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INTRODUCTION 

 Simulations with Finite-Difference-Time-Domain Particle- 
in-Cell (FDTD-PIC) computational methods provide insight 
into a broad spectrum of electromagnetic field and plasma 
beam wave applications. One of the principal challenges is 
the correct modeling of the EM boundary at terminations of 
the simulation space. There is a rich field of methods used in 
the termination of an electromagnetic domain [1]. These 
methods may collectively be regarded in general as 
“absorbing wave boundary conditions”, or ABC’s. As a 
group, however, many of the more sophisticated methods 
impose an artificial loss term to provide damping of the 
exiting wave field. These methods often provide excellent 
broadband absorption of outgoing wave fields, but generally 
form two liabilities with respect to PIC simulations. First, the 
methods are by design purely absorbing and provide no 
simple approach for injection of wave fields into a 
simulation. And secondly, they are typically unstable or at 
best degraded by the impingement of the PIC-macro-
particles through the boundary zone. Historically, a very 
simple Matched Phase Velocity (MPV) has been found 
suitable for both conditions [2, 3]. We will begin with a 
simple improvement to the Matched Phase Velocity method 
that is based on the 1-dimensional advection equation 
approach [4, 5]. Simply stated, this method ensures proper 
centering of the boundary equation in time and space in the 
direction of wave propagation, as such we will refer to this 
as the Centered Matched Phase Velocity (CMPV) method. 
(In future work, we intend to look at the additional multi-
dimensional effects suggested in the approach of Enquist-
Majda

 
[5] to the uni-directional wave equation.) 

 In the following discussion we will be using the FDTD-
PIC code MAGIC to illustrate the effectiveness of the 
approach that we are developing. The MAGIC software is a 
user-configurable EM FDTD-PIC simulation code used for 
the modeling and simulation of beam wave interactions and 
electro-energetic processes between space charge and EM  
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fields. This approach is versatile and provides self consistent 
interaction between particles and fields. The MAGIC 
software includes a broad variety of boundary and material 
properties as well as particle and field algorithms. We will 
make use of only a selected subset to illustrate the behavior 
of the improved CMPV approach. 

 The centered MPV method for bounding an 
electromagnetic domain will be shown to be effective in 
reducing unwanted boundary reflections in the MAGIC EM 
code and has the pleasing symmetry of application that 
waves may be injected and removed from the simulation via 
the same numerical methodology, and does not exhibit the 
unstable behavior of other ABC methods when penetrated by 
charged particles. 

MAXWELL SOLVER TERMINATION 

 In FDTD-PIC perfect conductor and periodic and mirror 
symmetries are easily treated both with and without 
particles. However, the open (or unconstrained) boundary 
termination is the case which has received the most attention 
and required more care when particles are allowed to exit the 
simulation, or conversely are injected into the simulation 
space through the “open boundary”. 

 There are two crucial issues: first the completion of the 
simulation domain with an effective one-sided wave 
equation, or uni-directional wave equation (i.e. it closes or 
completes Maxwell’s equations on the simulation edge); 
secondly, is the boundary truncation insensitive (transparent) 
to the passage of ambient particles through the boundary? 

 For the first issue, the closure of Maxwell’s equations, 
there are several competing approaches, each with its own 
advantages and disadvantages. Four of the methods 
implemented in MAGIC are: 

• The matched phase velocity method [2, 3], (MPV), 

• The centered matched phase velocity method [4, 5], 
(CMPV), 

• The optimized free space method [6], and 

• The CPML method [7]. 

 For this paper we will consider only a variant of the 
matched phase velocity method, since the other two 
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approaches are generally impractical when particles 
penetrate the absorption region. 

 The matched phase velocity method (MPV), while 
historically the oldest approach, is in general the most robust 
for two important aspects of simulation modeling, beam 
wave propagation and the boundary termination with wave 
injection. The simplified form of the MPV in 1-dimension is 
listed below for the outgoing wave formulation. 

. (1) 

. (2) 

 The centered matched phase velocity (CMPV) method 
separates artificial numerical dispersion from physical 
dispersion and compensates for the computational artifact. It 
begins by writing the hyperbolic one dimensional wave 
propagation equation in (Cartesian) operator form as 
follows: 

          (3) 

 This may be factored as follows. 

.        (4) 

 Note that the wave equation is separated into a forward 
and backward wave operator and that for a wave propagating 
in one direction only the forward or backward operator 
results in zero. Consider only the portion of the operator that 
is the solution to a forward traveling (+x) wave, then we can 
write the following operation equation 

.        (5) 

 For N=1, the standard wave equation results (also 
identified as the advection equation.) However, it is 
permissible to operate on the wave field multiple times and 
still satisfy the wave equation. Thus in the finite difference 
representation, it is implicit that for a reasonable 
approximate value of the phase velocity, the first order 
equation is approximately zero, and one expects that 
multiple applications of the difference operator will provide 
improved results, leading to a better approximation to a 
perfect match. 

 For boundary termination, two complementary aspects of 
this method are of value in MAGIC; these are the separation 
of the scattered wave component and the incident wave 
component. Fig. (1) illustrates the finite difference 
representation of the field components that contribute to the 
update at the latest time step and at the edge of the 
simulation domain for the operator that gives a solution to a 
negatively traveling wave. 

 Using a temporal and spatially centered forms for the 
finite difference approximation to the differential equation 
we can write the finite difference form as 

.          (6) 

.            (7) 

.            (8) 

the first order (n=1) solution to the operator equation, 
requires knowledge of the boundary value at the preceding 
time step and the values of the field one spatial step to the 
interior both for the current and the preceding time step. 
Application of higher order solutions requires information 
further into the simulation and farther back in time. Thus for 
n=1, we need three time-space fields to obtain the edge 
value. For n=2, we require eight time-space fields, and so 
forth to higher order. 

 

Fig. (1). This illustrates the contributing fields for the 1
st
, 2

nd
 and 3

rd
 

order CMPV method. 

 Before proceeding to the higher order results, we will 
introduce finite difference operators and recast the 
differential form accordingly. 

, this is the identity operator.        (9) 

, this is the spatial promotion operator.   (10) 

, this is the temporal demotion operator.   (11) 

 The finite difference advection operation may be written 
as the following 

.        (12) 

 Applying the advection operation a second time gives 

.   (13) 

this yields the following 2
nd

 order finite difference update for 
the boundary value. 

 

.       (14) 

 Continuing this process we apply the operator three 
times. 

 

      (15) 
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 After considerable rework we obtain the 3
rd

 order finite 
difference update equation for the boundary value. (Note that 
this requires 15 time and space values to obtain the 16

th
 

value lying on the boundary. There are 4 spatial locations, 
corresponding to 3 full spatial cells. And there are 4 
temporal locations, 1 current time at all spatial locations and 
values at 3 earlier time steps.) 

 

   

          ) ) + 

          )        (16) 

 An important additional feature of this approach is that 
one separates the scattered and incident wave components. 
Because of the symmetry of the operations, it is a trivial 
extension to use this method to introduce arbitrary EM 
waves into the simulation domain. We have implemented 
both the 1

st
 and 2

nd
 advection methods in the MAGIC 

software. In the remaining discussion we will refer to the 
original matched phase velocity method used in MAGIC as 
MPV (denoting the original non-centered model), and 

CMPV1, (denoting the 1
st
 order advection), and CMPV2, 

(denoting the 2
nd

 order advection update), and so forth. 

THE CYCLOTRON AUTO-RESONANT MASER 
(CARM) AS A SAMPLE PROBLEM 

 As an example problem, we will use the simple geometry 
of Fig. (2) to represent a cyclotron auto-resonant maser [8]. 
A CARM is a compact high efficiency, high frequency 
device. In the maser, electrons gyrating in a circular orbit 
interact with a rotating electric field. Interaction of the 
electron beam of a particular gyro-frequency and an RF field 
of the same (or nearly the same) frequency results in 
amplification of the RF signal as beam energy is converted 
to RF energy. Practical efficiencies in energy conversion 
may be as much as 40%. In our example, we use a hollow 
cylindrical guide, with an 11mm diameter, and a 70-mm 
length. 

 In the cold test problem we inject a TE01 excitation 
signal of 103 GHz at the left side of the test guide. 

 The Standing Wave Ratio (SWR) of the E  field is 
measured along the interior of the guide at a half radius 
between z=1cm and 6cm. The square of the field is 
integrated over T=1 RF period. 

 

Fig. (2). Plane (rz) of a circular waveguide with 103 GHz TE01 excitation at the right end. 

 

Fig. (3). Illustrates the effect of coarse resolution of the axial mesh on the Te01 field. 
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       (17) 

 S = SWR = Max /Min 

            (18) 

 |S11| = (S-1)/(S+1)         (19) 

 Measurements were taken for several different grid 
resolutions. Table 1 below lists the resolution parameters. 
The notation, R4,2 (for example), abbreviates the ratio of 
zone sizes of one fourth in z and one half in r employed 
compared to the baseline calculation. This ratio is used 
elsewhere in the paper to characterize numerical resolution, 
as well. 

 

 

Table 1. Table of Mesh Resolution Parameters 

 

Case Resolution 
r 

(mm) 

z 

(mm) 
/ z 

1 Coarse (baseline) 0.36 0.5 5.81 

2 R2 ( zbaseline/2, rbaseline/1.44)  0.25 0.25 11.62 

3 R4 ( zbaseline/4, rbaseline/1.44)  0.25 0.125 23.23 

4 R4,2 ( zbaseline/4, rbaseline/2.00)  0.18 0.125 23.23 

5 R6,3 ( zbaseline/6, rbaseline/3.60)  0.10 0.0833 34.87 

 

 Figs. (3, 4) illustrate the effect of the axial and radial 
resolution on the E  field. The primary effect is the 
inadequate resolution of the axial wavelength. 

 

 

Fig. (4). Illustrates the effect of adequate resolution, Case 4, of the axial and radial mesh on the Te01 field. 

 

Fig. (5). In this figure we compare radiated average power at the end of the guide for the MPV method, the 1
st
 order CMPV method and the 

2nd order CMPV method for Case1 (coarse FD resolution.) 
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 We determine the reflection from the boundary by 
measuring the standing wave ratio (SWR) of the electric 
field amplitude at the half-radius of the cylindrical wave 
guide along the axial extent of the wave guide. 
Measurements of the SWR along the interior of the 
waveguide are given in Table 2. 

Table 2. S11 from Port Mismatch for Various Grid 

Resolutions for the 3 Different Matching Models 

 

Case Resolution MPV 
CMPV1 

1
st
 Order 

CMPV2 

2
nd

 Order 

1 Coarse -11.5 dB -22.4 dB -39.2 dB 

2 R2 -18.8 dB -33.8 dB -42.4 dB 

3 R4 -26.1 dB -40.6 dB -43.1 dB 

4 R4,2 -26.9 dB -42. 0 dB -45.9 dB 

5 R6,3 -28.9 dB -47.7 dB -50.9 Db 

 

 As can be seen in the table the 2
nd

 order CMPV method 
gives exceptionally good matching regardless of the 
resolution of the mesh. The 1

st
 order CMPV method matches 

that of the 2
nd

 order when the axial resolution is improved by 
a factor of 4. The older MPV model gives adequate matching 
at the higher resolutions but never achieves a better match 
than about -29 dB, which nevertheless would be satisfactory 
in many hot test applications. 

 Fig. (5) shows the average output power for Case 1 and 
illustrates the effect of poor boundary matching caused by 
coarse resolution. 

 Fig. (6) shows the improvement in the behavior of the 
standard model (MPV) when the resolution of the grid 
allows a good representation of the wavelength. In this case  
 

we note that the both the CMPV1 and CMPV2 appear 
indistinguishable on this scale. 

 The value of the improved matching may be demonstrated 
by injecting a gyro magnetic beam from the left side of the 
simulation. We are modeling a Cyclotron Auto Resonant Maser 
(CARM). In this example, we are going to use it as an amplifier 
of the test signal injected at the right of the simulation. The 
beam is injected with energy 763 kV, current of 2.5 kA, and a 
guiding magnetic field of 2 tesla. 

 Figs. (7-9) reveal some of the hazards of poor resolution 
and inadequate matching of the boundary as the reflections 
from the boundary propagate back upstream of the beam 
(Fig. 8). Fig. (9) shows the value of adequate resolution with 
a good boundary match. 

 Table 3 illustrates the effect of the boundary models on 
the signal gain. The effects are much as one would expect. 
Interestingly, for this example problem the damage to the 
gain in the worst case is not as severe as might be expected 
from the poor resolution. In fact, the 2

nd
 order advection 

model is largely insensitive to the marginal resolution case. 

Table 3. Table of Signal Gain for the 3 Boundary Models for 

Different Mesh Resolutions 

 

Case Resolution Gain 0 Gain 1 Gain 2 

1 Coarse 9.79 dB 10.85 dB 11.87 dB 

2 R2 12.55 dB 12.55 dB 12.70 dB 

4 R4,2 11.45 dB 11.60 dB 12.40 dB 

 

CONCLUSIONS 

 We began our investigation with the goal of achieving 
better boundary matching in the cases of both cold test  
 

 

Fig. (6). In this figure we compare radiated average power at the end of the guide for the MPV method, the 1
st
 order CMPV method and the 

2nd order CMPV method for Case 4 (Moderate Resolution.) 
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Fig. (7). The base line kinetic energy phase space without an injected signal for coarse resolution illustrates the damage to the beam 

propagation when using marginal resolution. 

 

Fig. (8). The kinetic energy phase space with an injected signal for coarse resolution illustrates the damage to the beam propagation when 

using marginal resolution and the inadequate phase bunching. 

 

Fig. (9). The kinetic energy phase space with an injected signal for good (4,2) resolution illustrates the amplification and bunching of the 

beam. The beam is phase bunched with the input signal and transfers energy to the RF. 
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performance and in the more extreme case of hot test 
behaviour. The cold test performance achieves our goal by 
greatly reducing the artificial reflection from the numerical 
boundary. In the case of amplifiers this is an important 
consequence as we wish to reduce feedback effects that can 
damage performance. For the hot test, in which we permit 
particles to exit the simulation, we find no ill effects and in 
fact see that the better performance of the boundary gives 
somewhat greater gain. The critical finding is that we have 
not damaged the simulation behaviour by allowing particles 
to penetrate the boundary. 

 It is clear that the Centered Matched Phase Velocity 
Method (CMPV) has greatly improved performance as 
boundary than does the original Matched Phase Velocity 
Method (MPV). The effect of 1

st
 order versus 2

nd
 order 

diminishes as the FD resolution becomes greater and greater. 
In all cases the CMPV performs better than does the MPV 
alone. 

 The 3
rd

 order update was only recently developed and is 
under testing. The initial results indicate that it provides little 
improvement over 2

nd
 order when the spatial resolution is 

reasonably good. The investigation of this approach 
continues. 
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