye-
loma cells treated with bortezomib [58], thus suggesting that 
the antioxidant action may selectively afford protection 
against neurodegeneration without modification of the anti-
neoplastic activity of the chemotherapeutic agent [58]. 

 Recent evidence also supports the role of other biological 
effectors in CIPN. For instance, paclitaxel-induced periph-
eral neuropathy is characterized by the activation of calcium-
activated proteases, such as calpains and caspases [17, 59], 
or mitogen activated protein kinase (MAPK). Furthermore, 
prolonged exposure to oxaliplatin induces early activation of 
p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) 
MAPKs in DRG neurons, eventually provoking neuronal 
apoptosis. Contrasting data have been reported on the role of 
neuropeptides, such as calcitonin gene related peptide 
(CGRP) or substance P (SP) [60-62]. The role of NO has 
also been evaluated, and there is indication that NO contrib-
utes to vincristine- and oxaliplatin-induced neuropathy. Fi-
nally, a number of other mediators or effector mechanisms 
have been implicated in the genesis of CIPN, including N-
methyl-D-aspartate (NMDA) and 5-hydroxytryptamine 
(5HT) receptors, potassium channels, protein kinase C 
(PKC) or l-serine (see for review [63]). 

 Recently, in addition to classical calcium or sodium 
channels, remarkable interest has been paid to a possible role 
in CIPN of the additional channels preferentially located in 
sensory neuronal membranes. In particular, research on tran-
sient receptor potential (TRP) channels seems to represent a 
promising area of investigation, as emerging and compelling 
data have shown the contribution of several members of this 
channel family to the mechanism of CIPN.  

TRP CHANNELS IN PRIMARY SENSORY NEU-
RONS: ROLE IN PAIN TRASMISSION  

 Neuropathic pain is characterized by hypersensitivity to 
mechanical, thermal and/or chemical stimuli, elicited by ex-
ogenous, or endogenous causes, including trauma, neurotox-
ins, infections, heredity, immunological and metabolic dis-
eases, and other conditions. A variety of molecular mecha-
nisms have been advocated as underlying pathways contrib-
uting to pain hypersensitivity. In particular, activation and 
sensitization of nociceptors have been considered as an ini-
tial mechanism that eventually results in neuronal hypersen-
sitivity. The subpopulation of primary sensory neurons en-
compasses highly heterogeneous subgroups of neurons. In 
addition to morphological, electrophysiological, and func-

tional criteria, primary sensory neurons may be distinguished 
according to the expression of neuropeptides, namely the 
tachykinins SP and the neurokinin A, and CGRP, which 
upon release from peripheral nerve endings mediate neuro-
genic inflammation [64, 65]. Indeed, the first description of 
the ability of a subset of sensory neurons to orchestrate an 
early inflammatory response, mainly represented by arterio-
lar vasodilatation, was reported by Bayliss [66], and subse-
quently by Sir Thomas Lewis [67], who defined in detail the 
dual “nocifensor” role of this type of neuron. 

 Nociceptors that release neuropeptides, thus contributing 
to neurogenic inflammation, are known to express some TRP 
channels, which, among other features, are sensitive to 
changes in temperature and therefore defined also as thermo-
TRPs [68]. About 15 years after the cloning of the vanilloid 
1 channel (TRPV1, the so called ‘capsaicin receptor’), addi-
tional members of the TRP family have been found to be 
expressed by nociceptors [69]. These include the vanilloid 2 
(TRPV2), 3 (TRPV3), and 4 (TRPV4) channels, the TRPM8 
(the ‘menthol receptor’), and the ankyrin 1 (TRPA1) chan-
nels. These channels are transducers of an unprecedented 
series of chemical, thermal, and mechanical stimuli that are 
usually known to induce pain. Although the hallmark of TRP 
channels is their “polymodality”, TRPV1, TRPV3, TRPM8, 
and TRPA1 have also been recognized as chemoreceptors, 
rather selectively responsive to capsaicin, camphor [70], 
menthol [71, 72], and mustard oil [73], respectively. The 
reader is referred to other reviews for detailed descriptions of 
the specific thermal, mechanical, and chemical sensitivity of 
TRP channels expressed by nociceptors [65, 68].  

THE ROLE OF TRP CHANNELS IN CHEMOTHERA-
PY-INDUCED PERIPHERAL NEUROPATHY 

 Pharmacological and genetic studies using animal models 
of CIPN induced by various chemotherapeutic agents indi-
cate that the mechanisms underlying mechanical and thermal 
hyperalgesia are multiple. Notwithstanding, recent evidence 
has emphasized a primary role for members of the TRP fam-
ily, in particular TRPV1, TRPV4, TRPA1, and TRPM8, in 
the mechanical and thermal hypersensitivity evoked by che-
motherapeutic agents in rodents [62, 74, 75]. 

TRPV1 

 The invertebrate relatives of TRPV1 are essential to sen-
sory transduction (phototransduction, thermosensation, 
mechanosensation, osmosensation) [76], while in mammals 
TRPV1 seems to contribute to hypersensitivity to thermal, 
chemical, and mechanical stimuli associated with peripheral 
inflammation and neuronal damage. A specific feature of 
TRPV1 relies on its ability, following intense and prolonged 
activation, to induce neuronal desensitization [77, 78]. 
TRPV1 is activated by noxious heat (43-52 °C), and its acti-
vation by capsaicin results in heat hypersensitivity [79]. 
Among various adverse reactions, heat hypersensitivity has 
been often reported by patients treated with platinum-based 
anticancer drugs [80]. Thus, the hypothesis that TRPV1 
plays a role in such reactions has been advanced. Treatment 
with cisplatin has been found to produce upregulation of 
TRPV1 mRNA in cultured DRG neurons [81]. A similar 
upregulation occurs also after in vivo treatment with cis-
platin, although cisplatin-treated mice showed no change in 
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the proportion of TRPV1-immunopositive trigeminal ganglia 
(TG) neurons [82]. TRPV1 upregulation was associated with 
increased nociceptors responsiveness and contributed to cis-
platin-evoked thermal, but not mechanical, hyperalgesia in 
mice [82]. In addition, acute exposure to oxaliplatin induced 
TRPV1 sensitization, which may cause neuronal damage 
[81]. The mechanism through which oxaliplatin/cisplatin-
induced neuropathy results in TRPV1 sensitization is un-
clear. However, enhanced TRPV1 protein trafficking, conse-
quent upon mRNA overexpression, to peripheral nerve proc-
esses, or channel phosphorylation by different kinases, lead-
ing to enhanced TRPV1 sensitivity, have been proposed as a 
general mechanism contributing to pathological pain states 
[83]. 

TRPV4 

 TRPV4 channel is a polymodal receptor with a wide ex-
pression pattern and a corresponding variety of possible 
pathophysiological roles [84]. TRPV4 is expressed in differ-
ent neuronal and non-neuronal cells, including urinary blad-
der, kidney, vascular endothelium, keratinocytes, cochlear 
hair cells, and Merkel cells [85-87]. Likewise the TRPV1 
channel, TRPV4 activation on TG or DRG neurons [84, 88] 
causes SP and CGRP release, thus evoking neurogenic in-
flammation in peripheral tissues [89]. TRPV4 was firstly 
identified as an osmo-transducer activated by decrease in 
osmolarity, suggesting a role in the regulation of cell swel-
ling [84, 90]. Later studies demonstrated that TRPV4 is acti-
vated by shear stress [91], innocuous warmth (27 -35 °C) 
[88, 92], low pH, citrate [87], endocannabinoids and arachi-
donic acid metabolites [92, 93], NO [94], and synthetic se-
lective agonists, such as the phorbol ester 4 -phorbol 12,13-
didecanoate (4 -PDD) [95].  

 The mechanosensitive nature of TRPV4 and its implica-
tion in sensing shear stress suggest a role in flow-sensitive 
cells, such as vascular endothelial and renal tubular epithelial 
cells. The mechanism through which TRPV4 is activated by 
mechanical stress is still under debate. Two transduction 
pathways have been proposed to regulate TRPV4 activation: 
the phospholipase (PL) C (PLC)/diacylglycerol (DAG) 
pathway and the PLA2/arachidonic acid (AA) pathway [96, 
97]. Some evidence suggests that activation of TRPV4 by 
hypotonicity involves its phosphorylation by the Src family 
of tyrosine kinase [98]. Although the molecular mechanism 
of hypotonicity-induced TRPV4 activation should be further 
investigated, studies addressing the gating mechanism of the 
channel by cell swelling exclude that it is directly gated by 
mechanotransduction since it does not respond to membrane 
stretch [90].  

 It has been shown that hypotonicity becomes painful to 
the animals when nociceptive fibers are sensitized by the 
PGE2, whose levels increase during inflammation or in re-
sponse to mechanical, chemical, and thermal injury. TRPV4 
also plays a crucial role in mechanical hyperalgesia elicited 
by exposure to inflammatory mediators. Indeed, PGE2 and 
serotonin can act synergistically through cAMP/protein 
kinase (PK) A (PKA) and PKC  to engage TRPV4 in hyper-
algesia to mechanical and osmotic stimuli [99]. In addition, 
protease-activated receptor 2 (PAR2) agonists may sensitize 
TRPV4 through the activation of multiple second messenger 
pathways, such as PKA, PKC, PKD, and PLC  [89]. Prote-

ases generated during inflammation activate PAR2, thus lead-
ing to TRPV4-mediated release of SP and CGRP in the spi-
nal cord and TRPV4-induced mechanical hyperalgesia [100]. 

 Recent evidence has proposed a role for TRPV4 in me-

chanical allodynia in rodent models of CIPN [101-103]. In 

different models of painful peripheral neuropathy, mechani-

cal hyperalgesia was markedly reduced by spinal intrathecal 

administration of oligodeoxynucleotides antisense to TRPV4 

[74]. TRPV4 knock-out mice showed reduced mechanical 

hyperalgesia induced by the anticancer drugs, paclitaxel and 

vincristine, or in a diabetic model [74]. TRPV4 plays a major 

role in mechanical hyperalgesia, and also contributes to en-

hanced nociception to hypo-osmotic stimuli in paclitaxel-

treated rats. TRPV4-mediated hypersensitivity by paclitaxel 

is not attributable to increased mRNA levels, but rather it 

may be related to a specific interaction with second messen-

ger pathways [101]. Similarly to paclitaxel, treatment with 

vincristine has been reported to produce mechanical allo-

dynia in rodents through a TRPV4-dependent mechanism 

[74]. Authors suggest that TRPV4 is not directly activated by 

these agents, but plays a role in mechanotransduction, as a 

component of a molecular complex that functions only in 

presence of inflammation or nerve injury phenomena. This 

complex pathway results in the activation of a signaling cas-

cade initiated by integrins which, via Src tyrosine kinase, 

induces membrane insertion and/or activation of the TRPV4 

channel in sensory neurons. Tyrosine kinases are known to 

regulate trafficking of ion channels and receptors. Recent 

reports demonstrate that Src tyrosine kinases participate in 

the modulation of TRP channel function [98, 104, 105], and 

this mechanism could be responsible for TRPV4 sensitiza-

tion. In paclitaxel-induced peripheral neuropathy TRPV4-

mediated mechanical hyperalgesia results essentially de-
pendent on integrin/Src tyrosine kinase signaling [101]. 

 Another recent paper demonstrates that paclitaxel may 

release mast cell tryptase, which activates PAR2 receptors 

expressed in primary sensory neurons [100]. PAR2 activation 

and the downstream enzymes, PKA, PKC , and PLC, cause 

sensitization of TRPV1, TRPV4, and TRPA1, thereby lead-

ing to mechanical allodynia and thermal hyperalgesia. Tar-

geting the signaling pathways of PAR2 seems to effectively 

attenuate paclitaxel-induced mechanical, heat, or cold hyper-

sensitivity [100]. The contribution of TRPV4 to CIPN, and 

more in general to models of inflammatory pain, corrobo-

rates the hypothesis that TRPV4 plays a role in sensitization 

of nociceptors and makes it a novel target for the develop-
ment of an innovative class of analgesics.  

TRPA1 

 TRPA1, originally cloned from human fetal lung fibro-
blasts, is a nonspecific calcium-permeable cationic channel 
expressed in primary sensory neurons of the DRG, TG and 
vagal ganglia (VG), where it co-localizes with the TRPV1 
channel. TRPA1 is also widely expressed in many cell types, 
tissues and organs, including hair cells, pancreas, heart, 
brain, keratinocytes [106], urinary bladder [107], prostate 
[108], arteries [109], enterochromaffin cells [110], odon-
toblasts [111], dental pulp [112], synovial fibroblasts [113], 
airway epithelial [114], and smooth muscle cells [156]. 
Transient receptor potential ankyrin 1 channel localized to 
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non-neuronal airway cells promotes non-neurogenic 
inflammation.  

 It has been proposed that TRPA1 functions as a detector 
of mechanical stimuli and noxious cold (<17 °C), although 
this hypothesis is still controversial. Altered mechanical 
thresholds observed in TRPA1 knock-out mice [115] and 
interaction between TRPA1 N-terminal ankyrin repeat do-
main and other proteins, such as cadherin [116], suggested 
that TRPA1 is involved in mechano-sensation. However, 
other data failed to find any connection between TRPA1 
activation and mechanosensation [117]. Similarly, whether 
or not TRPA1 functions as a sensor of noxious cold remains 
an unresolved question. Several studies demonstrated that 
noxious cold activates TRPA1 channels, both directly [118-
120] and indirectly [121]. However, negative results were 
obtained in mouse TRPA1 channels heterologously ex-
pressed in human embryonic kidney cells [122], and neu-
ronal activation by cold temperatures was found to be similar 
between wild-type and TRPA1 knock-out mice [123]. In 
addition, in vivo studies employing two independently pro-
duced TRPA1 knock-out mice breeds yield conflicting re-
sults, leaving the controversy unsettled [115, 117, 120]. 
More recently, it has been proposed that noxious cold acti-
vates TRPA1 [124], but with less potency than allyl isothio-
cyanate. Moreover, it has been shown that cold stimuli po-
tentiated TRPA1 activation induced by allyl isothiocyanate 
[124]. 

 Whereas the role of TRPA1 in mechano- and cold-
transduction remains to be clarified, it has been extensively 
demonstrated that TRPA1 plays a major role in chemosensa-
tion. In fact, TRPA1 is activated by a wide range of pungent 
and irritant compounds [125], including ingredients of vari-
ous spicy foods, such as allyl isothiocyanate (mustard oil, 
wasabi and horseradish) [73], allicin and diallyldisulfide 
(garlic derivatives) [126], cinnamaldehyde (cinnamon), and 
environmental irritants and industry pollutants, such as acet-
aldehyde [127], formalin [128], hypochlorite, isocyanates 
[129], ozone [130], carbon dioxide [131], and acrolein [117], 
a highly reactive , -unsaturated aldehyde present in tear 
gas, and cigarette smoke [132]. Moreover, isofluorane [133], 
nicotine [134], NO donors [135], and cyclophosphamide 
[117] have been reported to activate TRPA1. 

 In addition to exogenous compounds, endogenous mole-
cules have been identified as TRPA1 agonists. Compelling 
evidence indicates that TRPA1 is gated by an unprecedented 
series of endogenous agents generated at sites of inflamma-
tion and tissue injury. The product of fatty acid metabolism, 
15-deoxy-delta-12,14-prostaglandin J2 (15d-PGJ2), which is 
synthesized by cyclooxygenases after an initial inflammatory 
signal, is a potent activator of TRPA1 [136, 137]. The cy-
clopentenone isoprostane 8-iso-PGA2 is also capable of tar-
geting TRPA1 [137]. Oxidative decomposition of polyun-
saturated fatty acids, such as linoleic and arachidonic acid, 
leads to the formation of a host of reactive carbonyl species 
that may target TRPA1. These products include , -
unsaturated aldehydes acrolein, 4-hydroxy-2-nonenal (HNE) 
[138], and 4-oxononenal [139]. Moreover, reactive nitrogen 
species (RNS) such as peroxynitrite and nitrooleic acid [130] 
and ROS, such as oxygen peroxide and hydrogen peroxide 
[140], target TRPA1. Thus, oxidative stress produced by 
neutrophilic and macrophagic activation at sites of inflam-

mation generates molecules that activate TRPA1 leading to 
pain and neurogenic inflammation. These findings suggest 
that TRPA1 plays a key role in sensing tissue damage and 
nociceptive signaling. TRPA1 channel can be gated by dis-
tinct mechanisms. Most of TRPA1 activators are character-
ized by the presence of a highly reactive electrophilic group 
that, via a Michael-addition reaction, form covalent bonds 
with nucleophilic groups, such as cysteine and lysine resi-
dues located in the N-terminal cytoplasmic domain of the 
channel, hence inducing modifications of TRPA1 N-terminal 
that lead to dilation of the channel permeation pore [141, 
142]. As in the case of electrophilic agonists, HNE provokes 
TRPA1 gating by covalent modification of cysteine and ly-
sine residues located within the N-terminal cytoplasmic do-
main of the channel [138]. Unlike these molecular species, it 
has been reported that H2O2 activates TRPA1 via disulfide 
bond formation induced by oxidation [143]. 

 In addition to direct channel activation, different inflam-
matory agents that target G protein coupled receptors (e.g., 
bradykinin) and tyrosine kinases receptors (e.g., nerve 
growth factor) can indirectly sensitize TRPA1 by activating 
PKA or PKC [125]. Similar mechanisms of TRPA1 sensiti-
zation have been reported to occur by PAR2 agonists, proba-
bly by activation of PLC, which releases the inhibition of 
TRPA1 from plasma membrane PIP2 [144]. This evidence 
suggests that TRPA1 functions as an integrator of different 
inflammatory mediators, in turn leading to amplification of 
inflammatory and nociceptive signals.  

 Patients treated with several anticancer drugs develop 
hypersensitivity to cold stimuli, thus suggesting the in-
volvement of TRPA1 in this adverse reaction. In addition, 
induction of oxidative stress is a general mechanism that 
may contribute to the antineoplastic effect of several che-
motherapeutic agents [145], and the TRPA1 channel is a 
sensor of oxidative stress byproducts [140]. Thus, due to its 
localization on nociceptive sensory neurons, and being a 
major thermal and oxidative stress target, the TRPA1 recep-
tor seems to be perfectly suited to contribute to symptoms of 
CIPN.  

 Recently, our research group has disclosed the role of 
TRPA1 in models of CIPN [103, 146]. By both genetic and 
pharmacological approaches, we showed that TRPA1 en-
tirely mediates mechanical and cold hypersensitivity induced 
by oxaliplatin and cisplatin [146] in mice and rats. We con-
firmed [103] that TRPV4 mediates part of the mechanical 
hyperalgesia induced by paclitaxel [74], and we showed that 
 TRPV4-resistant mechanical hyperalgesia was exclu-
sively mediated by TRPA1 [103]. We also discovered that 
paclitaxel-induced cold allodynia was completely due to 
TRPA1 activation [103]. One final common pathway acti-
vated by the otherwise chemically heterogeneous group of 
molecules, such as chemotherapeutic agents, is the produc-
tion of oxidative stress in different tissues and cells [147, 
148] and, through this effect they can potentially activate 
and/or sensitize the TRPA1 channel. Our recent works [103, 
146], however, indicated that oxaliplatin and paclitaxel do 
not directly gate TRPA1, as they do not cause any calcium 
response in primary culture of mouse or rat DRG neurons. 
However, Chinese hamster ovary (CHO) cells transfected 
with the mouse TRPA1 channel respond, with a glutathione-
sensitive intracellular calcium mobilization, upon challenge 



132    The Open Pain Journal, 2013, Volume 6 Nassini et al. 

with oxaliplatin, whereas untransfected CHO cells do not. 
Thus, we hypothesized that calcium response by oxaliplatin 
requires two conditions. The first is that the cell expresses 
TRPA1, and the second is that the cell may generate suffi-
cient levels of oxidative stress. It is possible that neurons do 
not produce sufficient oxidative stress to activate TRPA1, 
whereas CHO cells possess the metabolic and enzymatic 
repertoire to produce high enough ROS levels which, when 
the cells express the recombinant TRPA1, are sufficient to 
gate the channel. In the case of sensory neurons neighboring 
cells to nerve terminals may release oxidative stress byprod-
ucts generated by paclitaxel, hence gating TRPA1. Paclitaxel 
seems to utilize the same pathway given that the TRPA1-
dependent CGRP release evoked by the drug was completely 
abated in the presence of glutathione [103]. Similarly to what 
has been found under inflammatory circumstances [149], 
platinum-based drugs also increase TRPA1 expression in 
DRG [82]. However, in this study, appropriate functional 
experiments that could corroborate the intriguing molecular 
data were not performed.  

 Moreover, in a rat model of diabetes, paclitaxel signifi-
cantly enhanced cold hyperalgesia in comparison to normo-
glycemic paclitaxel-treated control animals [149]. These 
effects were prevented by the ROS scavenger, N-acetyl-
cysteine, and by the selective TRPA1 antagonist, HC-
030031 [128]. In diabetic and control rats, paclitaxel treat-
ment was associated with an accumulation of atypical mito-
chondria and an increase in mitochondrial ROS production 
[149]. Paclitaxel potentiation of cold hyperalgesia in diabetes 
may result from the combination of increased mitochondrial 
ROS production and poor radical detoxification induced by 
paclitaxel treatment and increased TRPA1 expression [149].  

TRPM8 

 TRPM8 is expressed by a non-peptidergic subpopulation 
of nociceptors and responds to mild and noxious cold (<25 
°C) temperatures. TRPM8, together with TRPA1, seems to 
mediate hypersensitivity to cold stimuli [71]. An increase in 
TRPM8 expression occurs in some sensory neurons after 
nerve injury [150], possibly contributing to enhanced cooling 
sensation. Similarly, oxaliplatin increased the expression of 
TRPM8 mRNA in mouse DRG neurons when cold hyper-
sensitivity peaked, suggesting that cold hypersensitivity is, at 
least partly, due to the increased expression of TRPM8 in 
primary sensory neurons [151]. In addition, wet-dog shake 
and jumping behaviors elicited by icilin, a non selective 
TRPM8 activator, were significantly increased in mice 
treated with oxaliplatin [151]. Oxaliplatin seems to affect 
TRPA1 rather than TRPM8, because oxaliplatin-treatment 
induces sensitization to icilin, which also activates TRPA1 
expressing neurons, but not the response to a TRPM8 selec-
tive ligand, WS12 [81]. A recent paper reported a possible 
contribution of TRPM8 expressing fibers to cold hypersensi-
tivity induced by oxaliplatin [152]. Paradoxically, a case 
report showed the analgesic effect of topical menthol  
application in CIPN induced by bortezomib [153]. In addi-
tion, topical application of menthol was able to significantly 
reverse CIPN induced by carboplatin, and its prolonged ap-
plication during chemotherapy appeared to prevent neuropa-
thy worsening [154]. More basic and clinical investigations 
are clearly required to clarify the role of TRPM8 in CIPN. 

CONCLUSION 

 CIPN encompasses a large variety of symptoms, but neu-
ropathic pain represents a prominent and dose-limiting mani-
festation for many patients. Although a series of hypotheses 
has been reported to explain this painful condition, the 
mechanism underlying CIPN remains unknown, and the dis-
ease remains undertreated, the main undesired consequence 
being therapy discontinuation. However, over the past two 
years a series of mechanisms and potential targets through 
which anticancer drugs may induce peripheral neuropathy 
emerged.  

 In particular, recent acquisitions on members of the TRP 
family, such as TRPV1, TRPV4, TRPA1, and TRPM8, ex-
pressed by primary nociceptors, indicate that these channels 
play a major role in models of CIPN. Emerging data show 
that oxidative stress produced by chemotherapeutic agents 
initiates channel gating, and this phenomenon seems to be 
specifically important for TRPA1 activation and sensitiza-
tion.  

 However, several questions regarding the relationship 
between CIPN and TRP channels remain unanswered. 
Upregulation of TRP channels has been claimed as a possi-
ble mechanism for protracted sensory neuropathy, but this 
phenomenon has not been always demonstrated. It is highly 
possible that additional molecular mechanisms are involved 
in TRP hyperactivity, including altered intracellular trans-
duction pathways and/or epigenetic factors, which have been 
previously proposed to play a key role in models of inflam-
matory and neuropathic pain [69, 83, 155]. Thus, further 
studies are required to identify the upstream and downstream 
events concerning the primary sensory neurons, which are 
associated to chemotherapeutic agent-evoked and TRP-
mediated hypersensitivity, and ultimately to CIPN. 
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