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Abstract: Since the early days of satellite remote sensing in the 1950’s, accessibility, quality, and scope of remote sensing 
image data has been continuously improving, making it a rich data source with a wide range of applications. Today, the 
use of remote sensing techniques and data is commonplace within many disciplines in the natural sciences. Although there 
are quite a few examples of remote sensing to be found in the social sciences, developments here have, on the whole, been 
less pronounced. This paper investigates 1) how remote sensing data has been put to use in social science studies, and 2) 
how social science could better utilize the huge potential of remote sensing data. The first part of the paper gives an over-
view of existing types of remote sensing techniques and data collection. The second part consistsof a review of social sci-
ence applications of remote sensing data. In the conclusions it is argued that remote sensing data is at its most valuable in 
the social sciences when used in combination with traditional methods such as surveys, public records, interviews and di-
rect observation.  
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1. INTRODUCTION 

 Since 1858, when the journalist and pioneering 
photographer Félix Nadar (1820-1910) decided to 
photograph Paris from an air balloon, remote sensing has 
been of fundamental importance for civil and military 
surveying and reconnaissance. From 1909 and onwards, 
airplanes have been used for aerial photography missions 
and during first world war cameras were specially 
constructed for aerial photography [1]. During the late 
1950s, US military CORONA satellites, equipped with 
cameras for undetected reconnaissance, photographed large 
areas of foreign territories. In 1995, President Clinton 
ordered the declassification of more than 800, 000 images 
collected between 1960-1972 by these satellites. 

 Since these early days of satellite remote sensing the 
availability and quality of image data has been continuously 
improving. Today, remote sensing data is widely 
acknowledged and applications are found in many areas of 
society. Weather forecasting, monitoring of forestry and 
agricultural activities, disaster management, or simply as a 
complement to other digital services are but a few 
applications. Many organizations provide and distribute 
satellite data free of charge. For example, the Global Land 
Cover Facility http://glcf.umiacs.umd.edu/index.shtml) and 
the Swedish national satellite database Saccess (http://-
saccess.lantmateriet.se/) offer state-of-the-art imagery via 
open access websites. 
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 Remote sensing applications are commonplace in many 
research programmes in the natural and environmental 
sciences. It is a valuable source for data on vegetation 
composition and structure, and is used in landscape ecology, 
biology, physical geography, etc. 

 The central topic of this paper is the use of remote 
sensing in the social sciences, where the practice of using 
remote sensing data is less developed. The aim of this paper 
is to review research in remote sensing based social science. 
Earlier efforts with similar scope exist. Most noticeable is 
probably the 1998 publication from the National Research 
Council, “People and Pixels: Linking Remote Sensing and 
Social Sciences” which summarized research in the human 
dimensions of global change in a series of essays during the 
first half of the 1990s [2]. In addition, CIESIN (Center for 
International Earth Science Information Network) has 
compiled an unpublished report “Social Science 
Applications of Remote Sensing” that covers a wide range of 
issues up until the year 2000 [3]. Most literature found in this 
text is compiled from individual papers encompassing a wide 
spectrum of scientific journals. Due to the cross-disciplinary 
character of research in this realm, papers are rarely 
published in “pure” remote sensing literature, or in “pure” 
social science journals. Instead, much of the work presented 
here was found in journals specializing in “Sustainability 
science” or “Global change studies”, which is an interesting 
observation in itself.  

 This paper is structured in three main sections; the first 
provides an overview and introduction to remote sensing 
fundamentals and is directed at readers not already familiar 
with remote sensing technology. The second section of this 
paper concerns the applications of remote sensing in social 
science research, whilst the third section presents 
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conclusions derived from the first two. A comprehensive 
bibliography is appended. 

1.1. Definitions  

 Remote sensing is the science, technology, and art of 
obtaining information on objects from a distance. It allows 
identification and classification of objects according to type 
and spatial distribution [4]. Typically, remote sensing relies 
on measurements of electromagnetic energy emitted by or 
reflected from the features of interest. Measurements are 
normally made by analog or digital sensors mounted on 
satellites, airplanes, or some other airborne vehicle. Digital 
cameras, the human visual system and ground based 
detectors are all examples of those technical and biological 
systems which exhibit similar characteristics to a remote 
sensing system, when applied to the gathering information 
about objects from a distance. Here, we focus on the 
application of optical remote sensing from airplanes or 
satellites, which makes use of visible, near infrared and 
short-waveinfrared sensors to form images of the earth's 
surface. Only in brief we will consider radar and lidar remote 
sensing.  

 Numerous examples exist where remote sensing has been 
employed for socially useful purposes, but there are few 
examples of remote sensing within the context of social 
scientific research [3]. Only the latter will be addressed here. 
The social sciences can be defined as those academic 
disciplines concerned with the study of society and the social 
life of human groups and individuals; it includes 
anthropology, economics, geography, history, political 
science, psychology, social studies, and sociology. Research 
that utilizes remote sensing data is seldom in the mainstream 
of the particular discipline and therefore, publications are 
usually found in topic-oriented journals, not discipline-
oriented. Research is often conducted under the umbrella of 
meta-disciplines, e.g. “land-change science” and 
“sustainability science”. Sometimes it can be quite difficult 
to decide if a certain application qualifies as “social science”. 
However, the guiding principle has been that attention be 
paid to the social, economical or cultural dimension of the 
particular study. 

2. REMOTE  SENSING FUNDAMENTALS 

 The aim of this section is to provide the readers that are 
new to remote sensing with a technical background. The 
content is primarily based on [5] and [6]. This section is 
divided as follows: Physical Principles, which describes the 
electromagnetic spectrum and provide some definitions of 
key terminology, Satellite Sensors, which describe the 
characteristics of common remote sensing systems, and 
finally Image Analysis, which provide a background to 
standard processing techniques. 

2.1. Physical Principles 

 The first requirement for remote sensing is to have an 
energy source which illuminates or provides the target of 
interest with electromagnetic energy. Electromagnetic ra-
diation has a predictable physical behavior described by 
wave theory. Wavelength and frequency are fundamental 
charac-teristics of electromagnetic radiation and are of 
particular interest in remote sensing. The wavelength is the 
length of one wave cycle, representing the distance between 

successive wave crests. Wavelength is usually represented 
by the Greek letter lambda ( ). The frequency refers to the 
number of cycles of a wave passing a fixed point per unit of 
time. Frequency is normally measured in hertz (Hz), 
describing the number ofcycles per second. Frequency and 
wavelength are inversely related to each other, meaning, the 
longer the wavelength, the shorter the frequency and vice 
versa.  

 The electromagnetic spectrum is categorized according to 
wavelength and frequency. The shorter wavelength end of 
the spectrum includes x-rays, whilst the longer wavelengths 
include microwaves and radio waves (Fig. 1). The part of the 
electromagnetic spectrum visible to the human eye is small 
and covers the approximate range 0.4 to 0.7 μm. The longest 
visible wavelength is red and the shortest is violet. There are 
several regions of the electromagnetic spectrum which are 
useful for remote sensing. The ultraviolet (UV) portion of 
the spectrum has short wavelengths. When rocks and 
minerals are illuminated with UV-radiation they emit visible 
light. The infrared (IR) portion of the spectrum covers the 
approximaterange 0.7 μm to 100 μm and can be divided into 
thermal IR and reflected IR. Thermal IR is the heat that is 
emitted from objects on Earth. Any object with a 
temperature above 0 Kelvin emits thermal radiation. In more 
recent times, remote sensing has utilized longer wavelength 
microwave radiation, with  values in the range 1 mm to 1 
m. Before the radiation used in remote sensing reaches Earth 
it passes through the atmosphere. Here, radiation can be 
either scattered or absorbed. In both cases, less of the 
radiation than originally emitted reaches the target. The 
degree of atmospheric penetration of different parts of the 
electromagnetic spectrum is dependent on wavelength and 
atmospheric content (green house gases, vapor, particles, 
etc). In some portions of the spectrum, almost all radiation is 
absorbed and consequently no radiation reaches the Earth’s 
surface, rendering remote sensing impossible. Those portions 
of the electromagnetic spectrum where radiation 
transmission through the atmosphere is high are called 
atmospheric windows and are most useful for remote sensing 
purposes. The visible portion of the spectrum is one obvious 
atmospheric window.  

 A target can reflect, absorb, or transmit the incoming 
radiation. Transmission occurs when radiation passes 
through a target while absorption occurs when energy is 
absorbed by the target. Reflection results when the radiation 
is bouncing off the surface in question and is, for remote 
sensing purposes, the most interesting type of target 
interaction. Reflection can be of the specular kind, where the 
target surface is smooth and acts like a mirror, redirecting all 
the energy in one direction. However, when a target surface 
is rough, the radiation is reflected in all directions. 

 When the reflected energy is measured over a variety of 
different wavelengths a spectral response pattern for that 
target can be recorded. By comparing the spectral response 
patterns of different objects, it is possible to identify spatial 
separation and distinguish different objects from one 
another. It is common for different objects to have similar 
spectral responses in certain parts of the electromagnetic 
spectrum, but when several wavelengths are compared, 
objects can usually be resolved. This is a fundamental 
observation in remote sensing image analysis. 
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2.2. Satellite Sensors 

 Remote sensing systems, which measure energy that is 
naturally available, are called passive sensors. Passive 
sensors can only be used to detect energy when this naturally 
occurring energy is available. In the case of all reflected 
energy, this can only take place when the sun is illuminating 
the Earth. Energy that is naturally emitted (such as thermal 
infrared) can be detected day or night, as long as the amount 
of energy is large enough to be recorded. Active sensors, on 
the other hand, provide their own energy source for 
illumination. The sensor emits radiation which is directed 
toward the target under investigation. The radiation reflected 
from that target is then detected and measured by the sensor. 
The advantages of active sensor include the ability to obtain 
measurementsregardless of the time of day or season. Active 
sensors can also be used for examining wavelengths that are 
not provided in sufficient strengthby the sun, such as 
microwaves. In addition, active sensors offer better control 
over the way a target is illuminated. Some examples of 
active sensors include LIDAR (Light Detection and 
Ranging) and Synthetic Aperture Radar (SAR). LIDAR is an 
optical active sensor that measures the properties of scattered 
light and can be used to calculate properties of a distant 
target. The prevalent method to determine the distance to an 
object or surface is the use of laser pulses. Similarly, through 
using radar (Radio Detection and Ranging) technology, 
employing light that is not in the visible part of the spectrum, 
the range to an object can be determined by measuring the 
time delay between the transmission of a pulse and the 
detection of the reflected signal.  

 Many electronic remote sensors acquire data using 
scanning systems, which employ a sensor with a narrow field 
of view that sweeps over the terrain to build up and produce 
a two-dimensional image of the surface. A scanning system 
used to collect data over a variety of different wavelength 
ranges is called a multispectral scanner and is the most 
commonly used scanning system. The detail discernible in 
an image is dependent on the spatial resolution of the sensor 
and refers to the size of the smallest possible feature that can 
be detected. Spatial resolution of passive sensors depends 
primarily on their Instantaneous Field of View (IFOV). The 
IFOV is the angular cone of visibility of the sensor and 
determines the area on the Earth's surface which is "seen" at 
one particular moment in time from a given altitude. The 
size of the area viewed is determined by multiplying the 
IFOV by the distance from the ground to the sensor. This 
calculated ground area is called the resolution cell and 
determines a sensor's maximum spatial resolution. For a 

homogeneous feature to be detected, its size generally has to 
be equal to or larger than the resolution cell. If the feature is 
smaller than this, it may not be detectable as the average 
brightness of all features within that resolution cell will be 
recorded. However, smaller features may sometimes be de-
tectable if their reflectance dominates within a particular 
resolution cell, allowing sub-pixel or resolution cell 
detection. The finer the resolution, the less total ground area 
that can be seen.  

 Spectral resolution describes the ability of a sensor to 
define fine wavelength intervals. The finer the spectral 
resolution, the narrower the wavelength range for a particular 
channel or band. Many remote sensing systems record 
energy over several separate wavelength ranges at various 
spectral resolutions. These are referred to as multi-spectral 
sensors and hyperspectral sensors and detect hundreds of 
very narrow spectral bands in the visible, near-infrared, and 
mid-infrared portions of the electromagnetic spectrum. 

 The radiometric resolution of an imaging system 
describes its ability to discriminate very slight differences in 
energy. The finer the radiometric resolution of a sensor, the 
more sensitive it is to detecting small differences in reflected 
or emitted energy. When resolution of any kind is increased, 
data volumes and consequently processing time is increased.  

 The number of remote sensing sensors producing Earth 
surface information is large and is increasing rapidly. Most 
applications in the social sciences rely on Landsat data, 
although applications using SPOT, IKONOS and others are 
becoming more frequent. Hyperspectral data is very rare, as 
are active sensor data such as SAR or LIDAR. The 
popularity of Landsat data is attributed to the use of a 
combination of sensors with spectral bands tailored to Earth 
observation, functional spatial resolution, good areal 
coverage, and because the long lifespan of the program has 
provided a voluminous archive of Earth resource data. The 
latter has allowed long term monitoring and research, and 
has facilitated the creation of historical records. Most of the 
historical and also recent data are freely available from sites 
like http://landsat.gsfc.nasa.gov/ and http://landsat.usgs.gov/  

 Landsat-1 was the first satellite designed specifically to 
monitor the Earth's surface and was launched by NASA in 
1972. In 1985 the Landsat program became commercialized. 
The Landsat series of satellites carry a number of on board 
sensors, which have been progressively improved, giving 
greater spatial, spectral and radiometric resolution (see Table 
1 and 2).  

 

 

 

 

 

 
Fig. (1). The electromagnetic spectrum. 
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 The MSS and TM sensors have collected data over a 
swath width of 185 km, with the full scene being 185 km x 
185 km. MSS sensed electromagnetic radiation is collected 
in four spectral bands, with a nominal spatial resolution of 
60 x 80 meters. Collection of MSS data stopped in 1992, 
following the introduction ofaTM sensoronboard the 
Landsat-4 satellite. This TM sensor offered several 
improvements over the MSS sensor. The spatial resolution 
was increased to 30 m and 120 for thermal IR. The number 
of spectral bands was increased from 4 to 7 and the 
radiometric resolution was improved, from 6 bits to 8 bits. 

 SPOT (Système Pour l'Observation de la Terre) is a 
series of Earth observation imaging satellites designed and 
launched by CNES (Centre National d'Études Spatiales) of 
France, with support from Sweden and Belgium (Table 3). 
The program was commercially oriented and was meant to 
be operational, rather than experimental, as was the case with 
the Landsat program. The first satellite was launched in 1986 
and was equipped with a number of innovations including 
pointable optics. The fact that the onboard optics were 
designed to be pointable enabled side-to-side viewing 
capabilities and full-scene stereoscopic imaging. By 
recording the same area from two different angles, the 
imagery can be viewed and analyzed as a three dimensional 
model, which is of great value for terrain analysis, mapping 
and visualization.  

 If Landsat is associated with forest applications, then 
SPOT is typically associated with applications wherefine 
spatial detail must be resolved, such as urban mapping. An 
interesting capability of SPOT is that the high-resolution 
panchromatic band can be used to sharpen the spatial detail 
in the multispectral bands. 

 Numerous systems have been launched, or are in 
development phases, that achieve much higher resolution 
than Landsat and SPOT (See Table 4). In 1999, Space 
Imaging launched the IKONOS system. This is a 
commercial high-resolution earth observation satellite 
situated some 682-km above the Earth’s surface, with an 
orbital (revisiting) period ofapproximately 11 days. The 
system is pointable up to 45º from vertical and covers 11 km 
x 11 km each swath.  

 In a manner similar to SPOT, the IKONOS 1-m 
panchromatic band can be used to sharpen colour bands. 
IKONOS bands and Landsat ETM+ bands are essentially 
identical in terms of spectral resolution (see Table 4). The 
IKONOs satellite, as true with many of the high-resolution 
systems, is highly maneuverable and can be programmed to 
point at a new target within seconds. Through the 
programming capability the whole system can follow a 
certain object, e.g. a river or a road. 

 After some initial problems, Quickbird was launched in 
June 2001. At that time, it was the second highest spatial 
resolution commercial imaging systemin the world and had 
the largest image size (see Table 4 for details). The 
panchromatic band, with a spatial resolution of 0.60 m, is 
suitable for viewing city building structures. Similarly, the 
Orbview mission produced high resolution imagery and was 
active for 4 years, stoppingimageproductionin 2007. It had a 
revisiting time of 4 days and, similar to IKONOS, this 
satellite passes a given longitude at 10.30 am. The company 
GeoEye, owner of IKONOS and Orbview, launched 
GeoEye-1 in 2008 which carried the highest spatial 
resolution commercial sensor at that time. It provides 0.41 m 
in panchromatic mode and 1.65 in multispectral mode. After 
it’s launch, Google Inc. disclosed to the public that they were 
going to buy and use GeoEye-1 imagery in their 
applications. Additional high resolution satellite sensors 
have since been launched, or are planned. A 
characterizationof satellite remote sensing systemsis found at 
www.satimagingcorp.com 

 The many available sensors with various spatial 
resolution and multi-temporal capabilities has called for 
research into the integration of data of the various types. 
There are many techniques available for the integration of 
remote sensing data and the general term used is “fusion 
techniques”. Normally, the goal is to use the “fusion” images 
toderive more information than would be possible from the 
separate individual images [7]. A typical example is the 
fusion of SAR data with visible/infrared data. Another is the 
integration of the SPOT panchromatic high-resolution 

Table 1. Landsat Mission Characteristics. Based on [5] 

   Bands Orbit 

Satellite Launch Ended RBV MSS TM Days/km 

Landsat-1 July, 23, 1972 Jan 6, 1978 1-3 4-7 None 18/900 

Landsat-2 Jan 22, 1975 Feb 25, 1982 1-3 4-7 None 18/900 

Landsat-3 March 5, 1978 March 31, 1983 A-D 4-8a None 18/900 

Landsat-4 July 16, 1982b - None 1-4 1-7 16/705 

Landsat-5 March 1, 1984 - None 1-4 1-7 16/705 

Landsat-6 Oct 5, 1993 Failed launch None None 1-7, ETM 16/705 

Landsat-7 April 15, 1999 - None None 1-7, ETM+ 16/705 

a Band 8 failed shortly after launch, b TM data transmission failed in August 1993. 
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Table 2. Landsat Sensor Specification. Based on [5] 

Sensor Mission Range ( m) Resolution (m) 

RBV 1,2 0.475-0.575 80 

  0.580-0.680 80 

  0.690-0.830 80 

 3 0.505-0.750 30 

MSS 1-5 0.5-0.6 79/82a 

  0.6-0-7 79/82a 

  0.7-0-8 79/82a 

  0.8-1.1 79/82a 

 3 10.4-12.6b 240 

TM 4,5 0.45-0.52 30 

  0.52-0.60 30 

  0.63-0.69 30 

  0.76-0.90 30 

  1.55-1.75 30 

  10.4-12.5 120 

  2.08-2.35 30 

ETMc 6 Above TM bands 30 (120 m thermal) 

  + 0.50-0.90 15 

ETM+ 7 Above TM bands 30 (60 m thermal) 

  + 0.50-0,90 15 
a 79 m for Landsat-1 to -3 and 82 m for Landsat-4 and -5. 
b Failed shortly after lunch. C Landsat-6 launch failure. 

 

Table 3. SPOT-5 Sensors 

Sensor Spectral Band ( m) Spatial Resolution (m) Swath Width (km) 

HRG Pan: 0.48-0.71 2.5 or 5a 60-80 

 0.50-0.59 10  

 0.61-0.68 10  

 0.78-0.89 10  

 1.58-1.75 120  

HRS Pan: 0.49-0.69 5-10b 120 

Vegetation 2 0.45-0.52 1000 2250 

 0.61-0.68 1000  

 0.78-0.89 1000  

 1.58-1.75 1000  
a The HRG panchromatic bands (5 m) can be combined to yield 2.5 m. 
b HRS panchromatic has a spatial resolution of 10 m along-track and 5 m in the across-track direction. 
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Table 4. High-Resolution Satellite Systems 

 

Satellite Launch Date Spatial Resolution (m) Spectral Bands ( m) Swath Width (km) 

IKONOS Sept 24, 1999 1 Pan: 0.45-0.90 11 

  4 1: 0.45-0.52  

   2: 0.52-0.60  

   3: 0.63-0.69  

   4: 0.76-0.90  

EROS-A Dec 5, 2000 1.8 Pan: 0.50-0.90 13.5 

QuickBird Oct 18, 2001 0.61 Pan: 0.45-0.90 16.5 

  2.40 1: 0.45-0.52  

   2: 0.52-0.60  

   3: 0.63-0.69  

   4: 0.76-0.90  

OrbView June 26, 2003 1 Pan: 0.45-0.90 8 

  4 1: 0.45-0.52  

   2: 0.52-0.60  

   3: 0.63-0.70  

   4: 0.76-0.90  

 
channel with the SPOT multispectral low-resolution channel, 
which creates a sharpened color image [8]. 

 The presence of lighting around the globe is almost 
entirely the result of human activities from settlements, 
shipping fleets, gas flaring or fires from swidden agriculture. 
Therefore, night-time light imagery serves as a unique 
human view of the Earth's surface. The Defense 
Meteorological Satellite Program-Optical Line Scanner 
(DMSP-OLS) was designed to observe clouds at night, but 
an unforeseen benefit was that it could also detect lights at 
night. The sensor is sensitive down to a minimum of 10-9 W 
m2 sr-1 μm-1 which is comparable to a light source similar to 
a unshielded 250 W high pressure sodium bulb light. A 
detailed review of DMSP-OLS is found in [9]. The nominal 
spatial resolution is 2.7 km but is frequently sampled to other 
spatial resolutions. 

 Research in technical issues and applications of DMSP-
OLS are ongoing and products are frequently being released. 
DMSP-OLS applications are presented in the section 
Applications of remote sensing to social science research. 
Three types of imagery are associated with DMSP-OLS data. 
The oldest data set is the stable lights data set, covering the 
period 1994-95. Through a filtering process, a variety of 
different image products can be derived: lights from human 
settlements and industrial facilities, fires, gas flaring and 
shipping fleets. The object’s different temporal and spatial 
characteristics are used to discriminate between different 
types of light. The quality of the image products are, to some 
extent, dependent on the availability of cloud free views. 
This is problematic for the fire product as fires are more 
frequent in cloud-covered tropical regions. Perhaps the 
biggest problem with the first version was low-light level 

pixel saturation. The second version (1996-97), based on 
radiance-calibrated data, used a method to compensatefor the 
pixel saturation problem [10]. The use of radiance, as 
opposite to DNs (digital numbers) in the first version, 
provided a physically meaningful quantity and a versatile 
data set that could be used in modeling efforts and to find 
meaningful associations between radiance and other 
parameters. The most recent image product comes in the 
form of average DN values for 1992-93 and 2000 and is a 
change product based on the former two. Complications due 
to lunar illumination, glare, bad scan lines, and other minor 
problems are resolved in this version.  

2.3. Image Analysis 

 Interpretation and analysis of remote sensing imagery 
involves the identification and measurement of various 
targets in an image in order to extract useful information 
about them. Targets in remote sensing images may be any 
feature or object which can be observed in the image. Image 
analysis can be done with visual interpretation and manual 
extraction of information. Observing the differences between 
targets and their backgrounds involves comparing different 
targets based on the visual elements of tone, shape, size, 
pattern, texture, shadow and association. Digital methods can 
be used to enhance the visual image analysis, so digital, 
manual, visual are not mutually exclusive concepts. For 
example, spectral bands can be combined to render a 
composite image that can help the analyst in the visual 
analysis process. True color composite images are created by 
combining spectral bands that most closely resemble the 
range of vision of the human eye. A Landsat ETM true-color 
composite uses the visible red (band 3), visible green (band 
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2), and visible blue (band 1) channels to create an image that 
is very close to what a person would expect to see in a 
photograph of the same scene (Fig. 2). 

 In a Near Infrared composite image,the visible blue band 
is replaced witha Near Infrared (NIR) band. The mapping of 
color to band is Landsat ETM Band 4 (NIR) = red, Band 3 
(Visible red) = green, Band 2 (Visible green) = blue. 
Vegetation has a very high reflectivityin the NIR band 
because chlorophyll reflects energy at this wavelength. Thus, 
in a 432 NIR composite image, vegetation is vividly depicted 
as varying shades of red. Since different types of vegetation 
have different quantities of chlorophyll in their leaves, each 
type of plant has its own shade of red. This makes such 
composites very useful in determining the extent of 
vegetation and in classifying different vegetation types, as 
seen from space. Digital image classification uses the 
spectral information represented by the digital numbers in 
one or more spectral bands, and attempts to classify each 
individual pixel based on this spectral information. This type 
of classification is termed spectral pattern recognition and 
feature image types utilize different combinations of DNs, 
based on the inherent spectral reflectance and emission 
properties of the substance/feature in question. The objective 
of this imaging technique is to assign all pixels in the field to 
particular classes or themes (e.g. water, coniferous forest, 
deciduous forest, corn, wheat, etc.). The resulting classified 
image is comprised of a mosaic of pixels, each of which 
belong to a particular theme, and is essentially a thematic 
"map" of the original image.  

 Classification can also be based on spatial pattern 
recognition. This process involves categorization of image 
pixels on the basis of their spatial relationship to the pixels 
surrounding them. This type of classification tries to 
replicate the spatial synthesis process performed by the 
human brain during the visual interpretation process. 
Temporal pattern recognition uses time as an aid in feature 
identification. For example, distinct spectral and spatial 
changes during a growing season can permit discrimination 
in multi-temporal imagery.  

 When considering imageclasses, we need to distinguish 
between information classes and spectral classes. 
Information classes are those categories of interest that the 

analyst is actually trying to identify in the imagery, such as 
different kinds of crops, different forest types or tree species, 
different geologic units or rock types, etc. Spectral classes 
are groups of pixels that are uniform (or near-similar) with 
respect to their brightness values in the different spectral 
channels of the data. The objective is to match the spectral 
classes in the data to the information classes of interest. A 
large variety of software and methods exist for performing 
digital image classification and are divided into unsupervised 
and supervised methodologies. The former relies on a 
statistical grouping of pixels which have similar numerical 
information in the data (e.g. spectral classes),. These are then 
assigned to different information categories by the analyst. 
In supervised classification, the analyst takes the various 
information classes then identifies homogeneous representa-
tive samples for the different surface cover types 
(information classes) of interest. These samples are referred 
to as training areas. The numerical information in all the 
spectral bands of the pixels comprising these areas are 
subsequently used to "train" the computer to recognize 
spectrally similar areas for each information class. The above 
classifications are generally referred to as “per-pixel 
classification”, as the pixel is the basic spatial and spectral 
unit.  

 Another class of digital image classification method has 
recently evolved in response to problems associated with the 
inability of per-pixel classification algorithms to handle 
high-resolution imagery, such as IKONOS or Quickbird data 
[11]. Such problems have created/resulted in a paradigm 
shift in remote sensing image analysis techniques [12].  
Object-oriented image analysis is based on the paradigm that 
image-objects are the fundamental entity in remote sensing 
imagery. The term image-objects refers to individually 
resolvable entities located within a digital image that are 
perceptually generated from pixel groups [13]. From this, it 
follows that attributes such as shape, size and mutual 
relationships between objects can be used in the 
classification process. The initial stage involves segmenta-
tion of imagery based on some image-object characteristics 
(shape, variance, etc). The segmented object becomes the 
spatial unit used for spectral classification. Sometimes this 

 

 

 

 

 

 

 

Fig. (2). RGB-composites from Landsat ETM+. Right: True-color composite from mapping band 3 to R, band 2 to G, and band 1 to B. Left: 
Near-infrared composite from mapping band 4 to R, band 3 to B, and band 2 to B. Scene acquired 2006-09-14. Coordinates for lower left 
corner are N 58° 21’ 0’’ and E 12° 52’ 54”. 
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process involves the aggregation of objects to coarser scales, 
e.g. tree objects are aggregated into forest. 

3. APPLICATIONS OF REMOTE SENSING TO SO-
CIAL SCIENCE RESEARCH 

 In the following sections applications of remote sensing 
to social science will be reviewed. A few words about the 
categorization is needed. The fields described below 
dominate the literature and resemble the categorization in 
previous reviews. Examples of remote sensing studies can 
probably be found in applications other than the ones 
described here. But those discussed below comprise the bulk 
of activity, are becoming important and thus debated. Some 
remote sensing applications are interrelated, both as a 
consequence of cross-disciplinary activities and the 
similarity in variables that are often desired and reused 
between disciplines. This is particular true for land cover, a 
category that is included in the majority of studies. We will 
describe remote sensing studies in the context of Urban 
studies, Demography, Archaeology, Land-use and land-
cover change studies, war and conflict studies. Finally, a 
section called “uncategorized” describes less common, yet 
nonetheless important, applications that don’t fit traditional 
categorization. 

3.1. Urban Studies 

 Remote sensing in urban studies has a long history. Early 
studies used photo interpreted data as auxiliary data sources 
in a census, or to predict socioeconomic variables such as 
poverty from housing density, structure type or vegetation 
cover [3]. Aerial photography remains in use today, but the 
need for frequent and comprehensive coverage of urban 
areas at low cost has led to an interest in satellite imagery. 
First generation low-resolution sensors permitted only 
limited analytical capability and were mainly used in 
regional systems analysis of some large North American 
cities. With the advent of Landsat TM and SPOT HRV it 
became possible to study European scale cities. Virtually all 
research in urban areas was focused on land use or land 
cover classification and it became evident that classification 
of urban land use and urban areas was a challenging task due 
to the mixture of materials requiring classification, but also 
because of ambiguous definitions ofwhat should be termed 
“urban”. Technology oriented papers are numerous and only 
a limited number will be presented here. 

 Delineation and classification of urban areas have mainly 
been technical issues, each with their own value. Remote 
sensing experts are implementing new techniques, such as 
texture analysis and data fusion, to identify urban features, 
building types and building density [14]. The key issue is 
that the urban environment is characterized by a combination 
of materials and land use classes. Mixed pixels are common 
and limit the applicability of standard classification 
techniques. Consequently, during the period 1990 – 2000, 
Rashed [15] applied multiple end-member spectral mixture 
analysis, landscape metrics and fuzzy logic to Landsat 
thematic images to study the urban morphology of Los 
Angeles, California. In a similar vein, Tole [16] applied a 
sub-pixel classification technique to remote sensing imagery 
between 1986 and 2001 to study changes in built-up and 
non-built-up areas. The problems with urban sub-pixel 
classification was also addressed by Xian [17], who studied 

the transition from natural cover to increasingly 
anthropogenic impervious surface in the Las Vegas area in 
Nevada.  

 To differentiate between single-family and multi-family 
residences, a minimum ground resolution of 1-5 m is 
required. For example, sensors like IKONOS and Quickbird 
are used to discriminate between duplex, triplex or 
condominium units. Researchers have also been experimen-
ting with Airborne Laser Scanning (ALS) data to improve 
the classification of urban structures [18]. Additionally, land 
cover types were differentiated based on their relative height 
above ground, enabling the creation of a 3D building model. 
Hyperspectral data, acquired by means of MIVIS 
(Multispectral Infrared Visible Imaging Spectrometer),was 
also used for the purpose of detailed classification of urban 
elements and materials [19]. The analysis of the spectral 
responses for MIVIS, using more than 90 spectral bands, 
permitted the detailed classification of small variations in 
covering surfaces and the identification of a wide range of 
sub-classes (bricks, grits, copper, etc).  

 Measurement of physical properties such as surface 
temperature, pollutants or water vapor has mainly been the 
realm of technical remote sensing. Remote sensing has 
contributed significantly to studies of the heat island effect, 
i.e. the observed temperature difference between urban and 
rural areas. Santana [20] studied the normalized difference 
vegetation index (NDVI), Leaf Water Content index (LWC) 
and land surface temperature to aid in city landscape design. 
They suggest that theses indices can be used for selecting 
areas with the greatest need for green area development. In 
another study, Jusuf et al. [21] identified land use types that 
had the greatest influence on ambient temperature increasein 
Singapore.  

 Other social science issues applicable to remote sensing 
exist, such as are urban growth and development, quality of 
life, and urban population density and structure. Several 
studies exist that quantify land cover changes in order to 
address urban growth over periods of time. However, this 
application is particularly demanding in terms of pre-
processing of remote sensing data. It is required that 
different temporal images are corrected for differences in 
atmospheric conditions, sun angle, and are carefully co-
registered to avoid errors in the estimation of the land cover 
change. In an attempt to understand the extent of, and the 
factors driving urban expansion in China from the late 1980s 
to 2000, Deng [22] combined socioeconomic variables and 
high-resolution satellite imagery. Rawashdeh and Saleh [23]  
investigated the effects of urbanization on fertile lands and 
also quantified urban growth through the study of aerial 
photographs, Landsat and IKONOS data for the period 1918-
2002. They showed that urban areas increased 509-fold and 
fertile land loss was 23%. Wilson and Lindsey [24] 
investigated the potential driving forces and environmental 
impacts of urban and suburban development of rural lands in 
the state of Indiana, US. Land cover change derived from 
Landsat data was related to socioeconomic variables and the 
findings indicated that residents in areas experiencinghigher 
levels of growth were less efficient consumers of rural land.  

 Martinuzzi et al. [25] studied land development and 
urban sprawl in densely populated Puerto Rico. They 
combined census data and remote sensing data in a 
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comprehensive land classification scheme. Ackerman et al. 
[26] used satellite remote sensing in combination of 
morphometric analysis to study the urban dynamics in the 
Petite Côte region of Senegal.  

 Environmental quality and quality of life are concepts 
that are sometimes used interchangeably. The first concept is 
closely related to the quality of the environment surrounding 
a human population. The latter concept usually involves 
some variables of socioeconomic quality such as affluence, 
housing quality, etc. Nichol et al. [27] investigated the 
application of multispectral remote sensing from Landsat 
ETM+ and IKONOS satellite sensor for the mapping of 
urban environmental quality in Hong Kong. More 
specifically they studied the relationship between air quality, 
biomass and surface temperature. In a similar study, they 
analyzed the same problem but also investigated the fusion 
between Landsat thermal data and IKONOS [28]. For 
visualization purposes, they developed a 3D urban model 
with fly-through capabilities. Jensen et al. [29] used remote 
sensing data and regression analysis to study the relationship 
between socioeconomic variables and urban forest amenities 
in Terre Haute, Indiana. They showed a linkage between 
income, population density and forest amenities measured as 
leaf-area. Lo and Faber [30] used the NDVI developed from 
Landsat TM data together with 1990 census data to measure 
quality of life of the Athens-Clarke county in Georgia. They 
showed that greenness was positively correlated with income 
and median home value, and negatively correlated with 
population density. In contrast, research performed in Detroit 
found that increase in greenness levels is positively 
correlated with indicators of social decay [31]. This seemed 
to be related to population decay and abandonment of 
housing units. Pozzi and Small [32] compared vegetation 
patterns and population density for a number of suburban 
areas in the U.S. and found that this relationship 
varieswidely. Increase in greennesscould relate to both high 
and low levels of affluence. 

 One obvious application of night-time lights is in the 
mapping of urban extent. DMSP-OLS imagery has a 
tendency to overestimate urban areas as a consequence of 
overglow, but also underestimate where no electricity is 
present. Imhoff [33] investigated different thresholding 
techniques to compensate for the overglow problem and 
through comparison of their data with those of the US census 
bureauthey found no differences between the two areal 
assessments. Sutton et al. [34] used a radiance-calibrated 
data set to study urban sprawl in the US. A data set of 
impervious areas has been produced by NOAA-NGDC 
(National Oceanic & Atmospheric Administration – National 
Geophysical Data Center) and night-time lighting was also 
used to delineate urban areas for the Global Rural-Urban 
Mapping Project (GRUMP) data set.  

 DMSP-OLS has also been used to map global urban 
extent [35], but also global estimates of market and non-
market values derived from nighttime satellite imagery, land 
cover, and ecosystem service valuation [36]. Results from 
these studies suggest that the relationship between lit area 
and population density varies considerably among small 
cities and towns and is more consistent for large urban areas. 
The precision of population estimates from the DMSP-OLS 
sensor has been evaluated and the conclusion is that it varies 

significantly on a regional basis. Studies in the USA indicate 
that towns with 150 inhabitants can be detected but recent 
work reports that for Brazilian Amazon urban settlements 
only populations higher than 5000 were precisely identified 
[37, 38]. Lu et al. [39] showed that DMSP-OLS data, when 
combined with MODIS (Moderate Resolution Imaging 
Spectroradiometer) NDVI data, greatly improved 
assessments of spatial patterns of settlement distribution. 

3.2. Demography 

 Population distribution surveillance is by tradition done 
by demographers but recently contributions from the spatial 
sciences have been noted. Spatial population distributions 
may reflect either residential or ambient population. 
Residential population information is derived from data 
describing where individuals reside. This type of data is 
usually aggregated to administrative or political boundaries. 
Ambient population descriptions capturethe exact locations 
of individuals, rather than where they reside and is usually 
represented by a grid. In data-poor countries, ambient 
population can be inferred with the help of remotely sensed 
data [40]. 

3.2.1. Population Counts 

 Several attempts exist where remote sensing imagery was 
used to produce population counts. Stern tested the 
correlation between village size and population size in a 
study aimed, originally, at improvingdata comparing popula-
tion size withdesertification processes in the Kordofan 
Province in the Sudan [41]. Villages were identified with 
Landsat MSS imagery and compared with the number of 
inhabitants. Due to deficiencies in reliable ground-thruth, the 
high correlation between settlement size and population size 
could not be statistically verified. In Nigeria, Olurunfemi 
[42] worked in a similar vein and found that 92 percent of 
the variation in population density could be explained by 
housing as a category of land use, detected in aerial 
photographs. He used a mathematical model to assign 
population counts to the land use data. This type of 
methodology prevails in the field of spatial demography.  

 Jensen and Cowen [43] summarize this line of research 
by stating that population estimates can be derived from 
counts of dwelling units, measures of urban extent and land-
use/land-cover classification. From an image classification 
point of view, several criteria need to be met, e.g. 
identification of housing structures through tree cover and 
differentiation between residential, commercial and 
industrial structures. For the independent variable average 
number of residents per dwelling unit estimates are 
necessary. This quantity can also be used to estimatenon-
residential populations (homeless, seasonal workers, etc.). 
Similarly, Li and Weng [44] used Landsat ETM+ imagery 
together with census data to estimate population densities for 
the city of Indianapolis, Indiana. Liu et al. [45] explored the 
relation between census population data and high spatial 
resolution IKONOS satellite imagery. They compared 
different types of measurements of texture to population 
census data but found only weak correlations. de Sherbinin 
et al. [3] concluded that research in this field is usually not 
performed by demographers and not much work has been 
evaluated by demographers. To be successful, detailed 
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observations and local knowledge are needed, an approach 
which usually is expensive, at least for large areas.  

 It seems clear that not even high-resolution satellite 
imagery of built-up areas correlates sufficiently strongly 
with population data to serve as a proxy for population [45]. 
However, demographers acknowledge that remote sensing 
imagery is a valuable aid in the initial selection of sampling 
units for traditional census work. Furthermore, the margin of 
error in population counts is too wide for remote sensing to 
be a viable alternative to traditional techniques [46]. 

3.2.2. Population Allocation 

 Census data can be combined with remote sensing 
information to generate a spatial distribution of population. 
Distributions may demonstrate residential or ambient 
populations. In essence, this is disaggregation of data based 
on spatial attributes rather than sub-districts. Allocation of 
populations is performed through spatial interpolation based 
on one or more geometric attributes. These geometric 
attributes can be derived from remote sensing imagery and 
are typically land-use, roads, night-time lights or some other 
feature related to human presence.  

 Output from population allocations is, in most cases, 
presented as a grid with population counts assigned to each 
cell with a resolution of around, typically,1-10 km. Some are 
distributed free of charge such as LandScan [47], Gridded 
Rural-Urban Mapping Project (GRUMP) [48] and Gridded 
Population of the World (GPW) [49]. For example, Hall et 
al. [50] used the above data sets with addition of a proxy for 
world poverty, environmental vulnerability, and distribution 
of natural hazards in a small-scale map to pin-point areas 
with high population densities, high levels of poverty and a 
pronouncedrisk for natural hazards.  

 Population predictions from remote sensing and night-
time light data relies on empirical observations of the 
relationship between the geographical size of a settlement 
and its population. In the 1960s Tobler [51] established that 
human population could be estimated by measuring the size 
of human settlements. Photographs generated from the 
Gemini space flight program were used in the 
characterization of settlements and empirical relations were 
developed for estimating populations. The coefficients for 
these relations showed regional variation, which was 
explained by differences in the organization of spatial 
activity and socioeconomic settings. Sutton et al. [52] found 
a correlation between night-time lights and human 
population density for the continental USA. Area of light at 
night has also been observed to correlate with population 
figures, regardless of economic development [53, 54]. Doll 
[55] extended this to analyze the relationship betweenarea of 
illumination area and urban population in different countries. 

 Night-time lights seem to be more indicative of day-time 
populations, since there is a large daily migration of people 
from residential areas to places of work. This concept has 
been used in the construction of a global database of ambient 
population from DMSP-OLS light and other spatial data. 
The Landscan database was developed at Oak Ridge 
National Laboratory and describes population at a global 
scale at 30 arc-minute (1 km) resolution [47]. The underlying 
census model counts at the sub-national level and 
incorporates four spatial input datasets, namely land cover, 

roads, slope and night-time lights. The model allows for 
differences in regional settlement characteristics. Night-time 
lighting was also used in the construction of the GRUMP 
dataset, to allocate populations from large census units into 
urban areas [49].  

 Several studies exist where the primary research focus is 
related more closely to population dynamics, rather than 
estimation of population. In these studies, population is 
viewed as the independent variable, the opposite of the 
above examples where population is considered a dependent 
variable. Entwistle et al. [56] studied the relationship 
between household survey data and landscape pattern 
derived from remote sensing imagery. They showed that a 
fragmented landscape with small patches promoted out-
migration of young farmers. Qiu et al. [57] compared urban 
population growth modeling based on change detection 
information from remotely sensed data and TIGER 
(Topologically Integrated Geographic Encoding and 
Referencing system, from the U.S. census bureau) GIS road 
data.The latter showed slightly greater accuracy. 

3.3. Archaeology 

 Nearly a century ago, archaeologists started utilizing 
photographs taken from airplanes to gain an aerial view of 
sitesandidentifythe remains of ancient settlements [58]. From 
the air, researchers could study crop marks, vegetation 
patterns and composition as evidence of past human activity. 
Additionally, larger and more remote areas could, for the 
first time, be surveyed. During the first era of satellite remote 
sensing (1960-80), the majority of archaeologists were 
restricted to using aerial photographs and visual 
interpretation of imagery, due to botha lack of technical aids 
and the low spatial resolution of these early sensors. During 
this period, prehistoric roadway systems in the Chaco 
Canyon of New Mexico were discovered in the pioneering 
remote sensing study of Lyon and Avery [59].This early 
work was summarized in a handbook of remote sensing 
techniques for archaeologists [59, 60]. In 1984, NASA 
organized the first conference on remote sensing in 
archaeology to discuss recent NASA-led advances in the 
technology and future applications to archaeology [61]. In 
the mid 1990s undergraduate and graduate courses were 
developed at the newly started Center for Remote Sensing at 
Boston University [62]. Strikingly, archaeology researchers 
were quick to embrace, and adapt to their needs, the full 
range of the remote sensing technology available to them. 
Sever [63] used thermal scanners to extend the work in the 
Chaco Canyon project. Synthetic Aperture Radar (SAR) and 
Light Detection and Ranging (LIDAR) techniques were 
tested and found useful for detecting road networks and 
pathways [64].  These investigations had a fundamental 
impact on the research community. Subsequent excavation 
workat prehistoric sites validated the initial SAR and LIDAR 
discoveries [64]. In many areas, such prehistoric footprints 
may have otherwise escaped detection,due to dense 
vegetation cover, sand, or similar. 

 The most recent development in the application of 
remote sensing in archaeology is the use of radar imagery  
[61]. Radar transmissions have the ability to penetrate 
certain objects and are therefore useful where surface 
features are covered by dense vegetation and can, to a certain 
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extent, detect sub-surface features. SAR was used to detect 
ancient water courses, roads, forts and settlements once 
established along the Silk Road but now largely covered 
with sand [63]. Recently, it was discovered that the medieval 
settlement of Angkor in Cambodia was part of a much larger 
complex of low density settlement landscape,which 
possessed an elaborate water management network, making 
it the most extensive urban complex of the preindustrial 
world [65]. In this project, traditional field survey methods 
were used in combination with radar remote sensing data 
collected during the 1994 flight of the space shuttle 
Endeavour. This enabled penetration of the forested areas on 
the Angkor site in the vicinity of the great temples. 

 Aerial photography has a solid foundation in 
archaeological research and surveying. The advent of 
satellite imagery provided researchers with increased 
overview to the cost of spatial resolution. Early sensors with 
low resolution, such as Landsat MSS (80 m) had only 
limited value in archaeology. But as the spatial resolution of 
satellite remote sensing has increased, so has the degree of 
interest and usage by archaeologists. IKONOS (1 m 
panchromatic, 4 m multispectral) launched in 1999 followed 
by Quickbird (0.61 m panchromatic, 2.40 m multispectral) in 
2001 has narrowed the gap between aerial photographs and 
satellite imagery in terms of high spatial resolution. 
However, the benefit high-resolution satellite imagery offers 
over traditional aerial photographs is that images can now be 
processed with the full set of remote sensing techniques in a 
digital environment. Saturno et al. [66] used IKONOS, 
Quickbird and EO-1 to detect ancient settlements in 
Guatemala, which have long been covered by dense 
vegetation. They studied the variations in vegetation density 
and structure caused byhuman activities. Garrison et al. [67]  
used IKONOS imagery to study sites where the Maya once 
lived and discussed the dangers and pitfalls of implementing 
remote sensing methods developed for similar but not 
identical landscapes. They identified differences in climate, 
geology, hydrology and topography as variables that affect 
the analysis. Bitelli and Zanni [68] have discussed the 
problem of the georeferencing of high-resolution satellite 
imagery and integration with other datasets. Masini and 
Lasaponara [69] used Quickbird imagery and edge detection 
techniques to detect land division systems in Metaponto, 
Italy. These critical views towards remote sensing data and 
techniques are quite typical in archaeology. 

 Archaeologist embrace new data and techniques quite 
rapidly. Recently, they started using LIDAR (Laser Imaging 
Detection and Ranging) techniques, which have proven 
useful in detecting archaeological sites covered by vegetation 
and surface disturbances [70]. Several other sensors are used 
in archaeological research, for example, ASTER and SPOT. 
ASTER has gained some popularitydue to it’s low cost. 
Also, old sensor data acquisition systems are finding new 
applications. For example, the military spy satellite 
CORONA, and on-board imagery system was released to the 
public in the mid-1990s. CORONA was used to take 
photographs of the Earth’s surface during intelligence 
missionsbetween1960-72 [71, 72]. It was originally designed 
to identify enemy vehicles but presently has research 
applicationsin many fields. 

3.4. Land-Use and Land-Cover Change 

 The interpretation of land-use and land cover change data 
dominates the research agendas of many private and public 
research institutions [3]. An understanding of land-change 
has emerged as a fundamental element of how global 
environment change is occurring and the sustainability 
sciences have called for an integration of the social and 
physical sciences. Human land use is a critical link between 
society and the modification of hydrology, ecology, 
geomorphology, climate and biogeochemical processes. 
Land use is the term that describes the human use of the 
land, e.g. grazing and agriculture. Land cover refers to the 
physical and biological cover types that characterize an area, 
e.g. forest, tundra or grassland. Over the past decades there 
have been several major international research efforts to link 
the social and natural sciences through the study of land-use 
and land-cover change (e.g. IGBP (International Geopshere-
Biosphere Programme)-IHDP (International Human 
Dimension Programme), LUCC (Land-Use and Land Cover 
Change), ESSP Earth System Science Partnership). Linking 
socioeconomic data with remote sensing data was central in 
all these projects. Liverman and Cuesta [73] concluded that 
progress has been limited because of difficulties in gathering 
socio-economic information at both global and regional 
scales, linking social data to satellite imagery, and 
forecasting human activities and policies. Numerous studies 
exist that merely quantify and observe land cover changes 
without providing any explanations. Those studies are 
omitted from this study. 

 Satellite remote sensing provides great opportunities in 
the measurement of worldwide land-cover change, 
particularly so because of the continuous improvements in 
the spatiotemporal resolution of the data and because the 
range of monitoring variables is increasing. This is important 
because social scientists currently lack comprehensive and 
regularly updated data on socioeconomic activities across the 
world. International organizations advise governments to 
conduct surveys or to collect new demographic, economic 
and agricultural data at least every 10 years, but the resulting 
data sets are invariably fraught with errors, gaps and 
inconsistencies [73]. The alternative to collecting census data 
is to conduct household surveys to collect relevant variables 
at an appropriate level of precision. The cost of such 
fieldwork often means that large areas cannot be covered and 
cross-sectional studies are often used as weak substitutes  
[74]. 

 Social scientists use a variety of approaches to explain 
the causes of land-cover and land-use change, and use a 
plethora of methods and data. Theories from many different 
disciplines, including anthropology, economics, demogra-
phy, and geography, contribute to divergent social theories 
of environmental change and alternative explanatory 
variables. 

 Reining [75] and Conant [76, 77] where among the first 
in the field of anthropology to link ethnographic data 
obtained from local populations to their Landsat-based study 
of subsistence systems. Anthropology, in general, represents 
one end of the scale spectrum, as the independent variables 
used are usually obtained at the level of individuals or 
households. Anthropologists provide important insights into 
land use practices (and environmental change) from their 
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understanding of cultural and social conventions, but their 
contributions are inevitably found ata level of detail that, not 
until recently, could be matched with satellite data. 
Therefore, those disciplines conducting sub-community 
research have for long relayed on field work in combination 
with aerial photographs. The attraction of using remote 
sensing data to generalize over large geographical areas has 
led socialscientists to, sometimes, over-interpret and 
extrapolate their data. For example, Turner [78] argued that 
earlier claims of desert expansion in the Sahel region of 
Africa, was based on regionalized generalizations of highly 
localized observations. Bad weather conditions and high 
costs for field work have led researchers to generalize from 
field observations at one locality and time to broader regions 
over longer times. In addition, the increased use of remotely 
sensed data has worked to address the problems of spatial 
and temporal bias and inappropriate generalizations.  

 Among the earliest social science applications of remote 
sensing were those combining land-use and land-cover 
(LUCC) data with socioeconomic data to isolate those 
socioeconomic drivers responsible for landscape change. 
Deforestation has received the greatest amount of research 
attention. De Sherbinin et al. [3] suggest that time series 
remote sensing imagery has been particularly valuable in this 
kind of research because the conversion of forested land to 
that useful for other applications is easy to detect. In 
contrast, the conversion of land from residential to 
commercial use, or from cropland to pasture, is more 
difficult to detect and requires the labour-intensive collection 
of high resolution data. The most common and widespread 
approach instudying such land use changes is to monitor the 
amounts and rates of forest cover change between two 
periods in time. A number of studies have related land-cover 
information derived from satellite data to agroeconomic and 
socioeconomic data in order to test hypotheses about how 
population (growth), agricultural production and other 
factors contribute to land-cover change [73]. Geist and 
Lambin [79] found that, in the case of deforestation, 
agricultural expansion followed by infrastructural 
development was the most significant cause, and that 
economics and institutional factors were more important 
than demographic variables, such as population growth. 

 Temporal and spatial inconsistencies between remote 
sensing data and socioeconomic data are usually resolved by 
aggregating pixel information to the units of the 
socioeconomic data (administrative units, census tracts etc). 
Wood and Skole [80] aggregated forest cover change data to 
the administrative census units in the Brazilian Amazon in 
orderto identify and rank socioeconomic and demographic 
variables associated with forest clearings. Similarly, Pfaff 
[81] combined aggregated forest cover from remote sensing 
data with both population and economic variables. The 
comparison of their results showed that population density 
did not have a significant effect on deforestation rates. In 
contrast, Wood and Skole showed that conflicts between 
land holders and ranchers and the number of rural migrants 
had a significant effect on deforestation, while Pfafffound 
that vegetation density and soil quality and factors affecting 
transportation costs were of greatest contributing factors.  

 Adissatisfaction with aggregate remote sensing data has 
spurred researchers to work with high-resolution 

socioeconomic data. Significant effort has been invested in 
farm property and household level surveys which are then 
linked to remote sensing imagery at the same or a higher 
level. GPS (Global Positioning System) has been used for 
the co-registration of survey data and satellite data. Dessie 
and Kinlund [82] investigated the relationship between the 
cultivation of the stimulant drug Khat and forest decline in 
the Wondo Genet area of Ethiopia. They combined Landsat 
TM data with social survey techniques. They found that Khat 
production impacted forest cover through proximate causes, 
such as increased activities near forests, new settlement 
patterns, suppression of other crops, and increased demand 
for wood. 

 Some studies relate spatial patterns produced by different 
land management regimes. Lorena and Lambin [83, 84] 
investigated the spatial patterns associated with deforestation 
in the Brazilian Amazon and tested the old hypothesis that a 
particular pattern was related to a particular variety of 
socioeconomic process. In this type of research spatial 
statistics are usually employed to characterize and quantify 
the observed pattern. Software developed for ecology 
applications, e.g. Fragstats [85], can be used in combination 
with remote sensing data. However, spatial indices are scale-
dependent and results may change if the scale is changed 
[86]. 

 Fewer studies exist that link socioeconomic data with 
remote sensing data for conversions other than deforestation. 
Xie et al. [87] examined the impact of the farmland 
protection policy institutionalized for China’s paddy field 
conversion in the mid-1990s. They used remote sensing to 
obtain measures of paddy field changes and applied multiple 
regression analysis to explore the interactions between paddy 
field change and socioeconomic factors. McCracken et al. 
[88] overlaid property boundaries on multi-temporal Landsat 
data and traced property level land-cover patterns to 
differences in livelihood strategies of households. In a 
similar vein, Hall and Jansson [89] combined satellite data 
with property boundaries derived from historical maps from 
the 1850's for a rural area in central Sweden. They found a 
relationship between historical land-use, settlement patterns 
and modern land-cover. Long et al. [90] studied the spatio-
temporal patterns derived from Landsat TM (1990-2006) in 
combination with socio-economic data for coastal China. 
They showed that, population growth, rapid industrialization 
and urbanization were the major driving forces of farmland 
change, and China’s economic reforms have played an 
important role in the transformation of rural settlements. 

 Remote sensing technology is evolving at a pace that 
exceeds the ability of national, institutional, or research 
efforts to collect socioeconomic data at a relevant level of 
detail. Property boundaries and patterns of land ownership 
arethe keys to understanding landscape transformation, but 
are nevertheless often a missing ingredient in remote sensing 
data. Nevertheless, this type of social data is relatively easy 
to merge with remote sensing data, thereby greatly 
enhancing overall data quality. Landscape change studies are 
difficult. Some social scientists, who have solid training in 
field work and aerial photograph interpretation, have high 
hopes for satellite data. 
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3.5. War and Conflict Studies 

 Academic research, using remote sensing, on war and 
conflict and their aftermath is very limited [91]. Satellite 
surveillance has, since the 1960's, been essential in warfare 
activities because it provides information on enemy missiles, 
troop deployments and military positioning. CORONA was 
probably the first satellite deployed for this purpose, in 1959. 
Imagery from CORONA was made public in 1995. In 
conflict studies, satellite imagery is used for observing the 
immediate impacts of military action. The Gulf crisis in 
1990-1991 demonstrated that systems imaging from space 
could play a major role in strengthening conventional 
capabilities. American reconnaissance monitored, for 
example, Iraqi troop deployments, thus obtainingan early 
warning of the possible launch of Iraqi missiles. Remote 
sensing has also played a role in monitoring nuclear weapons 
testing. Jasani [92] developed a test based on Landsat data 
which decides whether nuclear tests areimminent. Criteria 
include: construction of roads, tunnels and land disturbances, 
as well as changes in the Earth surface structure due to 
detonations. Some attention has been directed towards land 
cover changes caused by military action. Remotely sensed 
data was used to study vegetation regeneration of mined 
agricultural areas and service roads along minefields in 
Zimbabwe [93]. In another example, with Landsat MSS data, 
it was possible to map and quantify a 50% reduction in 
agricultural productivity due to the Sandinista insurgency in 
Nicaragua. Isolated areas of abandoned land were visible 
until 1996, as observed from Landsat, SPOT and NOAA-
AVHRR imagery [94, 95]. 

 Landmines can remain active for long time after conflicts 
have formally ended. Detecting and removing landmines is 
hazardous and tedious work. Recent research into landmine 
detection with remote sensing data shows good results. 
Historically, different types of radar detection were used but 
recent trends involve fusion of, for example, radar data with 
hyperspectral data [96]. Zare et al. [97] used long-wave 
hyperspectral data in combination with SAR data. They 
showed that vegetation mapping in combination with mine 
detection algorithms could minimize false alarms due to 
vegetation forms (round bushes), otherwise mistaken for 
mines. 

3.6. Uncategorized Applications 

 During the course of this study several interesting 
projects were discovered that didn’t conform to the 
categorization used here. Quantitatively, these studies are too 
few to be formally recognized as new and separate 
categories, but they deserve to be mentioned anyway.  

 The relationship between night-time lights and economic 
activity was first described by Elvidge et al. [54]. Doll [37] 
extended these observationsby using satellite data in a study 
comparing illuminated area with GDP and created the first 
map,with a resolution of 1° x 1°, of disaggregated GDP. 
Night-time lights and per-capita GDP lights have also been 
associated to the targeting of health resources [98]. 

 Green house gas emission mapping has also been an area 
where night-time lights are expected to contribute. Elvidge et 
al. [54] were first to identify the correlation between lit area 
and gas emissions. Doll et al. [37] created and compared a 

map of carbon dioxide levels from the Carbon Dioxide 
Information Analysis Center (CDIAC) with a map of night-
time lights and noted that, for the observed relationship, 
night-time lights were a poor estimate of direct emissions, 
but performed better in mapping the spatial distribution of 
emissions. Toenges-Schuller [99] extended gas emission 
mapping to include NOx (generally attributed to motor 
vehicle usage, power generation and industry). Cinzano 
[100] used the radiance-calibrated night-time lights data set 
to defineunlit areas polluted by proximal light sources. Many 
areas that should appear dark in the night-time light data set, 
due to absence of ground level light sources, are in fact 
affected by light from adjacent bright areas. By comparing 
and combination these data with the Landscan population 
database, the number of people affected by light pollution 
was calculated to be 99% in the developed world and 66% 
globally. Walluda et al. [101] used night-time imagery to 
target the size of fishing fleets harvesting the jumbo squid in 
the Eastern Pacific. Fishing fleets can be detected because 
they use powerful lamps to attract fish.  

 The presence or absence of light also has the potential to 
be used in disaster management and wildfire surveillance. 
Kohiyama et al. [102, 103] described how DMSP-OLS data 
can be used in a disaster information system to provide early 
estimates, in near-real time, of how areas become damaged. 
Finally, De Souza-Filho [104] used DMSP-OLS to monitor 
the Brazil energy crisis in 2001. They found a link 
betweenan energy dip in electrical output in 2001 with 
changes in illumination levels from the previous year. 

CONCLUSION 

 The overall impression, from a review of the literature on 
remote sensing in the social sciences, is that the use of such 
technology is widespread but can, in many researchareas,be 
considered immature. The technology has been refined to a 
sophisticated level in, for example, some areas of urban 
study, were data fusion and advanced modeling has been 
successfully combined with remote sensing data. In other 
fields, as demonstrated by what has been published in related 
journals, researchers have failed to adhere to typical 
conventionsin remote sensing, such as accuracy assessments 
of classification results.  

 Surprisingly, some of the issues identified in some of the 
pioneering work, e.g. linking remote sensing data (pixels) 
with socioeconomic data (aggregate, administrative units), 
have not been addressed. In addition, the imbalance between 
technological developments and the increase in remote 
sensing data availability has sometimes, in many regions of 
the world where socioeconomic data is scarce, led to data 
simplification and trivialization issues. For example, 
Longley [105] remain doubtful as to whether urban remote 
sensing and GIS have had contributed positively to the body 
of knowledge of urban geography. The technical challenges 
relating to the study of urban environmentsare at risk of 
absorbin gurban remote sensing methodologies too quickly, 
to the detriment of improving the theoretical foundations 
needed for accurate data interpretation. 

 Many of the variables of interest in contemporary social 
science research are not directly observerable from space. 
Societal artifacts, such as roads, buildings, farmland etc. are 
less relevant than those abstract variables and processes that 
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are the driving forces behind the creation of the observable 
physical objects. Land-use changes and changes in building 
patterns are more likely an expression of changes in 
legislation, traditions, and social and economic conditions. 
There is a substantial risk that remote sensing based social 
science will become a second class of social science. 

 Not surprisingly, remote sensing is firmly based in those 
disciplines that are dependent of identification of surface (or 
sub-surface) based objects, e.g. as in archaeology. Remote 
sensing techniques are often used by archaeologists in a first 
explorative stage, and are then substituted with traditional 
methods. Variables are not extracted from remote sensing 
imagery and correlated with socioeconomic variables, 
meaning that archaeology avoids the critique of being data-
driven. Also, a sign clearly demonstrating the acceptance of 
remote sensing technology into this discipline is that the 
number of publications specifically investigating the value 
and application of remote sensing technology and techniques 
is decreasing. This evolution can be noted for archaeology 
but not yet for urban studies, where articles addressing 
technical issues and methodologies dominate the literature. 
In archaeology, a critical debates regarding methods are 
ongoing and is interpreted as a readiness within the 
discipline to embrace new technology and data sources. 

 Remote sensing and remotely sensed data do have a place 
in the social sciences and is at its most valuable in this arena 
when it is used in combination with traditional methods, 
such as surveys, public records, interviews and direct obser-
vation, or when there is a need for data describing rapidly 
evolving processes. A typical example of the latter is in the 
rapidly-developing countries of southeast Asia, where the 
scale and magnitude of urban development is without his-
torical precedent. Remote sensing data must be viewed with 
the same scrutiny as other sources. There is a tendency to 
overemphasize the role of remote sensing data in some stud-
ies and a regression towards simplified perspectives on proc-
ess and form relations can be noted. When combined with 
other sources, e.g. maps, tabular data, remote sensing data 
can be a powerful source of information. In that context I 
would like point to the study of Khat production [82] where 
remote sensed data is used in a most traditional manner but 
with good results. Forest decline was measuredusing remote 
sensing techniques, whilst simultaneously interviewing the 
local inhabitants. 

 The spatial resolution of present day sensors are close to 
aerial photography (<1m), satellite data archives cover 
almost 40 years of observations, and remote sensing data is 
being produced with an never ending increase in spatial and 
temporal resolution. Social scientists can choose how to 
process remote sensing data: visually, manually, 
automatically, statistically or they can order pre-processed 
information products for direct use in some GIS software. 
Compared to the situation 15-20 years ago, is quite different 
when visual quality was lower and the need for in-house 
remote sensing expertise much more important. The 
challenge today is not in technical issues but more in the in-
depth understanding that remote sensing imagery as an 
information source has flaws and limitations, just as other 
sources do. 
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