
Send Orders for Reprints to reprints@benthamscience.ae 

 The Open Plasma Physics Journal, 2015, 8, 23-32 23 

 
 1876-5343/15 2015 Bentham Open 

Open Access 
Non-Akhiezer-Polovin Model on Plasma Electrostatic Wave and Electron 
Beam 

H. Lin* 

State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, P. O. Box 800-211, 
Shanghai 201800, China 

Abstract: We study, beyond the well-known Akhiezer-Polovin model, plasma electrostatic wave and unmagnetized 
electron beam.Our investigation is based on a stricter theory in which a long-lasting misconception about zero-
temperature fluid motion equation is removed. Our theory explains some authors' puzzle about why a narrowly focused 
(charged particles) beam is preserved in the presence of strong space charge forces. The interaction of such a 
unmagnetized charged particles beam with a plasma electrostatic wave is studied in details and some universal results are 
revealed. These exact information are crucial to accurate estimation of the quality of a plasma wakefield and hence its 
performance in acceleration. 
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1. INTRODUCTION 

Among numerous theoretical investigations on plasma-
based particle acceleration [1-16], Akhiezer-Polovin (A-P) 
model is a popular description on zero-temperature plasma 
electrostatic (ES) wave [3-5, 9, 15]. According to this model, 
there is a convective term appearing in the fluid motion 
equation in the zero-temperature limit.  

∂!𝑝 𝑢 + 𝑢 ⋅ ∇!𝑝 𝑢 = − 𝐸 + 𝑢×𝐵  (1) 

where 𝑢  is fluid velocity, 𝑝 𝑢 = !

!!!!
 and 𝑢 ⋅ ∇!𝑝 𝑢  is 

the so-called convective term. Because the fluid motion 
equation in the zero-temperature limit and 4  Maxwell 
equations (Meqs) form a basis for studying macroscopic 
property of charged particles, it is very crucial to ensure 
these equations being correct or strictly derived from 
microscopic Vlasov-Maxwell (V-M) theory, which is also 
the theoretical basis of beam physics [17-27]. 

The derivation of the A-P model is completely a standard 
textbook procedure. By deriving a finite-temperature fluid 
motion equation [28] from Vlasov equation (VE) and then 
putting this equation in the zero-temperature limit, we can 
discard the thermal-pressure term and finally obtain Eq. (1). 
This procedure seems to be perfect. Eq. (1) can also be 
derived from other way [see later]. Agreement between 
different derivation methods further confirms Eq. (1) to be 
strictly correct. 

However, we cannot ignore a deep inconsistency behind 
the above-described standard procedure of deriving the  
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Eq. (1). That is, when putting the finite-temperature fluid 
motion equation in the zero-temperature limit, we actually 
have subconsciously believed that zero-temperature type 
distribution is a strict solution of the VE. This belief might 
be the fundamental reason for a long-lasting misconception 
popular in plasma and beam physics. We have pointed out 
this inconsistency elsewhere [31]. For convenience of 
readers, we also introduce them in details in this work. 

This forces us, beyond the A-P model, to re-consider ES 
wave, electron beam and various aperiodic ES structures in 
charged particles. (here, wave is a periodic ``structure''. 
Because studied physical quantities are not bound to be 
periodic, we introduce a more general term “structure”). This 
will be done in Sec.II. The interaction between periodic 
structure and aperiodic one is the content of the third 
subsection of Sec.II. The 4-th subsection is for phase space 
coherent structure. Section. III is a brief summary. 

2. THEORY 

2.1. Starting Model Equations 

We start from well-known V-M equation set [28, 29]  

∂! + 𝜐 ⋅ ∇ − 𝐸 + 𝜐×𝐵 ⋅ ∂! ! 𝑓 = 0, (2) 

 ∂!𝐸 = 𝑛𝑢 + ∇×𝐵; (3) 

∇ ⋅ 𝐸 = −𝑛 + 𝑍𝑁!; (4) 

∇×𝐸 = − ∂!𝐵; (5) 

 ∇ ⋅ 𝐵 = 0. (6) 

where 𝑝 𝜐 = 𝑚!
!

!!!⋅!
, 𝑛 =  𝑓𝑑!𝜐, 𝑢 =  !!!!!

 !!!!
 and 𝑚!  is 

the static mass of an electron. Moreover, electron charge 𝑒  
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has been absorbed into 𝐸 and 𝐵. Moreover, all equations are 
expressed in term of Euler variables 𝑟, 𝑡 , and 𝜐  is 
independent of 𝑟 and 𝑡. 

A strict analysis have revealed that if 𝑓 𝑟, 𝜐, 𝑡  is a strict 
solution of the VE, 𝑓! = 𝑓 𝑟,  !!!!!

 !!!!
, 𝑡 ∗ 𝛿 𝜐 −  !!!!!

 !!!!
 is not 

[31, 32]. This result can be found from more general 
Klimontovich-Dupree (K-D) theory [28]. According to the 
K-D theory, a particle system can be described by a function 
𝑁 𝑟, 𝜐, 𝑡 =  ! 𝛿 𝑟! 𝑡 − 𝑟 𝛿 𝑑!𝑟! 𝑡 − 𝜐  which meets the 
VE. Obviously, a function with more constraint 𝑁! 𝑟, 𝜐, 𝑡 =
 ! 𝛿 𝑟! 𝑡 − 𝑟 𝛿 𝑑!𝑟! 𝑡 − 𝜐 𝛿 𝜐 − 𝑢 𝑟, 𝑡  will correspond to 

a zero-temperature type distribution function. Even though 
𝑁 𝑟, 𝜐, 𝑡 =  ! 𝛿 𝑟! 𝑡 − 𝑟 𝛿 𝑑!𝑟! 𝑡 − 𝜐  always meets the 
VE, 𝑁! 𝑟, 𝜐, 𝑡 =  ! 𝛿 𝑟! 𝑡 − 𝑟 𝛿 𝑑!𝑟! 𝑡 − 𝜐 𝛿 𝜐 − 𝑢 𝑟, 𝑡  
does not. This can be directly verified by substituting 𝑁! 
back into the VE. 

For any particle system described by a microscopic 
distribution function 𝑓 , we can always view it as the 
summation of two subsystems of a same fluid velocity 𝑢, one 
consists of all particles whose velocities are equal to 
𝑢 =  !!!!!

 !!!!
 and the other is described by a “hollow” 

distribution 𝑓!!  which meets 𝑓!! 𝑟, 𝜐 = 𝑢, 𝑡 = 0  and 
𝑢 =  !!!!!!!

 !!!!!!
. Above results reveal that each subsystem does 

not have a conserved total particle number and hence 
exchange particles with the other. This might be the 
fundamental reason for why the zero-temperature type 
subsystem, which corresponds to 𝑓! = 𝑓 − 𝑓!! , does not 
meet the VE. 

The microscopic dynamics equation of 
𝑓! = 𝑛! 𝑟, 𝑡 𝛿 𝜐 − 𝑢 𝑟, 𝑡 , where 𝑛! =  𝑓!𝑑!𝜐 , can be 
derived straightforward [31]. According to strict theory [31, 
32], the continuity equation associated with 𝑛! becomes  

∂!𝑛! + 𝑢 ⋅ ∇!𝑛! = 0, (7) 

rather than our familiar ∂!𝑛! + 𝑢 ⋅ ∇!𝑛! = −𝑛!∇! ⋅ 𝑢  (i.e. 
∂!𝑛! + ∇! ⋅ (𝑛!𝑢) = 0 ). This reflects the subsystem 
described by 𝑓!  having particle exchange with other. 
Namely, because 𝐸  is space-time dependent, a charged 
particle system cannot be at zero-temperature state in which 
at any space position, all particles have a same velocity. 
Space-inhomogeneous 𝐸  will lead to, in some space 
positions, the temperature differing from 0  and hence 
thermal spread in particles' velocities appearing (which 
means some particles being out of the kernel group described 
by 𝑓! and into the hollow group described by 𝑓 − 𝑓!) . 

Likewise, a macroscopic fluid motion equation can be 
derived [31, 32]  

∂!
!

!!!!
+ 𝐸 + 𝑢×𝐵 = 0. (8) 

 In contrast, we can, from the VE, derive our familiar 
fluid motion equation (for arbitrary temperature)  

 
 

∂!𝑢 +
 (!!!)∇![!!]!!!

!
+  !(!,!)!!×! !,! ⋅[ !!!!]!∗!!!!

!
= 0. (9) 

Obviously, two strict equations of 𝑢 suggest a balance 
relation  

 (𝜐 − 𝑢)∇![𝜐𝑓]𝑑!𝜐
𝑛

= 

−  !(!,!)!!×! !,! ⋅[ !!!!]!∗!!!!
!

+ 𝐸 + 𝑢×𝐵 1 − 𝑢!
!
, (10) 

which is an implicit equation of the temperature or the 
thermal spread. 

Above discussions have displayed in details, from 
microscopic theory, why Eq. (1) is inaccurate. On the other 
hand, Eq. (1) can also be derived completely via 
macroscopic fluid theory [20, 21]. This forces us to analyze 
what is misunderstood when deriving Eq. (1) from fluid 
theory. 

Because in standard fluid theory, if a physical field is 
expressed by Lagrangian variable 𝑄 𝑟 𝑡 , 𝑡 , its total 
differential with respect to 𝑡 will be strictly 𝑑!𝑄 𝑟 𝑡 , 𝑡 =
∂!𝑄 𝑟 𝑡 , 𝑡 + 𝑑!𝑟 ⋅ ∇!𝑄 𝑟 𝑡 , 𝑡 . Thus, if 𝑄  stands for 
momentum 𝑝 , there will be 
∂!𝑄 𝑟 𝑡 , 𝑡 + 𝑑!𝑟 ⋅ ∇!𝑄 𝑟 𝑡 , 𝑡 = 𝑑!𝑄 𝑟 𝑡 , 𝑡 =
𝐹 𝑟 𝑡 , 𝑡  (where 𝐹 𝑟 𝑡 , 𝑡  stands for the field of force). 
For this equation, people often, by the relation 𝑑!𝑟 ≡
𝑢 𝑟 𝑡 , 𝑡  which defines the trajectory of a fluid element, re-
write it as a more familiar form 𝐹 𝑟 𝑡 , 𝑡 = ∂!𝑝 𝑟 𝑡 , 𝑡 +
𝑢 𝑟 𝑡 , 𝑡 ⋅ ∇!𝑝 𝑟 𝑡 , 𝑡 = ∂!𝑝 𝑢 𝑟 𝑡 , 𝑡 + 𝑢 𝑟 𝑡 , 𝑡 ⋅
∇!𝑝 𝑢 𝑟 𝑡 , 𝑡 , where 𝑝 𝑢 = !

!!!⋅!
. Then, after 

transforming this familiar form from an expression in term 
of Lagrangian variables 𝑟 𝑡 , 𝑡  to that in term of Euler 
variable 𝑟, 𝑡 , we will obtain Eq. (1). 

However, if noting that the relation 𝑑!𝑟 ≡ 𝑢 𝑟 𝑡 , 𝑡  can 
lead to 3 equivalent expressions of 𝑑!𝑟 ⋅ ∇!𝑝 𝑢 𝑟 𝑡 , 𝑡 : 1. 
𝑢 𝑟 𝑡 , 𝑡 ⋅ ∇!𝑝 𝑢 𝑟 𝑡 , 𝑡  (merely replacing 𝑑!𝑟  left to ⋅ 
operator with 𝑢 𝑟 𝑡 , 𝑡 ); 2. 𝑑!𝑟 ⋅ ∇!𝑝 𝑑!𝑟  (merely 
replacing 𝑢 𝑟 𝑡 , 𝑡  with 𝑑!𝑟 ); 3. 𝑢 𝑟 𝑡 , 𝑡 ⋅ ∇!𝑝 𝑑!𝑟 . 
Namely, the relation 𝑑!𝑟 ≡ 𝑢 𝑟 𝑡 , 𝑡  will lead to 
𝑑!𝑟 ⋅ ∇!𝑝 𝑢 𝑟 𝑡 , 𝑡 ≡ 𝑢 𝑟 𝑡 , 𝑡 ⋅ ∇!𝑝 𝑢 𝑟 𝑡 , 𝑡 ≡ 𝑑!𝑟 ⋅
∇!𝑝 𝑑!𝑟 ≡ 𝑢 𝑟 𝑡 , 𝑡 ⋅ ∇!𝑝 𝑑!𝑟 . Most essentially, the 
property 𝑑!𝑟 ⋅ ∇!𝑝 𝑑!𝑟 = 𝑑!𝑟 ⋅

!" !
!!

|!!!!!∇!𝑑!𝑟  ≡ 0 
(because of ∇!𝑑!𝑟 ≡ 0) determines all these 4 expressions to 
be ≡ 0 . In other words, the so-called convective term 
𝑢 𝑟 𝑡 , 𝑡 ⋅ ∇!𝑝 𝑢 𝑟 𝑡 , 𝑡  is indeed 0 . More detailed 
demonstration are presented in an appendix. 

Clearly, if merely using the relation 𝑑!𝑟 ≡ 𝑢 𝑟 𝑡 , 𝑡  but 
on purpose ignoring the fact that 𝑢 𝑟 𝑡 , 𝑡 ⋅ ∇!𝑝 𝑢 𝑟 𝑡 , 𝑡  
is indeed ≡ 0, we can find that 𝑑!𝑝 𝑢 𝑟 𝑡 , 𝑡 = 𝐹 𝑟 𝑡 , 𝑡  
will agree with ∂!𝑝 𝑢 𝑟, 𝑡 + 𝑢 𝑟, 𝑡 ⋅ ∇!𝑝 𝑢 𝑟, 𝑡 =
𝐹 𝑟, 𝑡 . Incomplete/partial utilization of the relation 
𝑑!𝑟 ≡ 𝑢 𝑟 𝑡 , 𝑡  can yield a different agreement.  
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In mathematical language, incomplete/partial utilization will 
lead to extraneous root of the equation set  

𝐹 𝑟 𝑡 , 𝑡 = 𝑑!𝑝 𝑑!𝑟 ; (11) 

𝑑!𝑟 ≡ 𝑢 𝑟 𝑡 , 𝑡 . (12) 

 i.e. the solution of ∂!𝑝 𝑢 𝑟, 𝑡 + 𝑢 𝑟, 𝑡 ⋅ ∇!𝑝 𝑢 𝑟, 𝑡 =
𝐹 𝑟, 𝑡  cannot meet Eqs. (11, 12) but the solution of Eqs. (11, 
12) can meet ∂!𝑝 𝑢 𝑟, 𝑡 + 𝑢 𝑟, 𝑡 ⋅ ∇!𝑝 𝑢 𝑟, 𝑡 = 𝐹 𝑟, 𝑡 . 

In short, by analyzing on what condition Eqs. (11, 12) 
have a common solution of 𝑟 𝑡 , we can find this demanding 
a relation between two functionals 𝐹 𝑟, 𝑡 = ∂!𝑝 𝑢 𝑟, 𝑡 ,i.e. 
Eq. (8). 

2.2. Macroscopic ES Structures in Neutral and Non-
Neutral Plasmas 

For different ES structures, we wish to find related 
solutions which are static in a moving frame of a constant 
velocity !

!
𝑐. Therefore, we introduce following definitions  

𝜉 = 𝜂𝑧/𝑐 − 𝑡; 𝑝 = !
!! !/! ! ; 𝑢 𝑧, 𝑡, 𝑟, 𝜃 = 𝑢 𝜉, 𝑟, 𝜃 , (13) 

where 𝑟, 𝜃 and 𝑧 are coordinates in the cylindric frame. 

2.2.1. ES Wave 

Detailed analysis reveals that the ES wave in 3-D case 
corresponds to an equation (where 𝛽 = !!

!!
 and 𝜆 = !!

!!
, 𝑝! is 

dimensionless momentum) [30]  

1 − ! !!!!!!! !!
!! !!!!!!! !!!

∂!!𝑝! = −𝑍𝑁!
!!

!! !!!!!!! !!!
, (14) 

which corresponds to a first integral of general form  

∂!𝑝!
!
+ 𝑓! 𝑟, 𝜃, 𝑝! = 𝐺 𝑟, 𝜃 , (15) 

where 𝐺 𝑟, 𝜃  is a binary function of 𝑟 and 𝜃, and 𝑓! stands 
for well-known Sagdeev potential. 

The relation between 𝑝! and density profile 𝑛 reads [30]  

𝑛 =
!! !!!!!!! !!!

!! !!!!!!! !!!!! !!!!!!! !!
𝑍𝑁! . (16) 

 Note that the condition 𝑛 ≥ 0 will lead to a constraint 
on 𝑝!  

1 + 1 + 𝛽! + 𝜆! 𝑝!! − 𝜂 1 + 𝛽! + 𝜆! 𝑝! > 0, (17) 

or𝑝! <
!

!! !!!!!!! !! !!!!!!!
< !

!!!!
if𝜂 > 1. (18) 

𝑓! 𝑟, 𝜃, 𝑝!  and 𝐺 𝑟, 𝜃  in Eq. (15) read [30]  
𝑓! 𝑟, 𝜃, 𝑝! = 

!

!

− 1 + 1 + 𝛽! + 𝜆! 𝑝!! −
!

!

! !!!!!!!

!
ln

!! !!!!!!! !!!!
! !!!!!!!

!

!! !!!!!!! !!!!
! !!!!!!!

!

−𝜂 1 + 𝛽! + 𝜆! 𝑝! +
!
!

! !!!!!!!

!
ln !!!!!

!!!!!

𝑍𝑁!

 (19) 

𝐺 𝑟, 𝜃 = 𝑓! 𝑟, 𝜃, 𝑝! = 0 + ∂!𝑝!
!
|!!!!, (20) 

where 

𝑐 = 𝜂! 1 + 𝛽! + 𝜆! ! − 1 + 𝛽! + 𝜆! > 0𝑖𝑓𝜂 > 1. (21) 

In the A-P model [5], ∂! 𝜂𝑝 − Γ = 𝐸 is used and 𝑢 is a 
function of 𝜂𝑝 − Γ (where Γ = 1 + 𝑝!, 𝜉 = 𝑧 − !

!
𝑐𝑡 and 𝜂 

is a constant). A first integral of 𝜂𝑝 − Γ (which is denoted by 
𝑊 ) is thus derived (where 𝑍 is ionic charge and 𝑁! is ionic 
density).  

∂!𝑊
!
+ !!!

!!!!
𝜂 𝑊! + 𝜂! − 1 ±𝑊 = 𝑐𝑜𝑛𝑠𝑡 (22) 

 Following similar procedure, we use ∂!𝜂𝑝 = 𝐸  and 
derive a first integral of 𝑝.  

∂!𝑝
!
+ !!!

!!
𝑝! + 1

!
+ 𝑝! = 𝑐𝑜𝑛𝑠𝑡 (23) 

 As shown in Fig. (1), under same value of 
∂!𝑝|!!!, 𝑝|!!! , the behaviors of 𝑝  and 𝐸  from different 

models are somewhat different. Luckily, there is no marked 
difference between the magnitudes of two shapes. Also, two 
shapes are almost of a same wavelength. Actually, even 
though some authors have studied 1-D ES wave beyond the 
A-P model [6], they seem to be not aware that their treatment 
is indeed rigorous rather than an approximation, and hence 
underestimate the importance of their works. 

2.2.2. Unmagnetized Charged Particles Beam 

Same procedure can yield similar formulas about the 
unmagnetized electron beam  

1 − ! !!!!!!! !!
!! !!!!!!! !!!

∂!!𝑝! =

∂!𝛽 +
!
!
+ !

!
∂!𝜆 ∂!𝑝!

!!
!! !!!!!!! !!!

. (24) 

 which implies  

∂!𝑝! − ∂!𝛽 +
!
!
+ !

!
∂!𝜆 𝑓! 𝑟, 𝜃, 𝑝! = 𝐺 𝑟, 𝜃 . (25) 

 Likewise, 𝑛 reads  

𝑛 = − ∂!𝛽 +
𝛽
𝑟
+
1
𝑟
∂!𝜆 ∂!𝑝! − 𝜂 1 + 𝛽! + 𝜆! ∂!!𝑝! 

= −
1 + 1 + 𝛽! + 𝜆! 𝑝!!

1 + 1 + 𝛽! + 𝜆! 𝑝!! − 𝜂 1 + 𝛽! + 𝜆! 𝑝!
∂!𝛽 +

𝛽
𝑟

+
1
𝑟
∂!𝜆 ∂!𝑝! 

= −
1 + 1 + 𝛽! + 𝜆! 𝑝!!

1 + 1 + 𝛽! + 𝜆! 𝑝!! − 𝜂 1 + 𝛽! + 𝜆! 𝑝!
 

∂!𝛽 +
!

!
+ !

!
∂!𝜆

!
𝑓! 𝑟, 𝜃, 𝑝! + ∂!𝛽 +

!

!
+ !

!
∂!𝜆 𝐺 𝑟, 𝜃 . (26) 

 It is well-known that such a general form  

𝑓! 𝑦 𝑦  !! + 𝑓! 𝑦 ∗ 𝑦  ! + 𝑓! 𝑦 = 0 (27) 

which contains a linear term of 𝑦  !, cannot correspond to a 
first integral unless 𝑓! 𝑦 = 0. According to Eq. (24) and  
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Eq. (26), an unmagnetized electron beam is impossible to be 
described by a periodic solution because this will imply 
∂!𝛽 +

!
!
+ !

!
∂!𝜆 = 0  and 𝑛 = 0  anywhere. Thus, an 

unmagnetized electron beam must have  

∂!𝛽 +
!
!
+ !

!
∂!𝜆 ≠ 0 (28) 

Note that there should be n ≥ 0 anywhere. This will lead 
to a constraint on 𝑝!  

!!!!
!
!!

!
!!!!

!
!! !,!,!! ! !!!!

!
!!

!
!!!! ! !,!

!! !!!!!!! !!!!! !!!!!!! !!
 ≤ 0 (29) 

𝑓! 𝑟, 𝜃, 𝑝!  and 𝐺 𝑟, 𝜃  in Eq. (25) read  
𝑓! 𝑟, 𝜃, 𝑝! = 

!

!

− 1 + 1 + 𝛽! + 𝜆! 𝑝!! −
!

!

! !!!!!!!

!
ln

!! !!!!!!! !!!!
! !!!!!!!

!

!! !!!!!!! !!!!
! !!!!!!!

!

−𝜂 1 + 𝛽! + 𝜆! 𝑝! +
!
!

! !!!!!!!

!
ln !!!!!

!!!!!

 (30) 

𝐺 𝑟, 𝜃 = − ∂!𝛽 +
!
!
+ !

!
∂!𝜆 𝑓! 𝑟, 𝜃, 𝑝! =

!/!
!! !/! ! , (31) 

where 𝑐 = 𝜂! 1 + 𝛽! + 𝜆! ! − 1 + 𝛽! + 𝜆! > 0𝑖𝑓𝜂 > 1. (32) 

 Here, the reason for why 𝐺 𝑟, 𝜃  has above expression is 
for following consideration: the 𝑝! -value at the position 
meeting ∂!𝑝! = 𝐸 = 0 is equal to !/!

!! !/! ! and thus 1/𝜂 is a 

characteristic constant velocity of such an ES structure. Eq. 
(30) indicates that for 𝑝! > 0, 𝑓! 𝑟, 𝜃, 𝑝!  decreases with 𝑝! 

increasing. Correspondingly, the constraint Eq. (29) will 
become  

1 + 1 + 𝛽! + 𝜆! 𝑝!! − 𝜂 1 + 𝛽! + 𝜆! 𝑝! ≤ 0 (33) 

 or𝑝!
!

!! !!!!!!! !! !!!!!!!
if𝜂 > 1. (34) 

According to Eqs. (26, 29, 30, 31), 𝑝! >
!
!!!!

 will 

correspond to 𝑛 < 0. Thus, for a unmagnetized beam, its 𝑝! 
is confined within a regime  

0 < !
!! !!!!!!! !! !!!!!!!

≤ 𝑝! ≤ !
!!!!

. (35) 

Some examples of 𝑝!-profile and corresponding 𝑛-profile 
are presented in Fig. (2). Transverse boundary conditions are 
dependent on longitudinal one through 𝛽 and 𝜆. Here, we 
plot these curves in similar shapes. For example, 𝑝! rises 
monotonically to !

!!!!
 and 𝑛 drops monotonically to 0. This 

same trend just reflects these curves are from a common 
equation with different parameter values. The effect of 
related parameter values are exhibited by different ranges of 
coordinate regime. Note that at 𝑟 = 0.01 (see Fig. (2b)), 𝑝! 
rises from 0.5773334  to 0.5773350  over a regime 
0 < 𝜉 < 0.025. In contrast, at 𝑟 = 10, 𝑝! rises from 0.025 
to 0.35 over a regime 0 < 𝜉 < 0.030. Such a difference due 
to different 𝑟-values could also be found from 𝑛-curves. At 
larger 𝑟  regime, 𝑛  drops relatively gently from a value, 
which is far below that at smaller 𝑟 regime, to 0. From those 
𝑛-curves at different 𝑟-values, one could find that for a given 
𝜉, 𝑛 is inverse proportional to 𝑟. 
  

 

Fig. (1). The behaviors of 𝑝 and 𝐸 VS 𝜉 = 𝑧 − !
!
𝑡, where !

!
 is the phase velocity of the ES wave and 𝑍𝑁! = 1 is choosen. 
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Fig. (2). Examples of density profile (𝑛-profile) of a unmagnetized electron beam and corresponding 𝑝!-profile, where 𝜂 = 1/2, ∂!𝛽 +
!
!
=

exp(−𝑟!/𝑅!!) with 𝑅! = 20 in (a) and ∂!𝛽 +
!
!
= !!!

!!!!!!
 with 𝑅! = 20 in (b). Moreover, corresponding bondary conditions for Eq. (23) are 

𝑝!|!!! = 0 and ∂!𝑝!|!!! = −0.01. Here, 𝑝! is in unit of 𝑚!𝑐, 𝑛 is in unit of !.!"∗!.!""
!.!

∗ 10! 𝜇𝑚 !!, 𝐸 is in unit of 0.511 ∗ 10! 𝑉𝑜𝑙𝑡/𝜇𝑚 , 
and 𝑅 is in unit of 𝜇𝑚. 
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Above theoretical and numerical results indicate that 
even though all particles in the beam have a same charge, 
their collective self-consistent fields could confine 
themselves to form a globally-moving, small-volume and 
hard-core charged ``cloud''. Here, the word ``hard-core'' 
refers to that the density at the inside region of the cloud is 
far larger than that at the outside region.. A correct 
knowledge on a charged particles beam is very valuable to 
correctly understand its interaction with matter. As pointed 
out by Chao et al. [26], it is quite counterintuitively to 
understand that such a narrowly focused (charged particles) 
beam is preserved in the presence of strong space charge 
forces. Our above theory could answer this doubt to some 
extent. 

2.3. Beam-wave Interaction 

When a unmagnetized electron beam is injected into a 
pre-existing plasma ES wave, their respective self-electric 
fields will strongly perturb each other. As shown previously 
(for example, Eq. (24)), every ES structure is usually 
described by its phase velocity !

!
𝑐  and shape (which is 

determined by the boundary condition). Before making 
detailed study, we first discuss the phase velocity. 

2.3.1. Phase Velocity 

From Eq. (8) at 𝐵 ≡ 0 case, we know that 𝑢-value at the 
zero point of a moving 𝐸  just corresponds to a constant 
characteristic velocity. Considering that the phase velocity 
!
!
𝑐  is also a a constant characteristic velocity, for 

convenience, we choose two constant characteristic 
velocities being equal and hence !

!
𝑐 is defined as the fluid 

velocity at the zero point of the moving 𝐸,𝐵  fields. 

For every ES structure, its 𝑃 𝑢 -profile and 𝐸-profile are 
power series of 𝑧 −  !! 𝑆 𝑡  ! 𝑑𝑡  !  

𝐸 =  !! 𝑐𝐸! 𝑧 −  !! 𝑆 𝑡  ! 𝑑𝑡  !
!
;𝑃(𝑢) =  !! 𝑐𝑃𝑢! 𝑧 −

 !! 𝑆 𝑡  ! 𝑑𝑡  !
!
. (36) 

where 𝑆 = !
!

 and 𝑐𝑃𝑢! =
!

!!!!
. Note that because 

∂!𝑃 𝑢 = −𝐸, there is 𝑐𝐸! = 0 if 𝑑!𝑆 = 0. Obviously, for 
an ES structure free from perturbation, there are 𝑑!𝑆 = 0 and 
𝑐𝐸! = 0. Namely, along a trajectory defined by 𝑃(𝑧, 𝑡) =

!

!!!!
, there is always 𝐸 𝑧, 𝑡 = 0. Thus, 𝑃(𝑧, 𝑡),𝐸(𝑧, 𝑡) =

!

!!!!
, 0  defines a phase-velocity section of an ES 

structure, or 𝑧 =  !! 𝑆 𝑡  ! 𝑑𝑡  !  section in which 
𝐸(  !! 𝑆 𝑡  ! 𝑑𝑡  ! , 𝑡) = 0 exists. 

2.3.2. Momentum Exchange 

When two structures 𝐴  and 𝐵  encounter, their phase-
velocity sections are not always at a same position. Namely,  
 

at the phase-velocity section of 𝐴 structure, there might be 
𝐸! ≠ 0 and vice versa. Thus, a momentum exchange will 
occur and can be described by  

−𝑑!
𝑆!
1 − 𝑆!!

= −𝑑!𝑝!  
!

!
𝑆! 𝑡  ! 𝑑𝑡  ! , 𝑡

= 𝐸!  
!

!
𝑆! 𝑡  ! 𝑑𝑡  ! , 𝑡 + 𝐸!  

!

!
𝑆! 𝑡  ! 𝑑𝑡  ! , 𝑡  

= 𝐸!  !! 𝑆! 𝑡  ! 𝑑𝑡  ! , 𝑡 =  !!! 𝑐𝐸𝐵! ∗  !! 𝑆! 𝑡  ! 𝑑𝑡  ! −

 !! 𝑆! 𝑡  ! 𝑑𝑡  !
!
; (37) 

−𝑑!
𝑆!
1 − 𝑆!!

= −𝑑!𝑝!  
!

!
𝑆! 𝑡  ! 𝑑𝑡  ! , 𝑡  

= 𝐸!  
!

!
𝑆! 𝑡  ! 𝑑𝑡  ! , 𝑡  

+𝐸!  
!

!
𝑆! 𝑡  ! 𝑑𝑡  ! , 𝑡  

= 𝐸!  !! 𝑆! 𝑡  ! 𝑑𝑡  ! , 𝑡 =  !!! 𝑐𝐸𝐴! ∗  !! 𝑆! 𝑡  ! 𝑑𝑡  ! −

 !! 𝑆! 𝑡  ! 𝑑𝑡  !
!
, (38) 

which could be written as  

𝑑!!
!!

!!!!
!
= − 𝑆! − 𝑆! ∗  !!! 𝑐𝐸𝐵! ∗  !! 𝑆! 𝑡  ! 𝑑𝑡  ! −

 !! 𝑆! 𝑡  ! 𝑑𝑡  !
!!!

; (39) 

𝑑!!
!!

!!!!
!
= − 𝑆! − 𝑆! ∗  !!! 𝑐𝐸𝐴! ∗  !! 𝑆! 𝑡  ! 𝑑𝑡  ! −

 !! 𝑆! 𝑡  ! 𝑑𝑡  !
!!!
. (40) 

 Some examples of the solutions of Eqs.(39,40) are 
presented in Fig. (3), which indicates max 𝑆!, 𝑆!  
decreasing and min 𝑆!, 𝑆!  increasing and hence a 
momentum exchange between two structures. Such an 
exchange will continue until 𝑆! − 𝑆! becoming 0 and imply 
two structures being merged into a new structure. Note that 
the relative ratio between 𝑐𝐸𝐴!  and 𝑐𝐸𝐵!  affects the 
saturated value of 𝑆. Moreover, how soon to arrive at this 
saturated value is determined by the values of 𝑐𝐸𝐴!  and 
𝑐𝐸𝐵!. 

2.3.3. Shape Distortion 

A periodic structure can be described by a first integral of 
𝑝! and its 𝛽-profile is restricted to meet ∂!𝛽 +

!
!
+ !

!
∂!𝜆 = 0, 

while an aperiodic one cannot and its 𝛽-profile is restricted 
to meet ∂!𝛽 +

!
!
+ !

!
∂!𝜆 ≠ 0 . If 𝐴  is aperiodic and 𝐵  is 

periodic, their different detailed features in shapes determine 
that even in the merged new structure 𝐴 + 𝐵 , two 
subsystems still affect each other. Noting that the fluid 
velocity of this 𝐴 + 𝐵 structure is  
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𝑢!!! =
!!!!!!!!!

!!!!!
. (41) 

 Moreover, from  

∂!𝑝 𝑢! = ∂!𝑝 𝑢! = ∂!𝑝 𝑢!!! = −𝐸, (42) 

 we have  

𝑝 𝑢! − 𝑝 𝑢!!! = 𝐶! 𝑟, 𝜃, 𝑧 ; (43) 

𝑝 𝑢! − 𝑝 𝑢!!! = 𝐶! 𝑟, 𝜃, 𝑧 , (44) 

where 𝐶! 𝑟, 𝜃, 𝑧  and 𝐶! 𝑟, 𝜃, 𝑧  are both 𝑡-independent. 

>From initial condition, we can find that 𝛽!!! =
!!!!!!!!! !
!!!!!!!!! !

, as well as 𝜆!!! =
!!!!!!!!! !
!!!!!!!!! !

, usually does 

not meet ∂!𝛽 +
!
!
+ !

!
∂!𝜆 = 0. Therefore, 𝑝! 𝑢!!!  will be 

aperiodic and cannot correspond to a first integral. Following 
the same procedure of deriving Eq. (14) and (24), we obtain 
a similar equation for 𝑝! 𝑢!!!   

1 −
𝜂 1 + 𝛽!!!! + 𝜆!!!! 𝑝!
1 + 1 + 𝛽!!!! + 𝜆!!!! 𝑝!!

∂!!𝑝! 

= ∂!𝛽!!! +
𝛽!!!
𝑟

+
1
𝑟
∂!𝜆!!! ∂!𝑝! − 𝑍𝑁!  

!!

!! !!!!!!
! !!!!!

! !!!
. (45) 

 After solving 𝑝! 𝑢!!!  from this equation, we could 
know 𝑝 𝑢!  and 𝑝 𝑢!  according to Eqs. (43, 44). Once the 
histories of 𝑝 𝑢!  and 𝑝 𝑢!  are known, the evolutions of 𝑛! 
and 𝑛! can be strictly calculated from respective continuity 
equations. 

Therefore, when two ES structures encounter, their 
interaction are displayed by two aspects. As shown in 
Eqs.(39, 40), their phase velocities are approaching to a 
common value. On the other hand, their respective shapes 
are also distorted. For instance, Eq. (45) indicates that the  
 

 

shape of a periodic structure is distorted because of another 
aperiodic structure. 

2.4. Phase Space Structure 

First, we consider 𝐵 ≠ 0 case. The VE can be written as  

0 = ∂! + 𝜐 ⋅ ∇ − 𝐸 + 𝜐×𝐵 ⋅ ∂! ! 𝑓 

= ∂! − 𝐸 ⋅ ∂! ! 𝑓 + 𝜐 ⋅ ∇ − 𝐵× ∂! ! 𝑓. (46) 

 Moreover, if 𝑓 is a strict solution of the VE, any mono-
variable function of 𝑓, or 𝑔 𝑓 , is also a strict solution. 

For the case in which 𝐸 and 𝐵 are running waves of a 
phase velocity !

!
𝑐 , i.e. 𝐸 = 𝐸(𝑟 − !

!
𝑐𝑡)  and 𝐵 = 𝐵(𝑟 −

!
!
𝑐𝑡) , we should note a relation between 𝐸  and 𝐵 : 𝐸 =

− !
!
𝑐×𝐵 + ∇Φ(𝑟 − !

!
𝑐𝑡), which arises from ∇×𝐸 = − ∂!𝐵. 

Here, Φ(𝑟 − !
!
𝑐𝑡) is a scalar function but cannot be simply 

taken as ES potential (because − !
!
𝑐×𝐵 also has divergence 

or ∇ ⋅ − !
!
𝑐×𝐵 = !

!
𝑐 ⋅ ∇×𝐵 ≠ 0). In this case, the VE can be 

further written as  

0 = ∂! − 𝐸 ⋅ ∂! ! 𝑓 + 𝜐 ⋅ ∇ − 𝐵× ∂! ! 𝑓 

= ∂! +
1
𝜂
𝑐×𝐵 ⋅ ∂! ! 𝑓 + 𝜐 ⋅ ∇ − 𝐵× ∂! ! 𝑓 − ∇Φ ⋅ ∂! ! 𝑓 

= ∂! +
1
𝜂
𝑐 ⋅ 𝐵× ∂! ! 𝑓 + 𝜐 ⋅ ∇ − 𝐵× ∂! ! 𝑓 − ∇Φ ⋅ ∂! ! 𝑓 

= 𝜐 − !
!
𝑐 ⋅ ∇ − 𝐵× ∂! ! 𝑓 − ∇Φ ⋅ ∂! ! 𝑓.  (47) 

 It is easy to verify that any function of 𝑝 +  𝐸(𝑟 −
!
!
𝑐𝑡)𝑑𝑡 will meet  

0 = ∂! − 𝐸 ⋅ ∂! ! 𝑔 𝑝 +  𝐸(𝑟 −
1
𝜂
𝑐𝑡)𝑑𝑡  

 

 

Fig. (3). Examples of the histories of 𝑆! and 𝑆!, where 𝑐𝐸𝐴!, as well as 𝑐𝐸𝐵!, is in unit of 0.511 ∗ 10! 𝑉𝑜𝑙𝑡/𝜇𝑚 /𝜇𝑚. 
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= [−
1
𝜂
𝑐 ⋅ ∇ +

1
𝜂
𝑐 ⋅ 𝐵× ∂! ! ]𝑔 

= − !
!
𝑐 ⋅ [∇ − 𝐵× ∂! ! ]𝑔, (48) 

where we have used the property ∂!  𝐸(𝑟 − !
!
𝑐𝑡)𝑑𝑡 =

− !
!
𝑐 ⋅ ∇  𝐸(𝑟 − !

!
𝑐𝑡)𝑑𝑡 . Thus, if ∇Φ ≡ 0 , any mono-

variable function of 𝑝 +  𝐸(𝑟 − !
!
𝑐𝑡)𝑑𝑡 , or 𝑔 𝑝 +  𝐸(𝑟 −

!
!
𝑐𝑡)𝑑𝑡 , will be a strict solution of the VE. 

On the other hand, for more general ∇Φ, we can find that 

any mono-variable function of 1 + !!

!!
− !

!
𝑐 ⋅ 𝑝 + Φ , or 

𝑔 1 + !!

!!
− !

!
𝑐 ⋅ 𝑝 + Φ , is a strict solution of the VE. 

According to Eq.(47), ∂! 1 + !!

!!
− !

!
𝑐 ⋅ 𝑝  will contribute 

a vector parallel to 𝜐 − !
!
𝑐  and hence make the operator 

𝜐 − !
!
𝑐 ⋅ 𝐵× ∂! !  has zero contribution. 

Therefore, for coherent self-consistent fields 𝐸 = 𝐸(𝑟 −
!
!
𝑐𝑡) and 𝐵 = 𝐵(𝑟 − !

!
𝑐𝑡), the phase space distribution, if 

∇Φ ≡ 0, can be described by a positive-valued function of 

𝑝 +  𝐸(𝑟 − !
!
𝑐𝑡)𝑑𝑡 , for example exp − 𝑝 +  𝐸(𝑟 −

!
!
𝑐𝑡)𝑑𝑡

!
, sin!(exp − 𝑝 +  𝐸(𝑟 − !

!
𝑐𝑡)𝑑𝑡

!
), etc. We 

can further pick out reasonable solutions according to the 
definition of 𝑢  

𝑢 =
  !

!!!!
! !!  !(!!!!!")!" !

!!

 ! !!  !(!!!!!")!" !
!!

. (49) 

 Likewise, same procedure exists for more general ∇Φ 

and 𝑔 1 + !!

!!
− !

!
𝑐 ⋅ 𝑝 + Φ . 

Actually, a set of macroscopic functions 𝐸,𝐵, 𝑢  can 
have multiple microscopic solutions of corresponding VE. 
Therefore, usually we know the phase space distribution 
from the initial condition of the microscopic distribution 
𝑓 𝑟, 𝑝, 𝑡 = 0 . From the function dependence of 𝑓 𝑟, 𝑝, 𝑡 =
0 on 𝑝 , we can obtain the function dependence of 𝑔  on 

1 + !!

!!
− !

!
𝑐 ⋅ 𝑝  and hence determine detailed function 

form of 𝑔. 

Detailed procedure of determining function form of 𝑔 is 
described as follows [32]: We can seek for special space 
position 𝑅  in which 𝐸(𝑅, 0) = − !

!
𝑐×𝐵 𝑅, 0 , or 

∇Φ 𝑟, 0 |!!! = 0, exists. The initial distribution at 𝑅, i.e., 
𝑓 𝑅, 𝑝, 𝑡 = 0 , is thus a mono-variable function 𝑝. At the 
same time, two expressions are equivalent and hence there is  
 

𝑓 𝑅, 𝑝, 𝑡 = 0 = 𝑔 𝐾 +Φ 𝑅, 0 = 𝑔 𝐾 . where 𝐾 = 1 + !!

!!
−

!
!
𝑐 ⋅ 𝑝  and Φ 𝑅, 0 = 0  (if ∇Φ 𝑟, 0 |!!! = 0 ). Because of 

certain relation between 𝑝  and 𝐾 , once the expansion 
coefficients 𝑐!  in 𝑓 𝑅, 𝑝, 𝑡 = 0 =  ! 𝑐!𝑝!  is known, the 
expansion coefficients 𝑑! in 𝑔 𝐾 =  ! 𝑑!𝐾! is also easy to 
be calculated. 

Then, we consider 𝐵 ≡ 0 case. Clearly, BGK modes [7, 
19] are analytic strict solutions of the VE in 𝐵 ≡ 0 case  

0 = ∂! − 𝐸 𝑟 − !
!
𝑐𝑡 ⋅ ∂! ! 𝑓 + 𝜐 ⋅ ∇𝑓,  (50) 

whose solutions are mono-variable functions of 𝜙 𝑟 −
!
!
𝑐𝑡 + 1 + 𝑝! − !

!
𝑐 ⋅ 𝑝 , where 𝜙 𝑟 − !

!
𝑐𝑡  is scalar 

potential and 𝐸 = −∇𝜙 . Moreover, there is a similar 
procedure of determining function form of 𝑔. 

We should note that 𝐾 is a nonlinear function of 𝜐 and 
the maximum value of 𝐾 , or 𝐾!"#  is reached at 𝜐 = !

!
𝑐 . 

Thus, even 𝑔 is a Dirac function of 𝐾 + Φ, 𝑔 cannot be a 
Dirac function of 𝜐, i.e. 𝑔~𝛿 𝜐 − 𝑢 𝑟, 𝑡 . The nonlinear 
function relation between 𝐾  and 𝜐  determines that 𝑔  is at 
least a summation of two Dirac components: 
𝑔 = 𝑓! 𝑟, 𝑡 𝛿 𝜐 − 𝑢! 𝑟, 𝑡 + 𝑓! 𝑟, 𝑡 𝛿 𝜐 − 𝑢! 𝑟, 𝑡 +. .. . 
This agree with previous conclusion that functions of a 
general form 𝑓! 𝑟, 𝑡 𝛿 𝜐 − 𝑢! 𝑟, 𝑡  cannot meet VE. 

We should also note that, because of nonlinear function 
relation between 𝑔 and 𝐾 + Φ, the maximum of 𝑔, or 𝑔!"#, 
is usually reached at 𝐾 + Φ ≠ 𝐾!"# + Φ. Namely, if 𝑔!"# is 
reached at 𝐾 = 𝐾!!"#, this 𝐾!!"# usually corresponds to two 
values of 𝜐. In contrast, 𝐾!"# merely corresponds to a value 
of 𝜐. Thus, the contour plot of 𝑔 in the phase space will take 
on complicated structures, such as hole, island etc. Some 
examples of such a complicated phase space structure is 
shown in Fig. (4). 

3. SUMMARY 

By a universal equation set of 𝐸,𝐵, 𝑢 , we study the 3-D 
nonlinear plasma ES wave beyond the A-P model. The first 
integral of the nonlinear wave are presented. Also, we 
explain why an unmagnetized charged particles beam must 
have aperiodic density profile. The interaction between a 
periodic ES structure and an aperiodic one are studied by this 
universal equation set. Moreover, we also present a standard 
procedure for constructing strict solution of VE. 

This work is supported by National Science Fund of 
China. 

4. APPENDIX 

The fluid velocity is usually defined as  

𝑢 𝑟! 𝑡 , 𝑡 ≡
 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 𝑑!𝑟! 𝑡

 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡
. 
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We can also use a definition 𝑅𝑉  

𝑅𝑉 𝑟! 𝑡 , 𝑡 ≡  
!

𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡  

and re-write 𝑢 𝑟! 𝑡 , 𝑡  as  

𝑢 𝑟! 𝑡 , 𝑡 ≡
 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡

 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡
+ 𝑑!𝑟! 𝑡  

=
𝑅 𝑟! 𝑡 , 𝑡
 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡

+ 𝑑!𝑟! 𝑡 . 
Clearly, there is  

∇!!𝑢 𝑟! 𝑡 , 𝑡

=
 !  ! [∇!!𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ] ∗ 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡

 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 !  

=
−  !  ! [∇!!𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ] ∗ 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡

 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 !  

=
−  !  ! ∇!!{𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡 }

 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 !  

=

−  ! ∇!!{𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗  ! {𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗
𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡 }}
 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 !  

=
−  ! ∇!!{𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡 ∗  ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 }

 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 !  

−
−  ! ∇!!{𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑅𝑉(𝑟! , 𝑡)}

 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 !  

=
 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡  ! ∇!!{𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡 }

 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 !  

−
 ! ∇!!{𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑅𝑉(𝑟! , 𝑡)}

 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 !  

=
∇!!𝑅𝑉(𝑟! , 𝑡)
 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡

−
 ! ∇!!{𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑅𝑉(𝑟! , 𝑡)}

 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ! , 

 where we have used relations  

∇!!𝛿 𝑟! 𝑡 − 𝑟! 𝑡 = −∇!!𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ; 

∇!!𝑑!𝑟! 𝑡 = 𝑑!∇!!𝑟! 𝑡 = 𝑑!1 = 0; 

∇!!  
!

{𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡  

=  
!

∇!!{𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡 } = 0; 

 
!

{𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡 } 

= 𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡  
!

𝛿 𝑟! 𝑡 − 𝑟! 𝑡 + 𝑅𝑉(𝑟! 𝑡 , 𝑡); 

∇!!{𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡 ∗  
!

𝛿 𝑟! 𝑡 − 𝑟! 𝑡 } 

=  
!

𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ ∇!!{𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡 }; 

 The term ``zero-temperature'' means that at any position, 
all particles at same time-space point have a same velocity 
and hence  

𝑅𝑉 𝑟! 𝑡 , 𝑡 ≡  
!

𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 𝑑!𝑟! 𝑡 − 𝑑!𝑟! 𝑡 = 0, 

𝑢 𝑟! 𝑡 , 𝑡 = 𝑑!𝑟! 𝑡 , 

 

 
Fig. (4). Example of hole structure and island structure in the phase space contour plot of normalized microscopic distribution, where the 
self-consistent fields are periodic and have a phase velocity 0.8𝑐. 
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Thus, above long formulus will suggest  

∇!!𝑢 𝑟! 𝑡 , 𝑡 =
∇!!0

 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡
! 

−
 ! ∇!!{𝛿 𝑟! 𝑡 − 𝑟! 𝑡 ∗ 0}

 ! 𝛿 𝑟! 𝑡 − 𝑟! 𝑡
! = 0. 

This clearly explains why ``zero-temperature'' means the 
absence of the so-called convective term. 
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