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Polypharmacology is becoming an increasingly important aspect in drug design. Pharmaceutical companies are 
discovering more and more cases in which multiple drugs bind to a given target (promiscuous targets) and in which a 
given drug binds to more than one target (promiscuous ligands). These phenomena are clearly of great importance when 
considering drug side-effects. In the last 4 years, more than 30 drugs have been tested against more than 40 novel 
secondary targets based on promiscuity predictions. Current methods for predicting promiscuity typically aim to relate 
protein receptors according to their primary sequences, the similarity of their ligands, and more recently, the similarity of 
their ligand binding pockets.  

Here, we present a spherical harmonic (SH) surface shape-based approach to predict rapidly promiscuous ligands and 
targets by comparing sets of SH ligand and protein shapes, respectively. We present details of our approach applied to a 
wide range of PDB complexes comprising ligands in a selected subset of the MDL Drug Data Report (MDDR) database 
which are distributed over 249 diverse pharmacological targets. The shape similarity of each ligand to each target’s ligand 
set is quantified and used to predict promiscuity. We also analyse the correlation between binding pocket and ligand 
shapes. We compare our promiscuity predictions with experimental activity values extracted from the BindingDB 
database.  

Consensus shapes, drug promiscuity, ligand shape space, protein pocket space, protein sequence space, shape 
similarity, spherical harmonic shapes.  

INTRODUCTION 

 Drug promiscuity may be defined as the specific binding 
of a drug-like molecule to more than one target. On the other 
hand, if a protein binds different ligands, it can be considered 
as a promiscuous receptor [1]. These are notions illustrated 
in Fig. (1). The concept of ‘target-hopping,’ whereby a 
binder for one target can be considered as the basis for leads 
for another target has historically been extremely fruitful in 
lead discovery [2]. Nowadays, polypharmacology is 
becoming an increasingly important aspect in drug design. In 
the last 4 years, more than 30 drugs have been tested against 
more than 40 novel secondary targets based on promiscuity 
predictions [3]. Pharmaceutical companies are discovering 
more and more cases in which multiple drugs bind to a given 
target (promiscuous targets) and in which a given drug binds 
to more than one target (promiscuous ligands). Both of these 
phenomena are clearly of great importance when considering 
drug side-effects. For example, a common reason for 
terminating a drug development program is that the leads are 
found to be non-selective or promiscuous [4]. Thus, the in 
silico prediction of unwanted side effects caused by the 
promiscuous behaviour of drugs and their targets is highly 
relevant to the pharmaceutical industry. Considerable effort 
is now being put into the computational [5, 6] and 
experimental [7, 8] screening of several suspected off-target 
proteins in the hope that side effects might be identified  
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early, before the cost associated with developing a drug 
candidate rises steeply [9]. On the other hand, promiscuity is 
not always unwelcome and it can even be exploited for drug 
development. The use of old drugs for new targets has been 
shown to provide a promising way to reduce both the time 
and cost of drug development [10].  

 Given that it is currently infeasible to screen a drug 
against all of the proteins expressed by the human genome, 
several computational techniques have been developed to 
predict the pharmacological profiles of known drugs. These 
range from the well-known docking of compounds into 
protein structures to the use of machine learning methods 
[11, 12], sequence comparison [13] side-effect similarity [6], 
and fingerprint/pharmacophore comparison methods [14, 
15]. These in silico methods typically aim to relate protein 
receptors to each other quantitatively based on their 
similarity in primary sequence space [14], ligand chemical 
descriptor space [15], and more recently in their 
pharmacophoric pocket descriptor space [16].  

 The first and most common techniques use e.g. the 
BLAST [17, 18] or FASTA [19] sequence alignment tools to 
create similarity maps in protein sequence space [20]. Later, 
other approaches were developed which compare the 
chemistry of the targets’ ligands following the hypothesis 
that similar molecules are likely to have similar properties 
[21]. For example, Keiser et al., relate receptors to each 
other according to the chemical similarity of their ligands. In 
their Similarity Ensemble Approach (SEA) [22], the 
calculated probability that two molecules might interact with 
the same target by chance is expressed using an expectation 
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value [23], which is conceptually similar to the E-value used 
in sequence alignment software such as BLAST [17]. 
Mestres et al., relate proteins in ligand space using three in–
house molecular descriptors (PHRAG, FPD, SHED) [24, 
25]. With the increase in recent years of approaches for 
comparing protein pockets [26] such as four-point 
pharmacophoric descriptors (FLAP [27]), three-point 
pharmacophoric descriptors (Cavbase [28], SiteEngine [29], 
SuMo [30]), geometric hashing methods (Kinnings and 
Jackson [31]), and graph-matching-base algorithms (IsoCleft 
[32]), the notion of a binding pocket similarity space has 
recently been proposed. This is based on the principal that 
protein binding pockets are the place where the interactions 
between a protein and a ligand are formed. Hence, they must 
have complementary shapes and physicochemical properties 
to the small molecules that they accommodate. Therefore, 
calculating the similarity of binding pockets allows proteins 
with similar function and selectivity for the same binding 
partners to be related. For example, Weskamp et al. 
compared targets by the similarity of their binding pockets 
using the LIGSITE program [14]. Milleti et al., recently 
related receptors to each other using pocket-based “shape 
context” descriptors [16, 33, 34].  

 Here, we present a shape-based approach which uses 
spherical harmonic (SH) representations [35, 36] to compare 
molecular surfaces efficiently. This approach relates 
receptors to each other by the SH shape similarity of their 
ligands and their binding pockets. Since shape 
complementarity is an essential feature for molecular 
recognition, using ligand and binding pocket shapes should 
provide a good way to characterise their properties. If two 
binding pockets of different proteins share a common shape, 
it is likely that ligands that bind to part of one binding pocket 
will also be recognized in the corresponding part of the other 
pocket. On the other hand, if two ligands of different 
proteins share a similar shape, it is likely that both of them 
will complement the shape of each binding pocket. Hence, 
by identifying similar ligands and binding pocket shapes, our 
approach aims to provide a shape-based way to predict 
promiscuous ligands and targets. 

 We present the results of applying our approach to a wide 
range of ligands which Shuffenhauer et al., [37] previously 
selected from the MDL Drug Data Report (MDDR) database 
[38], and for which crystallographic protein-ligand 
complexes exist in the Protein Data Bank (PDB) [39]. This 
gives an annotated list of ligands for 249 protein targets of 
pharmacological interest. The shape similarity between 
ligands and between binding pockets for these selected 
protein targets is quantified and used to predict promiscuity. 
We analyse the correlation between binding pocket and 
ligand shape spaces. We also compare our promiscuity 
predictions with experimental activity values extracted from 
the BindingDB database [40]. 

METHODS 

Calculating SH Shapes 

 We use the PARASURF and PARAFIT modules [41] to 
calculate and superpose SH molecular surfaces, and the 
MSSH [42] program to calculate the SH shapes of protein 
pockets. PARASURF calculates molecular shape and 
electronic properties from semi-empirical quantum 

mechanics theory and encodes these properties as SH 
expansions [35, 36]. Surface shapes are represented as radial 
distance expansions of the molecular surface, r( , ), with 
respect to a selected harmonic coordinate origin (CoH), 
which is normally set equal to the molecular center of 
gravity (CoG). This allows an entire molecular surface shape 
to be captured using a Fourier-like polynomial expansion, 
such as Equation 1 

r ,( ) = almylm ,( )
m= l

l

l = 0

L

          Equation 1 

where  and  are the spherical coordinates, ylm( , ) are real 
spherical harmonics, alm are the expansion coefficients, and 
L is the order or highest polynomial power of the expansion. 
As determined previously, we use L = 6 for shape 
comparisons [43]. Mathematically, the SH approach applies 
only to “starlike” shapes which have single-valued surfaces 
with respect to radial rays projections from the chosen CoH. 
Most molecules do not satisfy this requirement. Hence, the 
SH surfaces described here should be considered as “surface 
envelopes” which enclose the true molecular surface. For 
highly non-starlike molecules this surface envelope can be a 
rather severe approximation to the true surface. Indeed, in 
extreme cases, the CoH can fall outside the molecular 
surface, and this can cause the software to fail. 

 PARAFIT and MSSH calculate shape superpositions by 
exploiting the special rotational properties of the SH 
functions. For example, rotated SH expansion coefficients 
for a molecule B can be calculated as 

b
lm

'
= R

mm'

( l ) , ,( )blm'

m' = l

l

           Equation 2 

where ( , , ) are zyz Euler rotation angles and R 
(l)

 ( , , ) 
is the l’th real Wigner rotation matrix. To calculate a 
superposition between a pair of molecules A and B, the 
harmonic coordinate origin (CoH) of molecule B is 
translated to that of the fixed reference molecule A, and a 
rotational search to a resolution of 1 degree in each Euler 
rotation angle is then performed to find the rotation which 
minimizes the distance, DAB, between the corresponding 
pairs of SH expansions (Equation 3).  

          Equation 3 

 Thanks to the orthogonality of the basis functions, 
Equation 3 reduces to 

D
AB

= a
2

+ b
2

2ab
'            Equation 4 

where a and b represents vectors of expansion coefficients. 

 In practice, it is often more convenient to compare 
molecules using a normalised similarity score such as 
Equation 5 [43, 44]. 

S =
ab

a
2

+ b
2

ab( )
Equation 5 

 Using PARAFIT it is also straight-forward to construct 
the average or “consensus” shape, r ,( ), of a group of N 
molecules by calculating the average of their superposed SH 
expansion coefficients, a

lm

k , for k=1,..., N, as shown in 
Equation 6 [44].  
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1

N
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k ylm ,( )
m= l

l

l=0

L

k=1

N
          Equation 6 

 However, before computing the average, each molecule 
in the consensus must first be rotated to minimize the 
distance between it and the remaining N - 1 molecules. In 
practice, because these rotations are not known a priori, the 
consensus shape is constructed iteratively as described 
previously [44]. We have shown that the consensus shape-
based representation can be used to capture the essential 3D 
shape features of several known high-affinity ligands and to 
encode them in the form of a single representative pseudo-
molecule which can be used as a VS query [45-48].  

 The SH consensus approach may also be used to 
calculate the consensus shapes of both ligand molecules and 
protein receptor pockets. Here, the SH coefficients of the 
binding pockets are computed using MSSH. Each pocket 
surface is calculated around the bound ligand coordinates 
using the default MSSH radial cut-off distance of 20 Å. It is 
worth noting that MSSH can usually calculate a good 
representation of closed pockets, but open pockets on the 
protein surface are not represented well, and this limits the 
quality of the results. Nonetheless, all pockets are analysed. 
Once the SH coefficients of the binding pockets are 
calculated, the same consensus algorithm is applied as 
described above. 

Ligand and Target Data Preparation  

 We applied our approach to those PDB complexes which 
contain the ligands in Schuffenhauer’s subset of the MDDR 
database (version 2010.2) [38], comprising 65367 
compounds distributed over 249 diverse pharmacological 
targets for which experimental binding information is 
known. In other words, we consider only crystallogra-
phically determined ligand coordinates and we do not 

explicitly consider multiple ligand conformations. On the 
other hand, calculating SH consensus shapes can take into 
account 3D shape features of several conformations to be 
used as an averaged pseudo-molecule [48]. Schuffenhauer’s 
subset is based on a simple ontology [37] that maps Enzyme 
Commission (EC) numbers [49], GPCRs, ion channels, and 
nuclear receptors to MDDR activity classes. In this dataset, 
all ligands are annotated where possible according to the 
MDDR activity class. It should be noted that these ligand 
annotations can be rather general text descriptions, such as 
“dihydrofolate reductase inhibitor” or “anticancer agent”, for 
example. Therefore, an annotation can correspond to 
multiple targets. Supplementary Table 1 shows the list of 
target annotations used for our promiscuity predictions. 

 Fig. (2) shows the workflow followed to process the data 
for our promiscuity predictions. The MDDR database was 
filtered according to Schuffenhauer’s subset to give 8659 
ligands with 196 unique annotations. These ligands were 
then used to search the PDB hetero-atom dictionary to find 
ligands for which crystal structures exist. These structures 
were extracted from the PDB using their three-letter PDB 
ligand codes to give a total of 957 protein-ligand complexes. 
Any structures solved by NMR and those without a CATH 
code were removed to give 687 proteins belonging to 76 
unique annotations. Only one chain was kept for each 
protein.  

Predicting Promiscuity Using SH Shape-Based Similarity 

Ligand SH Shape Similarity 

 To predict ligand promiscuity, all the ligands from the 
PDB complexes were extracted and transformed into a 
canonical orientation using PARAFIT. The SH similarity of 
each ligand with each target’s ligand set was calculated to 
give an all-vs-all ligand interaction matrix. The matrix was 
then analyzed by using three Tanimoto thresholds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Drug Promiscuity. Left: multiple drugs bind to a given target (promiscuous target). Right: a given drug binds to more than one 
target (promiscuous ligand). 
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Binding Pocket SH Shape Similarity 

 For promiscuity prediction in binding pocket space, we 
positioned all protein-ligand complexes according to the 
canonical orientations of their ligands [50]. This placed all 
pockets in a ligand-defined standard orientation in order to 
calculate SH binding pocket shapes using MSSH. The 
consensus shapes of the pockets belonging to the same 
MDDR annotation were calculated with PARAFIT. The SH 
similarity between consensus pocket shapes was calculated 
to give an all-vs-all binding pocket interaction matrix. As 
before, this matrix was analyzed using the same three 
Tanimoto thresholds.  

Ligand vs Binding Pocket SH Shape Similarity 

 Finally, a ligand-pocket SH shape interaction matrix was 
also analyzed in the same way. 

RESULTS 

Ligand-Ligand Interaction Matrix 

 Fig. (3a) shows the form of the 677 ligand-ligand 
interaction matrix. A high resolution zoom of a portion of 
this figure is shown in Fig. (4). A ligand Tanimoto score 
greater than 0.9 is shown in dark blue. Ligands with a 
Tanimoto score between 0.7 and 0.9 are shown in blue, and 
scores lower than 0.7 are shown in light blue. Both axes are 
labelled according to the MDDR annotations to which the 
677 ligands belong. It can be observed that each ligand shape 
matches itself (diagonal in dark blue). Similarly, ligands 
belonging to related targets are found to have similar shapes 
(dark blue areas) such as some nuclear hormone receptors 
(vitamin d3-like receptors, estrogen, androgen, progesterone) 
and serine proteases (coagulation factors Xa and VIIIa, 
thrombin, trypsin, -lactamase). 

Pocket – Pocket Interaction Matrix 

 Fig. (3b) (high resolution in Fig. 5) shows the 76 
consensus pocket-pocket interaction matrix. It is color coded 

and labelled as in Fig. (3a). Each annotation is represented 
by a consensus binding pocket shape. The interaction matrix 
is clustered by consensus binding pocket shape similarity. It 
can be seen that this matrix also groups together related 
targets. For example, several distinct groups each with high 
shape similarity (Tanimoto  0.9) are found for the serine 
proteases, other proteases, nuclear hormone receptors, 
kinases, GPCRs, ion channels, enzymes and metallo 
enzymes. More specifically, the serine proteases cluster 
includes coagulation factors Xa and VIIIa, thrombin, trypsin, 

-lactamase, interleukin-8, and serine type-d ala-d-ala 
carboxypeptidase. The main nuclear hormone receptor 
cluster includes the vitamin d3-like receptors, estrogen, and 
androgen. Similarly, the GPCR cluster includes the -
adrenoreceptor type 1, -adrenoreceptor, ETA, and 
endothelin. The main enzyme cluster includes the peptidase, 
serine endopeptidase, alcohol dehydrogenase, purine 
nucleoside phosphorilase hydroxymethylglutaryl CoA 
reductase, cholestenone 5 -reductase, adenosylhomo-
cysteinase, lanosterol synthase, and guanylate cyclase. It can 
also be seen that each consensus binding pocket matches 
itself (diagonal in dark blue). Hence, it can be seen that 
comparing receptor pocket shapes correctly groups many 
protein targets into their expected macromolecular target 
family. 

 Analysis of the pocket-pocket matrix shows some highly 
similar binding pockets. Fig. (6) shows four examples of 
shape supperpositions between the correlated pockets. 
Firstly, the consensus pocket shape of androgen (Fig. 6 top) 
shares high shape similarity with those of -adrenoreceptor, 
purine nucleoside phosphorilase, thimidine kinase, hydroxy-
methylglutaryl CoA reductase, and adenosylhomocysteinase. 
The promiscuity predicted for androgen is consistent with 
several existing MDDR activity classes (e.g. androgen, 
aromatase inhibitor, antiandrogen) for the androgen ligands. 
Secondly, the consensus pocket of hydroxymethylglutaryl 
CoA reductase (Fig. 6 middle) shares high shape similarity 
with the consensus binding pockets of lanosterol synthase, 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Data processing flowchart. We used a subset of the MDDR database comprising 76 diverse pharmacological targets having at least 
one ligand in the PDB heteroatom dictionary. The similarity of each ligand SH shape to each target’s ligand set shape is calculated and 
quantified using the Tanimoto coefficient. The similarity between each SH consensus shape pocket to each target’s consensus binding pocket 
is calculated in the same way. Finally, the ligand-pocket shape interaction matrix is analyzed to predict promiscuity. 



Predicting Drug Promiscuity Using Spherical Harmonic Surface The Open Conference Proceedings Journal, 2011, Volume 2    117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Predicting Promiscuity Using SH Shape-Based Similarity. This figure shows illustrative images of a) the ligand-ligand 
interaction matrix, b) the binding pocket-binding pocket interaction matrix, c) the ligand-binding pocket interaction matrix, d) the in silico vs 
in vitro interaction matrices. 

purine nucleotide phosphorilase, thimidine kinase, 
cholestenone 5 -reductase, and adenosylhomocysteinase. 
Several MDDR activity classes (e.g. hypolipidemic, HMG-
CoA reductase  inhibitor) are also related to the 
hydroxymethylglutaryl CoA reductase ligands. Thirdly, 
GABA-A alpha is predicted to be another highly 
promiscuous target. Its pocket shows high shape similarity 
with the pockets of -adrenoreceptor, purine nucleoside 
phosphorilase, thimidine kinase, hydroxymethylglutaryl CoA 
reductase, cholestenone 5 -reductase, adenosylhomo-
cysteinase, lanosterolsynthase, vitamin d3-like receptors, 
estrogen, androgen, adenosindeaminase, acetylcholine-
sterase, and RNA directed DNA polymerase. This predicted 
high promiscuity is also supported by the large number of 
related MDDR activity classes for this annotation (non 
opioid analgesic, GABA-A/benzodiazepine receptor, 
sedative/hypnotic, anxiolytic, agent for sleep disorders, 
benzodiazepine agonist, alcohol deterrent, anticonvulsant, 
agent for premedication, antimigraine, and intravenous 
anesthetic). Finally, the thrombin consensus binding pocket 
is found to be similar to the consensus pocket shapes of 
coagulation factors Xa and VIIIa, -lactamase, trypsin, 
interleukin-8, and serine-type d-ala-d-ala carboxypeptidase. 
This also agrees with the activity classes of the thrombin 
ligands in MDDR (e.g. anticoagulant, thrombin inhibitor, 
factox Xa inhibitor, trypsin inhibitor, protease inhibitor).  

 Overall, analysis of the pocket interaction matrix in Fig. 
5 points to the prediction of several very promiscuous targets 
(dark blue rows) such as the aforementioned examples, i.e. 
GABA-A alpha subunit, androgen, hydroxymethylglutaryl 
CoA reductase, and thrombin, as well as estrogen, vitamin 
3d-like, acetylcholinesterase, RNA directed DNA 
polymerase, and purine nucleoside phosphorylase, and also 
selective targets such as caspase (light blue row). These 
predictions agree with several related activity classes found 
in the MDDR for each of these annotations.  

Ligand-Pocket Interaction Matrix 

 Fig. (3c) shows the ligand-consensus binding pocket 
interaction matrix using a Tanimoto threshold of 0.7 and a 
Tanimoto threshold of 0.9. A high resolution zoom of 
portions of these figures is shown in Figs. (7 and 8), 
respectively. The x-axis represents the 76 annotation 
consensus binding pockets and the y-axis the 677 ligands 
distributed in those annotations. Both axes are labelled 
according to the MDDR annotations to which the 677 
complexes belong. The matrix with the lower threshold 
highlights the confirmed interactions according to the 
crystallised structures present in the PDB. It can be observed 
that each ligand shape matches the annotation-based 
consensus pocket that the ligand belongs to (diagonal in dark 
blue). A lower and more permissive threshold helps to 
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Fig. (4). High resolution zoom of the top right corner (red box) of the ligand-ligand SH shape interaction matrix. The interaction 
matrix is color coded using darker blue for a high shape similarity (Tanimoto  0.9), blue for medium similarity (Tanimoto between 0.7 and 
0.9) and light blue for low similarity (Tanimoto < 0.7). Both axes are labelled according to the MDDR annotations in which the ligands are 
distributed. 

identify the similarities between known ligands for a given 
target and some other ligands but it causes quite a lot of false 
positives (large blue areas), whereas using a more restrictive 
threshold clearly highlights the predicted promiscuous 
targets (i.e. a high number of dark blue pixels in a single 
column). The 0.9 threshold matrix highlights as blue 
columns several predicted promiscuous targets which were 
identified previously in the ligand-ligand and pocket-pocket 
matrices (e.g. GABA-A alpha subunit, androgen, or 
hydroxymethylglutaryl CoA reductase) as well as some 
others (procollagen proline dioxygenase, cholestenone 5  

reductase, glutamate receptor kainite subunit, estrogen, 
vitamin d3-like receptors, lanosterol synthase, adenosylho-
mocysteinase, acetylcholinesterase, RNA directed DNA 
polymerase, thymidine kinase, purine nucleoside 
phosphorylase and ribonucleoside diphosphate reductase). 
The fact that there exist in the PDB several complexes with 
ligands for different targets confirms these predictions (dark 
blue columns highlighted in the 0.7 threshold matrix). It is 
interesting to note that the caspase pocket (which appears in 
the centre of Fig. 7, 8, and 9) has a completely light blue 
column indicating that this is a highly specific target. 
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Fig. (5). High resolution pocket-pocket SH shape interaction matrix. The interaction matrix is color coded using darker blue for a high 
shape similarity (Tanimoto  0.9), blue for medium similarity (Tanimoto between 0.7 and 0.9) and light blue for low similarity (Tanimoto < 
0.7). Both axes are labelled according to the 76 annotations in which the 677 complexes are distributed. Each annotation is represented by a 
consensus binding pocket shape. The interaction matrix is clustered by consensus binding pocket shape similarity. This also groups together 
related targets. 

 This analysis of the ligand-pocket matrix mainly agrees 
with the correlations found between binding pockets. Fig. 
(10) shows the ligand-pocket superpositions of the same 
consensus pockets shown in Fig. (6) with selected examples 
of high similarity ligands. For example, the androgen 
consensus binding pocket (Fig. 10 top) shares high shape 
similarity with the ligands of -adrenoreceptor, purine 
nucleoside phosphorilase, thimidine kinase, hydroxymethyl-
glutaryl CoA reductase, and adenosylhomocysteinase. 
Similarly, the hydroxymethylglutaryl CoA reductase 

consensus pocket (Fig. 10 middle) shares high shape 
similarity with the ligands of lanosterol synthase, purine 
nucleotide phosphorilase, thimidine kinase, cholestenone 5 -
reductase, and adenosylhomocysteinase.  

 Unlike the pocket-pocket matrix, the thrombin consensus 
pocket is found to have lower similarity with other serine 
protease ligands. The pocket-ligand superpositions look 
worse in this case. This is because MSSH does not represent 
accurately the shapes of surface pockets. Fig. (10 bottom) 
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Fig. (6). Example superpositions of consensus pocket shapes. This figure shows the consensus pocket shapes of four example targets 
(androgen, hydroxymethilglutaryl CoA reductase, GABA-A alpha subunit, and thrombin) in lilac, along with the superpositions of the 
pockets of several other targets with similar consensus pocket shapes (grey). 

shows the thrombin consensus pocket superposed with the 
ligands of coagulation factors Xa and VIIIa, -lactamase, 
trypsin, interleukin-8, and serine-type d-ala-d-ala 
carboxypeptidase. As can be seen, the thrombin SH pocket 
shape is bigger than the shapes of these ligands. Hence, only 
the large trypsin ligands match well this large surface pocket 
shape. Nevertheless, it can be observed in Fig. (10) that the 

serine protease ligands superpose correctly on the left side of 
the thrombin pocket, while the poor quality surface pocket 
representation on the right remains unmatched. Finally, in 
the pocket-pocket correlation matrix, the GABA-A alpha is 
predicted to be a highly promiscuous target. The GABA-A 
alpha consensus pocket shows high shape similarity with the 
ligands of -adrenoreceptor, purine nucleoside phosphori-
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Fig. (7). High resolution zoom of the top right corner (red box) of the ligand-pocket SH shape interaction matrix at a Tanimoto 

threshold of 0.7. The interaction matrix is colored in dark blue if there is SH similarity between ligand and binding pocket shapes over a 
Tanimoto of 0.7 and a PDB complex exists, blue if there is SH similarity between ligand and binding pocket shapes over a Tanimoto of 0.7 
and a PDB complex does not exist, and light blue if there is no SH similarity between ligand and binding pocket shapes over a Tanimoto of 
0.7. Both axes are labelled according to the MDDR annotations in which the complexes are distributed.  
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Fig. (8). High resolution zoom of the top right corner (red box) of the ligand-pocket SH shape interaction matrix at a Tanimoto 

threshold of 0.9. The interaction matrix is colored in dark blue if there is SH similarity between ligand and binding pocket shapes over a 
Tanimoto of 0.9 and a PDB complex exists, blue if there is SH similarity between ligand and binding pocket shapes over a Tanimoto of 0.9 
and a PDB complex does not exist, and light blue if there is no SH similarity between ligand and binding pocket shapes over a Tanimoto of 
0.9. Both axes are labelled according to the MDDR annotations in which the complexes are distributed. It can be observed that a high 
threshold value highlights targets which are predicted to be promiscuous (i.e. those columns with a high number of dark blue pixels). 
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Fig. (9). High resolution in silico promiscuity prediction matrix. The in silico ligand-pocket interaction matrix is shown for the 127 
ligands for which biological activities are available in BindingDB. The matrix is color coded using dark blue for a high shape similarity 
(Tanimoto  0.9), blue for medium similarity (Tanimoto between 0.7 and 0.9) and light blue for low similarity (Tanimoto < 0.7). The 
horizontal axis is labelled according to the 76 annotations in which the 677 complexes are distributed, and the vertical axis shows the 3-letter 
code for the ligands used in the promiscuity predictions. The targets with high shape similarity amongst all the ligands (i.e. columns with a 
high number of dark pixels) are predicted to be promiscuous.  

!
!
!
 

Supplementary Fig. (5) High resolution in silico promiscuity prediction matrix. The in silico ligand-pocket 

interaction matrix is shown for the 127 ligands for which biological activities are available in BindingDB. The 

matrix is color coded using dark blue for a high shape similarity (Tanimoto  !  0.9), blue for medium similarity 

(Tanimoto between 0.7 and 0.9) and light blue for low similarity (Tanimoto < 0.7).!The horizontal axis is labelled 

according to the 76 annotations in which the 677 complexes are distributed, and the vertical axis shows the 3-letter 

code for the ligands used in the promiscuity predictions. The targets with high shape similarity along all the 

ligands (dark blue columns) are predicted to be promiscuous.  
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Fig. (10). Example superpositions of consensus pocket shapes with selected ligands. This figure shows the same consensus pockets as in 
Fig. (6) (lilac), with high similarity ligands shown as multi-coloured surfaces (red/green/blue/yellow). 

lase, thimidine kinase, hydroxymethylglutaryl CoA 
reductase, cholestenone 5 -reductase, adenosylhomocy-
steinase, lanosterolsynthase, vitamin d3-like receptors, 
estrogen, androgen, adenosindeaminase, acetylcholine-
sterase, and RNA directed DNA polymerase. Again, the 
promiscuity predicted for all these targets agrees well with 
the existing MDDR activity classes for their ligands.  

Comparison with Experimental Results 

 In order to validate our approach, we compared our in 
silico interaction matrices with biological activity data 
extracted from BindingDB [40]. Fig. (3d) compares our in 
silico results with the experimental results for the 127 
ligands for which data is available in BindingDB. The in 

silico ligand-pocket interaction matrix is color coded as in 
Fig. (3a and 3b). Fig. (9) shows this in silico matrix in detail. 
As before, a high similarity threshold helps to highlight the 
possible promiscuous targets. Hence, we use a Tanimoto 
threshold of 0.9 to predict promiscuous targets (dark blue 
columns in Fig. 9) and we compare these predictions with 
promiscuity evidence from in vitro results. Supplementary 
Table 2 lists the predicted promiscuous targets as well as 
several MDDR activity classes related to their ligands. The 
predicted promiscuous targets agree with the existing 
MDDR activity classes for their ligands except for vitamin 
d3-like receptors and thimidine kinase, which are only found 
to be related to vitamin 3D analog class and thymidine 
kinase inhibitor, respectively. Fig. (11) shows in detail the 
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Fig. (11). High resolution in vitro promiscuity prediction matrix. The in vitro interaction matrix is color coded according to the biological 
activity values, using dark blue for high activity (IC50/nM  1), blue for medium activity (1 < IC50/nM  10) and light blue for low activity 
(IC50/nM > 10). The horizontal axis is labelled according to the 76 annotations in which the 677 complexes are distributed, and the vertical 
axis shows the 3-letter code for the ligands used in the promiscuity predictions. 

!
!
!
 

Supplementary Fig. (6) High resolution in vitro promiscuity prediction matrix. The in vitro interaction matrix 

is color coded according to the biological activity values, using dark blue for high activity (IC50/nM ! 1), blue for 

medium activity (1 < IC50/nM ! 10) and light blue for low activity (IC50/nM > 10). The horizontal axis is 

labelled according to the 76 annotations in which the 677 complexes are distributed, and the vertical axis shows 

the 3-letter code for the ligands used in the promiscuity predictions.!
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Fig. (12). High resolution in silico vs in vitro promiscuity prediction matrix. The in vitro vs in silico matrix is color coded using dark blue 
when there is evidence of high biological activity (IC50/nM  1), blue when there is evidence of medium biological activity (1 < IC50/nM  
10), and light blue when there is evidence of low biological activity (IC50/nM > 10). The in silico predicted targets (Tanimoto similarity 
score  0.9) are highlighted as light blue bands. Analyzing the matches it can be observed that, with the available biological data, in vitro 
evidence of promiscuous targets often agrees with in silico predicted promiscuous targets. However, there is no experimental data for some 
targets that are predicted to be promiscuous, and there are some targets (mainly proteins with binding pockets on the surface which MSSH 
does not represent accurately) which are not predicted to be promiscuous and there is experimental evidence of it. 

!
!
!
Supplementary Fig. (7) High resolution in silico vs in vitro promiscuity prediction matrix. The in vitro vs in 

silico matrix is color coded using dark blue when there is evidence of high biological activity (IC50/nM ! 1), blue 

when there is evidence of medium biological activity (1 < IC50/nM ! 10), and light blue when there is evidence of 

low biological activity (IC50/nM > 10). The in silico predicted targets (Tanimoto similarity score " 0.9) are 

highlighted as light steel blue bands. Analyzing the matches it can be observed that, with the available biological 

data, in vitro evidence of promiscuous targets often agrees with in silico predicted promiscuous targets. However, 

there is no experimental data for some targets that are predicted to be promiscuous, and there are some targets 

(mainly proteins with binding pockets on the surface which MSSH does not represent accurately) which are not 

predicted to be promiscuous and there is experimental evidence of it.!
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in vitro matrix. In both matrices, the horizontal axis is 
labelled according to the 76 annotations in which the 677 
complexes are distributed and the vertical axis shows the 3-
letter ligand code used in the promiscuity predictions. It can 
be seen that the available experimental data from BindingDB 
supports the notion that many existing targets are 
promiscuous (e.g. thrombin, coagulation factor Xa, dipeptidil 
peptidase IV, aldehyde reductase, dihydrofolate reductase, 
steryl sulfatase, cyclooxigenase 2, RNA directed DNA 
polymerase, hiv retropepsin). It also shows more general 
annotations which are expected to involve multiple targets 
(e.g. transferring alkyl groups, peptidase, metalloendo-
peptidase, nitric oxide synthase or unspecific monooxy-
genase).  

 The experimental evidence of promiscuous targets agrees 
well with several MDDR activity classes existent for their 
ligands. Supplementary Table 3 shows the promiscuous 
targets identified by the experimental data and the various 
MDDR activity classes related to their ligands.  

 Fig. (12) shows the comparison between the in silico and 
in vitro promiscuity predictions. The in silico predicted 
targets (Tanimoto score  0.9) are highlighted as light blue 
bands over the in vitro experimental data. Comparing the 
matches with the available experimental data, in vitro 
evidence of promiscuous targets often agrees with in silico 
predicted promiscuous targets (e.g. GABA-A alpha subunit, 
androgen, estrogen, acetylcholinesterase, RNA directed 
DNA polymerase). However, there are cases where 
experimental data is not available for some targets that are 
predicted to be promiscuous (e.g. procollagen proline 
dioxygenase, cholestenone 5  reductase, vitamin d3-like 
receptors, ribonucleoside diphosphate reductase), and other 
cases where targets are predicted not to be promiscuous but 
where there is experimental evidence of promiscuity (e.g. 
adenosine deaminase, metalloendopeptidase, hiv 1 
retropepsin, coagulation factor Xa, thrombin, dipeptidil 
peptidase IV, aldehyde reductase, peptidase). This later 
group mainly consists of proteins with surface pockets which 
are not represented well in MSSH. 

DISCUSSION 

 Previous computational studies to predict pharmaco-
logical profiles have used the similarity of chemical ligand 
structures, protein sequences, pharmacophoric binding 
pockets, or phenotypic side-effects to infer whether two 
drugs share a target. Our novel approach relates targets by 
SH shape similarity in both the ligand and binding pocket 
spaces. This allows promiscuous ligands and targets to be 
predicted using an explicit shape-based representation. Since 
3D shape complementarity is essential for molecular 
recognition, it is perhaps not surprising that our 3D shape-
based approach can give very good promiscuity predictions. 
We have shown some specific examples in which our 
method can detect a promiscuous target, such as androgen, 
GABA-A alpha subunit, hydroxymethylglutaryl CoA 
reductase, and thrombin. The ligands found to be 
promiscuous are often small and hydrophobic, as observed 
previously [25]. Moreover, the binding pockets for our 
predicted promiscuous targets are consistent with the general 
requirements for promiscuity (i.e. large hydrophobic binding 
sites, evidence of alternative binding modes for the same 
ligand at the same site, sensitivity of the exact binding mode 

to small differences in residues surrounding the site, or 
existence of a flexible lid to enable the binding site to 
accommodate a broad range of ligand sizes with good 
potency [52]). 

 As shown in previous studies [23, 51], there are cases 
where targets highly related by sequence are unrelated by 
their ligands, and cases where receptors unrelated by 
sequence are highly related by their ligands. Our approach 
has the advantage to combine information from both the 
ligand and binding pocket spaces. By mapping small-
molecule shape space to protein binding pocket shape space, 
we are able to identify groups of receptors that can be 
unrelated by sequence and structure but which have ligands 
with common shapes. In this way, previously unknown 
cross-interactions can be detected. We have shown here that 
shape clustering can help to identify off-target relationships. 
Cross-shape matching can be used as a first approach to 
identify promiscuous ligands and targets, and this should 
save time and costs compared to using standard functional 
assays. This should also facilitate the search for novel targets 
of marketed drugs. 

 The work presented here has focused on a retrospective 
study of known MDDR drugs. We are currently working to 
determine a better similarity threshold and to calculate a 
more rigorous interaction probability. 

CONCLUSION 

 We have presented a 3D shape-based approach for 
predicting drug promiscuity by correlating both ligand and 
binding pocket SH shapes. The method has been validated 
using a subset of the MDDR for which experimental 
information is available and has been demonstrated to be 
effective in identifying related targets which are known to 
have related MDDR activity classes. 

 When assessing similarity between two targets, the 
advantage of examining ligand-pocket shape similarity 
compared to protein sequence is the ability to identify targets 
which may have different folds but which have unexpectedly 
similar binding sites. Normally, polypharmacology 
prediction methods operate in ligand space or protein space. 
Comparing ligands with consensus pocket shapes leads to 
interesting promiscuity predictions which are often 
consistent with known crystallographic examples of 
promiscuous ligands and protein targets. Our results show 
that the performance in ligand space is comparable to that in 
binding pocket space, which provides supporting evidence 
for the pocket-based predictions. Moreover, the comparison 
of our in silico promiscuity predictions with the available in 
vitro results from Binding DB shows a similar agreement. 

 Overall, we have presented a new protocol to detect 
promiscuous ligands and targets and we have validated it 
using experimental information. Our results indicate that 
promiscuous ligands and targets are more common than 
previously assumed. Detecting and quantifying the 
similarities between target families will help the 
identification and exploitation of possible promiscuous 
targets. 
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