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Abstract: Trypanosomatid protozoa are parasites of considerable medical and economical importance because they are 

the causative agents of chronic human and livestock diseases endemic in developing countries. Trypanosoma cruzi is the 

causative agent of Chagas´ disease, present in most of Latin America. The biology of this parasite presents some unusual 

features, one of which is the mechanism employed for the addition of sialic acid units to its own glycoproteins, the mucin-

like molecules, or to exogenous glycoconjugates. This is mediated by a transglycosylase for sialic acid known as trans-

sialidase and located on the external surface of the parasite, rather than by an intracellular CMP-sialic acid-dependent sia-

lyltransferase. The Trypanosoma cruzi trans-sialidase is thought to play an important role in the pathogenesis of Chagas’ 

disease, and it represents a potential therapeutic target.  
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INTRODUCTION 

 Although sialic acid-containing glycoproteins have been 
described in T. cruzi, this parasite is unable to synthesize this 
monosaccharide from precursors such as acetate or N-
acetylmannosamine [1]. The first evidence for the presence 
of sialic acid in T. cruzi was provided by Pereira et al. [2], 
who demonstrated that epimastigote forms of parasite can be 
agglutinated by wheat germ agglutinin (WGA), a lectin that 
recognizes terminal sialic acids. Subsequent studies de-
scribed the presence of sialic acid in tripomastigote forms of 
T. cruzi [3]. The question of how T. cruzi acquired a sialic 
acid-containing surface phenotype led our laboratory to 
search for an alternative pathway of sialic acid incorporation 
in this parasite. Previato et al. [4] proposed a novel pathway 
for the incorporation of sialic acid into T. cruzi glycopro-
teins, involving a transglycosylase for sialic acid, instead of 
a CMP-sialic acid-dependent sialyltransferase. In that work 
our group found that epimastigotes grown in the presence of 
fetal calf serum (FCS) displayed sialoglycoproteins, while 
those grown in the absence of FCS had only asialoglycopro-
teins. Treatment of epimastigotes grown in FCS with Clos-
tridium perfringes neuraminidase abolishes WGA binding 
and instead enhances the binding of PNA, a lectin that rec-
ognizes terminal residues of -galactose [2]. If the sialidase-
treated parasites were incubated with sialyllactose or fetuin, 
but not with free sialic acid, they regained the ability to bind 
WGA, with concomitant reduction of PNA binding [4]. Then 
characterization of the sialic acid isolated from trypomas-
tigotes retrieved from mouse infection showed that this was 
N-glycolylneuraminic acid [5], the type of sialic acid found  
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in mouse serum glycoproteins. The presence of trans-
sialidase activity in trypomastigotes was later proven by 
Schenkman et al. [6] from the classical biochemical point of 
view. These and other findings [7, 8] led to the current 
model, in which T. cruzi has an obligate adaptation to obtain 
sialic acid from its hosts, fulfilling this need through trans-
sialidase-mediated transfers from sources in its vicinity; this 
remains today one of the most interesting aspects of T. cruzi 
glycobiology. The present review deals with the biological 
aspects of the T. cruzi trans-sialidase relevant to this enzyme 
as a target, and with the current status of the efforts towards 
the rational design of drugs that inhibit the T. cruzi trans-
sialidase (TcTS).  

THE ROLES OF TcTS 

 trans-Sialidase is not a single protein. Rather, TS is a 
collective name that describes the products of a few hundred 
different genes with considerable sequence divergence 
among them. These genes encode both for molecules with 
trans-sialidase enzymatic activity and for proteins with func-
tions unrelated to the transfer of sialic acid, such as the 
members of the 85 kDa glycoprotein family (Tc-85) [9] 
which is the subject of a recent review [10]. 

 The ability to trans-sialylate T. cruzi surface mucins [11, 
12] and host glycoconjugates [5] determines that TS may 
function in modulating host-parasite interaction, both on the 
trypomastigote surface or as a soluble mediator. Initial re-
ports indicated that TcTS promoted host cell invasion [6], 
and precluded the action of lytic antibodies [13]. Alterna-
tively, the enzyme was suggested to sialylate host cell gly-
comolecules, generating receptors used by the trypanosome 
for adherence to and penetration of target cells. Results with 
sialic acid-deficient mutants of Chinese Hamster Ovary cells 
support this hypothesis, as sialic acid-deficient cells are in-
fected to a lesser degree than wild type cells [14, 15]. How-
ever, recent studies by Rubin-de-Celis et al. [16] suggest that 
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a major function of TcTS in host cell infection is to facilitate 
the escape from the parasitophorous vacuole into the cytosol; 
sialic acid may act as a barrier against parasite escape from 
the vacuole, as this escape was faster in sialic-acid-deficient 
cells.  

 The biological relevance of soluble TcTS could involve 
effects on the host immune system. Chenkova and Pereira 
[17] showed that in vivo injection of minute amounts of puri-
fied TcTS increases subsequent parasitemia and mortality in 
mice infected with T. cruzi. Exacerbation of virulence was 
abrogated by pre-incubation of the enzyme before admini-
stration with a monoclonal antibody that inhibits its enzy-
matic activity. These results have been verified more re-
cently by Risso et al. [18]. However, the molecular mecha-
nisms underlying parasite virulence associated with trans-
sialidase activity have not been elucidated.  

 TcTS may have a role in immunomodulation of the in-
fected host. Administration of the soluble enzyme to non-
infected mice induces certain events that characterize the 
acute phase of Chagas´ disease, such as thrombocytopenia 
which is brought about by a reduction in the sialic acid con-
tent of platelets [19]; T and B cell activation [20, 21]; and a 
marked thymic involution [22]. With respect to T and B-cell 
activation, it should be mentioned that a non-specific, poly-
clonal, lymphocyte response constitutes one of the main fac-
tors hampering parasite control by the immune system dur-
ing early infection [23].  

  Another intriguing and very well documented property of 
TcTS proteins is their capacity to induce host cell apoptosis 
[22, 24-26]. It has been shown that the pro-apoptotic effects 
of TS on T cells are directly associated with the re-
sialylation of glycomolecules present in double negative 
thymocytes in the thymic cortex, and in spleen T cells [26]. 
However, a possibility that should not be ruled out is that 
thymocite and T-cell apoptosis is brought about by the re-
moval of sialic acid by the TcTS sialidase activity, together 
with the action of members of the galectin family. O and N-
linked glycomolecules present in all leukocyte surfaces pos-
sess repetitive units of N-acetilglucosamine (GlcNAc) and 

1,4 linked galactose (Gal). This disaccharide is a minimal 
ligand for galectin-family members [27]. Furthermore, the 
repetitive Gal 1,4GlcNAc units, forming linear structures 
knowing as polylactosamine chains, can be ligands for the 
galectins [28], in particular for galectin-1, the pro-apoptotic 
effects of which are very well documented in a range of cell 
types [29-33]. The terminal Gal residue of such lactosamine 
chains can be modified by the action of sialyltransferases 
[34], resulting in terminally sialylated chains that are no 
longer galectin ligands. It is therefore possible to speculate 
that the removal of 2,3-linked sialic acid decorating termi-
nal Gal residues in lactosamine chains by the sialidase activ-
ity in TcTS could generate a significant number of sites for 
galectin-1 binding, thus contributing to apoptosis.  

 Recently, our group demonstrated that T. cruzi uses its 
TS enzyme to resialylated the CD8

+
 T cell surface, dampen-

ing Ag-specific CD8
+
 T cell responses thus favouring its 

own persistence in the mammalian host [35]. 

 Although several works demonstrate that the biological 
effects induced by TcTS proteins are restricted to the active 

enzymes, other results showed that the enzymatically inac-
tive TcTS [36] is a sialic acid-binding lectin that co stimu-
lates host T cells through leucosialin (CD43) engagement 
[37]. In addition, Dias et al. [38] observed that inactive TcTS 
is able to bind to sialyl residues present in endothelial cells, 
triggering NF-kappaB activation and subsequent expression 
of adhesion molecules, thus facilitating parasite entry into 
host cells. 

MECHANISM OF CATALYSIS OF TcTS 

 TcTS is a member of the family number 33 of glycoside 
hydrolases (GH-33) that essentially includes the bacterial 
and eukaryotic exo-alpha sialidases (http://www.cazy.org) 
[39]. However, TS preferentially catalyzes the transfer of 
sialic acid residues from Sia 2-3Gal 1-x-containing donors 
to terminal -galactopyranosyl ( -Galp) containing accep-
tors, attaching them in 2-3 linkage [40]. Terminal -Gal, 
Gal 1-4(Fuc 1-3)GlcNAc and Gal 1-3(Fuc 1-4)GlcNAc 
are not acceptors [41]. Incorporation of one N-
acetylneuraminic acid (Neu5Ac) residue onto an acceptor 
appears to hinder the entry of a second residue when two 
potential acceptor sites are present on the same oligosaccha-
ride [12]. In the absence of a suitable carbohydrate acceptor, 
TS irreversibly transfers sialic acid to a water molecule, thus 
functioning as a sialidase similar to viral, mammalian and 
bacterial sialidases. Although the enzyme differs from those 
sialidases in acceptor specificity, it shares the same six-
bladed -propeller fold for the catalytic domain, and has the 
same key catalytic amino acids found in sialidases from bac-
teria [42-44], viruses [45-47], trypanosomes [48, 49], leech 
[50] and humans [51]. The crystal structure obtained a few 
years ago confirms that the molecular architecture of the 
TcTS active site preserves several conserved features of mi-
crobial sialidases: a) the arginine triad (Arg

35
, Arg

245
, Arg

314
) 

that interacts with the carboxylate group present in the sialic 
acid derivatives, and b) the Glu

357
 residue that stabilizes 

Arg
35

, a Tyr
342

, a Glu
230

 and an Asp
59

 at the reaction center, 
necessary for the catalytic activity [49]. All sialidases so far 
studied, as well as TcTS, catalyze sialoside hydrolysis with 
retention of configuration [52]. However, despite being gly-
cosylases, these enzymes do not possess an aspartate or glu-
tamate residue appropriately positioned to act as a nucleo-
phile in a double-displacement mechanism [53], which sug-
gests an alternative mechanism of hydrolysis. The evidence 
of production of traces of 2-deoxy-2,3-didehydro-N- acetyl-
neuraminic acid (Neu5Ac2en) after prolonged incubation of 

(2-3)-sialyllactose [52], together with the TS crystal struc-
ture obtained by Buschiazzo et al. [49], pointed towards a 
transition-state involving oxocarbonium ion intermediate. 
Such an intermediate was previously proposed for sialoside 
hydrolysis by viral sialidases [46], which like bacterial siali-
dases are known to use an SN1 reaction in their mechanisms 
of catalysis [54].  

 Concurrent works based on deuterium and carbon isotope 
effects presented evidence that TS catalyses sialoside hy-
drolysis through a pathway involving a sialyl-enzyme cova-
lent intermediary [55]. Further, Watts et al. [56], using the 

2,3-difluoro-N-acetylneuraminic acid to inactivate TcTS 
have shown by mass spectrometry that the enzyme becomes 
covalently modified on the active site Tyr residue by the 3-
fluorosialyl moiety, consistent with the Tyr

342
 residue being 
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the catalytic nucleophile of TS. On the basis of structural 
[57] and kinetic studies [58], it was proposed that the Asp

59
 

acts as a general acid/base catalyst in a double-displacement 
mechanism. In this mechanism, as the sialic acid unit ap-
proaches the enzyme, it displaces the Tyr

119
 away from the 

binding site [49], and its carboxylate group interacts with the 
Arg triad, while its acetamido group interacts with Asp

96
; 

this induces planarization of the sialic acid moiety around 
the oxygen ring, with C1, C2 and C3 assuming a 

4
H5 con-

formation during the transition state. The C2 suffers nucleo-
philic attack by Tyr

342
, assisted by Glu

230
 acting as a general 

base, and a covalent linkage is formed. The covalent inter-
mediate assumes a 

2
C5 conformation. The aglycone leaves 

the catalytic cleft, thus making space for binding of the sialic 
acid acceptor. Transfer to the acceptor would then occur 
through attack of the C2 of the sialyl-enzyme intermediate 
by water or by the 3-OH group of a lactose moiety, which 
must be deprotonated by the residue acting as acid/base cata-
lyst, Asp

59 
[58]. This is a classical ping-pong mechanism 

similar to that of other glycosydases [53].  

 Nevertheless, this model would allow a water molecule 
to attack the sialosyl-enzyme intermediate before lactose 
reaches its binding site, resulting in simple hydrolysis rather 
than in efficient sugar transfer. A mechanism involving a 
ternary complex, with the lactose moiety located in the ac-
ceptor binding site before the transference of sialic acid, 
would support higher rates for the transference reaction, as 
the acceptor substrate would dislodge water molecules from 
the catalytic pocket. This mechanism would need additional 
conformational rearrangements in the TcTS, since the crystal 
structure of the enzyme shows a lactose binding site that is 
too narrow to accommodate the aglycone moiety of the do-
nor substrate and the acceptor moiety simultaneously [49]. 
However, one cannot rule out the possibility that such rear-
rangements may take place in solution, as opposed to the 
crystallized TS. This hypothesis is given support by several 
experimental observations. The first are kinetic studies of 
both parasite-derived [41] and recombinant TS [59], which 
are consistent with a bisubstrate sequential mechanism. The 
second type of evidence arises from differences in optimal 
temperature between the trans-glycosylation and the hy-
drolysis reaction of TS, suggesting the presence of a binding 
site for the acceptor molecule [59]. The authors proposed 
that the stronger temperature dependence observed for the 
trans-glycosylation reaction as compared with the hydrolysis 
reaction may be explained by a requirement of close proxim-
ity between the acceptor and the donor bound to the catalytic 
site for the trans-glycosylation to take place. Thus, an in-
crease in the reaction temperature might alter the enzyme 
conformation in a way that changes the distance between the 
binding sites, changing the relative rate between trans-
glycosylation and hydrolysis reactions [59]. A third type of 
evidence comes from studies using NMR spectroscopy and 
an enzymatically inactive analog of TcTS (iTS) presenting a 
Tyr

342
Hys mutation. These studies demonstrated that iTS 

has the same specificity for potential sialic acid donors as 
active TcTS, i.e. it binds 2,3 sialic acid containing mole-
cules [37], but it does not bind Gal-containing acceptors, 
unless a sialoside is also present. Unless a sialoside is also 
present, suggesting that iTS interacts with its ligands in a 
sequential ordered bi-ligand mechanism [60]. These results 

suggest that the correct binding of sialic acid donor to TS 
may trigger a conformational change in the enzyme that cre-
ates the conditions for the formation of a ternary complex. 
According to this hypothesis, acceptor binding to the enzyme 
would displace the water molecules from TcTS catalytic 
cleft before formation the sialyl-enzyme intermediate takes 
place, facilitating the selective transfer reaction [57]. Finally, 
surface plasmon resonance results show that lactose binds to 
an inactive mutant of TS (Asp

59
Asn) in the presence of 

2,3-sialyllactose [49]. This discussion provides that further 
structural data are needed to shed light into the reaction 
mechanism that underlies efficient sugar transfer activity 
rather than simply hydrolysis by TcTS. Given the impor-
tance of TS and sialidases as virulence factors in several in-
fections [61], structural and mechanistic works must be re-
lentless, and must take into account that mutations in key 
amino acids may produce important modifications in the 
TcTS mechanism catalysis.  

 Taking the above comments together, the inhibition of 
the catalytic activity of TcTS is a potential target for rational 
drug design against T. cruzi, especially in the interaction to 
and prevent of invasion of the parasite into mammalian host 
cells. The relevant aspects and recent results on chemical 
inhibitors of TcTS were recently published [62-64].  
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