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Abstract: Ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTPDases), also known as ecto-ATPases and/or ecto-

apyrases, are integral membrane glycoproteins or soluble enzymes that are dependent on divalent cations. These ecto-

enzymes are important ecto-nucleotidases that are characterized by the ability to hydrolyze nucleoside triphosphates and 

nucleoside diphosphates to the monophosphate form. The hydrolysis of nucleoside monophosphates to nucleosides such 

as adenosine may then be catalyzed by the action of ecto-5´nucleotidases. The present study reviews the sequential hy-

drolysis of ATP  ADP  AMP  adenosine catalyzed by these ecto-enzymes from different trypanosomatids. These 

reactions participate in the salvage of purines in these parasites and simultaneously interfere with the establishment of in-

fection and changes in the host immune response. 
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 Surface membrane interactions between parasites and 
their host cells are of critical importance for the survival of 
the parasite, from both immunological and physiological 
viewpoints [1-4]. Plasma membranes of cells may contain 
enzymes that are oriented with their active sites facing the 
external medium rather than the cytoplasm. The activities of 
these enzymes can be measured using living cells [5-8]. 
Ecto-nucleoside triphosphate diphosphohydrolases are gly-
coproteins present in the plasma membrane with their active 
sites facing the external environment, which suggests that 
these enzymes may be involved in surface membrane inter-
actions between parasites and their host cells. Ecto-
nucleoside triphosphate diphosphohydrolases have been de-
scribed in several protozoa parasites including Toxoplasma 
gondii [9-15], Tetrahymena thermophila [16], Leishmania 
sp, [17-25], Entamoeba histolytica [26], Acanthamoeba sp 
[27], Balamuthia mandrillaris [28], Trichomonas vaginalis 
[29-31], Trichomonas foetus [32], Trichomonas gallinae 
[33], Giardia lamblia [34], Crithidia deanei [35], Herpeto-
monas sp [36, 37] and Trypanosoma sp [38-44]. These en-
zymes are divalent cation-dependent. In trypanosomatide 
parasites such as Leishmania tropica [21], Leishmania ama-
zonensis [20], Crithidia deanei [35], Trypanosoma cruzi [40] 
and Trypanosoma rangeli [39], the ecto-ATPase activities 
are stimulated by magnesium and manganese, but not by 
calcium [20, 21, 40]. In Trypanosoma brucei the ecto-
ATPase activity is stimulated by magnesium and manganese, 
and also by calcium and zinc [38]. The ecto-nucleoside tri-
phosphate diphosphohydrolases from trypanosomatids are  
 

 

*Address correspondence to this author at the Instituto de Bioquímica Mé-

dica, UFRJ, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, R.J. 

21941-590, Brazil; Tel: + 55-21-2562-6781; Fax: +55-21-2270-5988:  

E-mail: meyer@bioqmed.ufrj.br 

membrane bound enzymes and do not secreted enzymes as 
observed in the apicomplexan parasite, Toxoplasma gondii 
[13]. 

 Trypanosomatids are protozoan parasites that cannot syn-
thesize purines de novo [20, 38, 45]. It has been postulated 
that these ecto-nucleoside triphosphate diphosphohydrolases 
could play a role in the salvage of purines from the host in 
Leishmania amazonensis [18, 20], Trypanosoma cruzi [40] 
and Trypanosoma brucei [38]. The ability of these trypano-
somatids to hydrolyze ATP, ADP and AMP to generate ad-
enosine (Fig. 1) was confirmed by HPLC analyses [18, 38]. 
It has also been demonstrated that when these protozoa are 
grown in the presence of adenosine, they have lower ecto-
ATPase activity than in the absence of adenosine [18, 20, 35, 
38]. This negative modulation of the ecto-ATPase activity is 
associated with the lower expression of the enzyme, as con-
firmed by flow cytometry analysis of Leishmania amazonen-
sis incubated with different anti-NTPDase antibodies [18]. In 
Trypanosoma brucei, it was recently shown that the E-
NTPDase and ecto-5’nucleotidase activities sequentially 
dephosphorylate ATP to adenosine: ATP  ADP  AMP 

 adenosine, making adenosine available to T. brucei [38]. 
The inhibition of E-NTPDase activity but not the ecto-
5’nucleotidase activity by ferrous iron and heme suggests 
that E-NTPDase catalyzes the rate-limiting step in the gen-
eration of adenosine from ATP in this protozoa [46].  

 In trypanosomatids, the localization of ectoATPases in 
the plasma membrane with their active sites facing the exter-
nal environment suggests that these enzymes may be in-
volved in virulence and infection [47,48]. Interestingly, ex-
ogenous carbohydrates involved with cellular recognition 
and adhesion of these parasites with their hosts stimulated 
ecto-ATPase activities from different trypanosomatids. 
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Fig. (1). Partial reactions catalyzed by ecto-nucleoside triphosphate diphosphohydrolase (1) and ecto-5´nucleotidase (2). Extracellular ATP 

can originate from stressed or injured cells. This mechanism triggers the host inflammatory and immune response. NTPDase of parasites 

modulate the level of extracellular nucleotides by the sequential hydrolysis of ATP to AMP. AMP is then dephosphorylated by the action of 

an ecto-5’-nucleotidase to release adenosine (ADO). Adenosine may be used in the salvage of purines or as a mediator of immune suppres-

sion by the parasites. 

Galactose was a good activator of T. cruzi ecto-ATPase [40] 
while fructose was a good activator of T. rangeli ecto-
ATPase [39]. Similar findings were also observed with other 
protozoan parasites: galactose stimulated ecto-ATPase from 
Entamoeba histolytica [26], Tritrichomonas foetus [32], Tri-
chomonas vaginalis [31], and Balamuthia mandrilaris [28] 
while mannose stimulated the ecto-ATPase from Acantham-
oeba [27]. Many other studies have shown the participation 
of ecto-ATPases from trypanosomatids parasites in the infec-
tion of the host cells. Ecto-ATPase activity is higher in the 
infective forms of T. cruzi (trypomastigote) than in non-
infective forms (epimastigotes) [40, 41, 43]. Suramin and 
4,4’diisothiocyanostylbene 2,2’-disulfonic acid, inhibitors of 
the T. cruzi ecto-ATPase, reduced the number of parasites 
attaching to mouse peritoneal macrophages [41]. ATP, the 
substrate for these enzymes, protected T. cruzi ecto-ATPase 
activity from inhibition by suramin and 
4,4’diisothiocyanostylbene 2,2’-disulfonic acid [40], increas-
ing parasite-infected macrophages [41]. Recently, it was also 
shown that suramin and other inhibitors of T. cruzi ecto-
ATPase activity also promoted a marked inhibition of try-
pomastigotes infectivity [44]. Mice infected with ecto-
ATPase-inhibited trypomastigotes had lower levels of para-
sitemia and higher host survival than non-inhibited control 
parasites [44]. In Leishmania amazonensis, ecto-ATPase 
activity was also higher in the amastigote stage than in 
axenic promastigotes [18]. The ecto-ATPase activity of L. 
amazonensis was increased when the parasites were submit-
ted to heat shock [17], which may play a fundamental role in 
parasites during infection [17]. In species of the genus 
Leishmania, further evidence for a role of ecto-ATPase in 
virulence comes from the observation that pretreatment of 
the parasites with anti-NTPDase antibodies reduced the 
interaction of the promastigotes with mouse peritoneal 
macrophages [18].  

 The ecto-nucleoside triphosphate diphosphohydrolases 
could also play a role in modulating inflammation and the 
immune response by affecting the extracellular concentration 
of ATP [22]. ATP, released in the extracellular milieu by 
injured or pathogen-stimulated cells, participates in many 
aspects of the establishment of an inflammatory response 

such as cytokine secretion and cellular migration [22, 47]. 
The presence of ecto-ATPases and ecto-5´nucleotidases in 
trypanosomatids suggests the possibility that the coordinated 
action of these enzymes on extracellular ATP hydrolysis and 
adenosine production could interfere with the immune re-
sponse of the host (Fig. 1). It has been demonstrated that the 
presence of increased levels of adenosine early in infection 
by Leishmania braziliensis causes an increase in lesion size 
and parasitism and delayed lesion control [22]. However, it 
is not yet clear whether only the increase of extracellular 
adenosine concentration and/or a decrease of ATP concentra-
tions are involved in Leishmania infection. Studies on the 
selective inhibition by ferrous iron and heme of E-NTPDase 
and ecto-5’nucleotidase activities from T. brucei [46] could 
clarify the role of extracellular ATP and adenosine in several 
infectious diseases involving Trypanosomatids, opening new 
perspectives for rational drug design. 
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