<u>P-44</u>

A DFT Study Of Structure-Antioxidant Activity Relationship of a New Series of 2-Methoxybezohydrazide Schiff Bases

El Hassane Anouar^{1,*}, Muhammad Taha¹, Salwa Raweh^{1,3}, Mohd Syukri Baharudin¹, MH Hassanb³, Aishah Adamb³, Patrick Trouillas² and Jean-Frédéric F. Weber^{1,3}

¹Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E. Malaysia; ²Faculté de Pharmacie, Université de Limoges, 2 rue du Docteur Marcland, 87025 Limoges, France; ³Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E. Malaysia; E-mail: anouarelhassane@yahoo.fr

Natural and synthetic Schiff bases are known for their diverse biological activies and potent antioxidant and free radical scavenging activity. A series of 31 Schiff bases (*e.g.* **2**) were synthetized through the condensation of 2-methoxybenzohydrazide (**1**) and different aldehydes in methanol. The antioxidant activities of these Schiff bases were evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test. To rationalize their structure-antioxidant activity relationship, density functional theory (DFT) calculations have been performed at B3P86/6-31+G(d,p) level in gas phase and in solvent using a polarizable continum model (PCM). Both experimental and DFT results emphasize the importance of the (i) catechol moiety, (ii) number of OH groups, (iii) delocalization of spin density (such as in **3**), and (iv) bond dissociation enthalpies (BDE for a first hydrogen atom transfer and BDE_d for a second hydrogen atom transfer) in the antioxidant activity of that series of Schiff bases. Thermodynamic and kinetic studies of the reactivity of Schiff bases with free radicals (*e.g.* DPPH and •OOCH₃) have shown that the coupled proton electron transfer (CP-ET) is the major mechanism to scavenge free radicals due to low free activation barriers as compared to the electron transfer proton transfer (ET-PT) mechanism.

Keywords: DFT, antioxidant activity, Schiff bases.