
26 The Open Software Engineering Journal, 2010, 4, 26-37

 1874-107X/10 2010 Bentham Open

Open Access

Improving Distributed Software Development in Small and Medium
Enterprises

Miguel Jiménez
1,
*, Aurora Vizcaíno

2
 and Mario Piattini

2

1
Alhambra-Eidos, Paseo de la Innovación 1, 02006, Albacete, Spain

2
University of Castilla-La Mancha, Alarcos Research Group, Institute of Information Technologies & Systems, Escuela

Superior de Informática, Paseo de la Universidad 4, 13071, Ciudad Real, Spain

Abstract: One of the current tendencies of software enterprises is that of making greater development efforts in more at-

tractive zones by decentralizing their production units. Small and Medium Enterprises (SMEs) are a very important cog in

the application of Distributed Software Development (DSD). The software industries of many countries are made up

mainly of small and medium software enterprises which in many cases employ this approach by taking advantage of the

greater availability of human resources in decentralized zones at a lower cost. However, this leads to certain disadvantages

which are mainly due to the distance that separates the teams. Coordination and communication become more difficult,

thus affecting productivity and product quality. Efficient Software Engineering practices which are adapted to SME char-

acteristics are therefore necessary. In this paper, we review the main challenges and proposals relating to DSD which may

be useful in SME environments, with the principal purpose of providing a set of methods and techniques that can be ap-

plied in a generic environment.

Keywords: Distributed Software Development, nearshoring, offshoring, Small and Medium Enterprises.

1. INTRODUCTION

One of the current trends of the software industry is that
of relocating its production units throughout distributed sites,
principally in order to take advantage of the greater availabil-
ity of a skilled workforce and also to take into consideration
political and economical factors [1], thus allowing organiza-
tions to increase their market area by producing software for
remote clients. The main objective of this consists of opti-
mizing resources in order to develop higher quality software
and minimizing costs.

Distributed Software Development (DSD) allows team
members to be located at various remote sites during the
software lifecycle, thus forming a network of virtual teams
that work on the same projects. These teams might be mem-
bers of the same organization or might require the collabora-
tion or outsourcing of different organizations. Although this
phenomenon came into being during the 90`s, only during
the last decade has its strategic importance been recognized
[2], and related studies are quite recent [3].

Organizations which apply DSD commonly use iterative
approaches in contrast to traditional waterfall or sequential
methods, as these become more difficult to use consistently
when teams are geographically distributed [4].

In these environments problems [5] caused mainly by
distance appear [6], which must be confronted by concentrat-
ing on the specific context of each organization. Traditional

*Address correspondence to this author at the Alhambra-Eidos, Paseo de la
Innovación 1, 02006, Albacete, Spain; E-mail: Miguel.Jimenez@a-e.es

face-to-face meetings are, therefore, no longer common,
communication is less fluid than in co-localized develop-
ment groups and interaction between members requires the
use of technology to facilitate communication and coordina-
tion [7], thus enabling organizations to abstract themselves
from geographical distance and minimizing the negative
impact on development productivity and software quality.

This situation influences the way in which software is de-
fined, built, tested and delivered to customers, thus affecting
the development methodology applied [5], which must be
adapted to achieve higher levels of productivity through new
technologies, processes and methods [8].

In this paper we deal with this subject from the point of
view of Small and Medium Enterprises (SMEs). There are
several definitions of an SME which concentrate on indica-
tors such as the number of employees and financial criteria.
The European Commission [9] describes an SME as an in-
dependent firm which employs less than 250 employees.
According to this definition, 99.2% of software development
companies in the world are SMEs [10], and a large number
of initiatives related to the improvement of their processes
exist [11], which will be dealt with in our study.

SMEs are different to large enterprises with regard to the
application of DSD in the complexity of their structure and
organization. Large enterprises usually have more problems
which are caused by the teams’ diversity and the size of the
projects.

SMEs commonly use quality models such as CMM and
CMMI [12] (promoted by the Software Engineering Insti-
tute) and quality standards, such as ISO 9001:2000 [13],
which follow organizational structures that automate parts of

Improving Distributed Software Development The Open Software Engineering Journal, 2010, Volume 4 27

their software development, decentralizing their production
units and promoting the reusability of architectures, knowl-
edge and components.

The aim of this work is firstly to identify the best proce-
dures, models and strategies dealt with in literature in order
to improve the application of DSD in SMEs, and secondly to
propose a set of methods and guidelines which could be part
of a methodology that would allow SMEs to conduct a DSD
process in an efficient manner, thus increasing their effi-
ciency and productivity. This paper is, therefore, organized
as follows: Section 2 describes the main challenges of DSD
in SMEs and presents the most useful proposals found in
literature. Section 3 presents a set of the techniques proposed
based on the authors’ experience and the analysis of litera-
ture with the aim of improving DSD in SMEs. Finally, Sec-
tion 4 provides concluding remarks and key success factors.

2. CHALLENGES AND PROPOSALS ORIENTED

TOWARDS DSD

In this section we summarize the main challenges and
proposed improvements identified in studies related to DSD
which may be useful in defining a methodology for SMEs.
This will allow us not only to discover related works but also
to enumerate the best techniques and methods for the sub-
jects addressed. The systematic review of the literature ap-
plied can be found in [14].

2.1. Communication

During the software lifecycle, team members exchange a
large amount of information using different tools and differ-
ent formats, usually without following any communication
standards, and thus encountering misunderstandings, high
response times and security problems. When the members
are located in different countries (termed as Global Software
Development (GSD)), then other problems arise such as mis-
interpretation, since the members are using a language which
is not their mother tongue to communicate. However, in this
work we intend to focus on DSD in general without taking
into account whether members are spread throughout differ-
ent countries, since SMEs seldom have subfactories in other
countries. However, we wish to highlight that all the issues
dealt with in this paper are applicable to GSD.

All these drawbacks cause a decrease in communication
frequency that directly affects productivity and development
quality. In order to decrease these effects, a methodology for
DSD must be supported by collaborative tools, so as to avoid
ambiguity and face-to-face meetings without comprising the
quality of the results [15]. It is therefore recommendable to
institutionalize collaboration processes such as those exam-
ined by Thissen et al. [16], in which conference calls and e-
mails play an important role.

The use of translation processes, and codification guide-
lines is useful in the case of pronounced cultural differences
[17], but this will not be taken into account for SMEs in this
work. However, different levels of understanding of the
problem domain may exist, along with the different levels of
knowledge, skills and training of the team members. It is
therefore necessary to introduce user-friendly tools, and in-
tegrate collaborative tools to improve knowledge integration
[18].

Requirements elicitation is one of the processes which is
most frequently involved in communication, signifying that
it must be clearly defined and modelled in order to make it
easily understood, and promoting its traceability with use
cases. With the aim of reducing communication problems,
Aranda et al. [19] propose a technique to improve require-
ments elicitation by selecting a suite of groupware tools and
techniques from the field of cognitive psychology. The team
members’ communication skills are also a critical success
factor, and the separation of responsibilities in the team must
therefore take into account their psychological skills.

2.2. Configuration Management

As the degree of distribution of the team grows, coordi-
nation and synchronization become more complex, and
traceability is a critical factor. Source control systems must
support access through Internet to avoid conflicts, and must
therefore confront its unreliable and insecure nature and the
higher response times, and supporting role-based access con-
trol.

Several studies that propose new tools to reduce these
drawbacks exist. One is CHIME [20], an Internet and Intra-
net based application which allows users to be placed in a
3D virtual world representing the software system. This sys-
tem allows users to interact with project artefacts by “walk-
ing around” the virtual world and collaborating with other
users through a feasible architecture that provides an over-
view of the ongoing activities in the project. Another related
tool is FASTDash [21], which uses a spatial representation
of the shared code base and highlights team members’ cur-
rent activities, allowing a developer to rapidly determine
which team members have source files checked out, which
files are in use, and what methods and classes are currently
being edited, providing immediate awareness of potentially
conflictive situations.

2.3. Knowledge Management

The team members’ experiences, methods, decisions, and
skills must be accumulated during the software lifecycle
through effective information-sharing mechanisms, so that
team members can access this experience, thus increasing
productivity by avoiding redundant work.

SMEs must facilitate knowledge sharing by maintaining
a product/process repository by linking the content from
sources, such as e-mails or chats, and sharing metadata in-
formation among several kinds of tools. Zhuge [22] presents
an approach which is based on a knowledge repository in
which the information associated with each project is stored
by using Internet-based communication tools, thus enabling
new team members to become quickly experienced.

2.4. Quality Management

The impact of problems in DSD projects can be magni-
fied, and it is usually more difficult to recover from them
than in collocated projects. Organizations should introduce
new quality assurance models and measures to obtain infor-
mation which can be adapted to the distributed scenarios,
thus ensuring that the requirements reflect the customers’
needs. One of the most frequently recommended practices in

28 The Open Software Engineering Journal, 2010, Volume 4 Jiménez et al.

SMEs through which to increase the code quality is the
automation of code inspections and the application of coding
standards [23].

Quality must not only be limited to software products but
also to development processes, which greatly influence
product quality. Software evaluation also plays a key role in
product quality, which usually involves a large number of
stakeholders who need face-to-face evaluation meetings, and
appropriate collaborative tools are therefore needed [15].

With this aim in mind, the capability model eSCM-SP
[24] considers the factors that influence software quality
management systems from a cultural and organizational per-
spective. This model gathers the best practices, and is quite
similar to other capability-assessment models such as
CMMI, Bootstrap or SPICE and the SQM-CODE model.

Our study of the relative literature has led us to observe a
lack of empirical studies that permit the enumeration of reli-
able measures. More papers related to tests in distributed
environments, which are directly related to software quality,
are also necessary. However, we also discovered interesting
proposals such as the interdependence measure [25], which
permits the measurement of the degree of work dispersion
among sites to be determined by looking up the locations of
all the individuals. F. Lanubile et al. [7] similarly propose
metrics associated with products and processes oriented to-
wards software defects such as: discovery effort, reported
defects, defects density, fixed defects or unfixed defects.

2.5. Risk Management

In distributed environments, risk management also in-
cludes new issues apart from those connected with collo-
cated environments. DSD development includes new prob-
lems related to coordination, problem resolution, evolving
requirements, knowledge sharing and risk identification [8].
Software defects become more frequent due to the added
complexity which is, in most cases, related to communica-
tion problems and a lack of group awareness. Rules and
guidelines with which to organize the teams and their inter-
actions become necessary. Teams must be continuously con-
trolled in order to detect problems and take corrective ac-
tions, and the use of suitable measures is an important key
factor.

In order to minimize these problems, F. Lanubile et al.
[7] define a process in which roles, guidelines, forms and
templates are specified. They also describe a Web-based tool
that adopts a reengineered inspection process in order to
minimize synchronous activities and coordination problems,
thus supporting geographically dispersed teams.

The WOOM [26] methodology also provides measures
and facilitates decision making, taking into account both the
risks during various lifecycle phases and mitigation plans.

2.6. Project Management

Project management also becomes more difficult as a re-
sult of high organizational complexity, and the new chal-
lenges in scheduling, task assignment and cost estimation,
which are influenced by volatile requirements, tasks interde-
pendencies, changing specifications and the lack of informal
communication [27].

Madachy [28] deals with economic estimation, present-
ing a set of cost models that are valid for SMEs, which takes
into account the teams’ various environmental characteris-
tics, localized labour categories, calendars, compensation
rates, and currencies for costing.

The use of mature processes becomes a key success fac-

tor, as does applying incremental integrations and frequent
deliveries, it being recommendable to follow informing and
monitoring practices [29].

SMEs require the automation of the development process
through an adaptable tool to manage tasks and metrics

through customizable reports managed by a central server,
and ensuring that the process is applied in compliance with a
predefined standard. The SoftFab infrastructure [30] is a
related approach which enables projects to automate the

building and test process, and which manages all the tasks
remotely through a control centre.

The availability of real-time information about the mem-
bers’ participation also helps managers in decision making.
Gousios et al. [31] proposes a model for evaluating develop-

ers’ contributions by combining traditional metrics with data
mined from software repositories to extract contribution in-
dicators.

2.7. Process Support

Software development implies that all team members

must follow a significant number of steps. DSD environ-

ments often use multiple sub-processes that are distributed

across different locations. Such systems must offer support

for distributed execution, data access and the use of collabo-

rative tools [32, 33]. Modern management workflow systems

use the Web as a means to provide access to the workflow

engine [34]. However, most of these systems are based on

the client-server architecture [35], with the problems that this

entails for communication, and the dependence on the cor-

rect functioning of the server.

Processes should reflect the direct responsibilities and

dependencies between tasks, providing notifications based

on roles to inform those concerned about the changes and

new tasks assigned, thus avoiding overloading team mem-

bers with too much information. Problems derived from

process evolution and mobility appear within the context of

DSD for SMEs. Furthermore, distributed environments usu-

ally involve a large network of heterogeneous, autonomous

and distributed models and process engines. Many studies

are directed towards the integration of heterogeneous proc-

esses that work with different models and engine support

[36].

One environment that supports the creation and exploita-

tion of software process models is known as PSEE (Process-

centered Software Engineering Environment) [37]. A PSEE

oriented towards distributed environments must be designed

to be adaptable to changes during enactment, taking into

account the following requirements:

 Enable incomplete processes. A PSEE must facilitate
the incremental editing of models, allowing their re-
finement during the projects’ lifecycle.

Improving Distributed Software Development The Open Software Engineering Journal, 2010, Volume 4 29

 Be adaptable to specific projects and their changing
needs, caused both by changes in requirements and
by new technological advances and tools.

 Changing a process should be a simple and secure
operation. Managers must control the overall devel-
opment process, improving it during enactment and
minimizing any factors that may decrease productiv-
ity.

 The system must be fault tolerant, and the probability
of errors must be minimized.

 Provide support to coordination, cooperation and
monitoring [38], along with information about activi-
ties through automatic notifications based on roles.

 Provide availability and reliability through the repli-
cation of servers.

The processes are commonly modelled by using a Proc-
ess Modeling Language (PML) [39], which can assist SMEs
in different manners within the field of DSD:

 Process understanding: A PML can be used to accu-
rately represent the structure and organization of a
process [40]. Several environments also exist, such
as Spearmint [41], Rational Method Composer [42]
and Eclipse Process Framework Composer [43],
which are able to generate structured process
workflow-oriented guidelines from the process defi-
nition.

 Training and education: A precise description of the
process may be useful to introduce the team to the
procedures and operations carried out by the organi-
zation.

 Distributed process design: A PML can be used to de-
sign new processes, describing their structure and
organization. One example which is useful in DSD is
that of the Spearmint environment, which supports
extensive capabilities for multi-view modelling and
analysis.

 Process simulation and optimization: Processes can
be simulated to evaluate potential problems and
identify bottlenecks and areas for improvement. S.
Setamanit et al. [44] describe a hybrid computer
simulation model of software development processes
to study alternative ways in which to configure DSD
projects in order to confront communication prob-
lems, control and coordination problems, process
management and time and cultural differences.

 Interoperability: PMLs promote the interoperability
between the different systems which take part in a
distributed development.

Wang et al. [45] present a framework for assessing the
degree to which PMLs are suitable to represent processes in
distributed environments, dealing with five main areas: dis-
tribution, autonomy, diversity, collaboration and flexibility.

The Model Driven Development (MDD) approach is cur-
rently emerging in this field, providing reusability, maintain-
ability, interoperability and adaptability through different
languages and platforms. Model Driven Architecture (MDA)

[46] is the most frequently adopted MDD standard, and pro-
vides concepts of separation in individual models and trans-
formation techniques. An example of this can be found in
InterDOC [47], an approach to enable the authoring process
when interoperability among different collaborative applica-
tions is necessary.

Numerous environments related to process support in dis-
tributed environments appear in literature, such as MILOS
[48], GENESIS [49], PROSYT [50], OPERA [36] and Oz
[51].

2.8. Coordination

In distributed environments, coordination becomes more
difficult owing to problems caused by communication, lack
of group awareness and complexity, which influence the way
in which the work must be structured and managed [52].
This additional complexity requires the participation of more
people, which causes delays [53]. Virtual teams are also
prone to be less productive as a result of their feelings of
isolation and indifference.

The figure of a local coordinator for each site becomes
essential, as is the use of collaborative tools to permit moni-
toring activities and managing dependencies. More progress
reports, project reviews, conference calls and regular meet-
ings to take corrective action are therefore necessary, thus
minimizing interdependencies between tasks assigned to
different virtual teams [54]. Ariadne [55] is a tool which
analyzes software projects for dependencies and helps to
discover coordination problems through a visual environ-
ment.

Literature deals with models based on empirical data that
allow organizations to calculate the impact of coordination
efficiency and its effects on productivity. Setamanit et al.
[44] describe a simulation model to study different ways in
which to configure global software development processes.

Developers need to have as much information as possible
available and to have a full knowledge of the full status of
the project and its past history, which will allow them to be-
come more involved in the project and to make better deci-
sions. In this respect, YooHoo [56] is an awareness system
that helps developers to keep up to date with code changes.
Information about these changes is filtered on the basis of
the developer's interests, and notifications are provided in a
flexible manner.

Members usually have problems finding the right person
and timely information, which may cause inefficiencies that
result in misalignment, replanning, redesign and redevelop-
ment. Augur [57] is a visualization tool which addresses
these drawbacks, and supports DSD processes by creating
visual representations of both software artefacts and software
development activities, thus allowing developers to explore
the relationships between them.

2.9. Collaboration

Distributed environments imply the necessity for collabo-
ration between business analysts, customers, system engi-
neers, architects and developers. It is common the use of
multi-agent models that facilitate communication among
distributed members. We can find an example in [58], which

30 The Open Software Engineering Journal, 2010, Volume 4 Jiménez et al.

allows identifying the required information of the activity
and the best moment to interrupt other members and entering
into collaboration.

The concurrent edition of models and processes requires
synchronous interaction between dispersed architects and
developers. This necessitates concurrency control in real
time, thus enabling members to edit and discuss the same
diagrams, and providing a means through which to easily
capture and model complex concepts through virtual work-
spaces [23].

One approach is that of the SoftDock framework [59],
which solves the issues related to software component mod-
elling and their relationships by describing and sharing com-
ponent model information, and ensuring their integrity. It
permits developers to analyze, design and develop software
from component models and transfer them by using an ex-
change format, which facilitates communication between
team members.

One relatively extended method, owing to its accessibil-
ity and adaptability, consists of using wikis. Galaxy Wiki
[60] is an on-line collaborative tool based on this concept
which permits the existence of a collaborative authoring sys-
tem for documentation and coordination purposes, and which
allows developers to compile, execute and debug programs
on wiki pages.

We should also mention collaborative code editors such
as the Sangam system [61], an Eclipse plug-in which is ori-
ented towards distributed pair programming and which al-
lows distributed developers to share a workspace in order to
see and edit the same code. Similarly, IMPROMPTU [21] is
a framework for collaboration in multiple display environ-
ments, which allows users to share task information through
displays via off-the-shelf applications.

3. METHODS AND GUIDELINES PROPOSED

In this section we propose a methodology oriented to-
wards DSD in SME environments, taking into account the
limited complexity and budget of these organizations which
typically lead them to apply simplified methodologies, pay-
ing particular attention to their organizational structure. Not
all of the activities proposed by the common standards (such
as ISO/IEC 12207 [62]) are always suitable for these envi-
ronments, which also apply lower levels of maturity in com-
parison to larger companies. Our proposal is made up of a set
of methods and guidelines whose purpose is to improve pro-
ductivity and guarantee the quality of the final product in
compliance with the CMMI level 3 standard. Its definition
has taken into account the information presented in the pre-
vious section, along with the authors’ previous experience
after using a traditional methodology.

We have also considered the use of an iterative devel-

opment lifecycle, since cascade models are not recommend-
able in these environments.

3.1. Communication

On occasions, developers may need to contact other re-
mote developers who are working on different parts of the
software. However, it is not always possible to know which
person to contact, so it is advisable to carry out communica-

tion through the local sub-director who must manage all the
communications for that site and that project. The distribu-
tion of organizational charts [29] which identify the loca-
tion of members must also be considered. This could be use-
ful in locating members.

The use of suggestions [63] is also recommended. This
concept is based on the idea of carrying out communication
through well-structured templates that will guide the partici-
pants in the management of information to improve commu-
nication by reducing the number of interactions required.
This method should be used in all formal communication
between distributed members, storing the information gener-
ated in a shared repository, thus helping prevent duplicate
conversations and improving the overall knowledge of the
status of the project.

Furthermore, it is also necessary to foster informal com-
munication, which will take place through the use of instant
messaging programs and e-mail.

Useful Tools

- Synchronous traditional tools (such as video-conferences and

chats)

- Asynchronous communication tools based on suggestions and tra-

ditional e-mails

3.2. Configuration Management

In DSD environments configuration management tools
must work under a unified process through a centralized re-
pository that stores all the software artefacts (documentation,
source code, etc.) and which permits the definition of roles
with different permissions and responsibilities.

The tool employed should be able to replicate the infor-
mation in the different locations so that each virtual team can
work from a local server which is regularly synchronized
with the central server. This would improve local time ac-
cess, thus avoiding the periods of inactivity caused by com-
munication problems.

Some of the most valuable characteristics of a configura-
tion management tool in DSD are:

 Possibility of deploying a proxy server at the remote
locations to minimize the dependency of the central
server.

 Possibility of defining check-in policies according to
the organization’s specific needs.

 Facilities for branching and merging the code.

 Shelving; this allows files on the server to be saved
with pending changes that will not affect the current
project, thus permitting them to be stored on the
server without the existence of a compilable version,
and making them available to distant users.

 Automatic builds; in order to compile the code and
execute tests with a certain periodicity, or which are
triggered by certain events.

 Automatic generation of reports.

A good product structure reduces the need for branches
and consequently the risks of merging the different versions.
It is therefore essential to start from a good analysis.

Improving Distributed Software Development The Open Software Engineering Journal, 2010, Volume 4 31

Finally, it is also necessary to establish an auditory

process that allows the maturity of the project to be checked
and that permits all the artefacts to come under a configura-
tion management. This activity should be carried out jointly
with the sub-directors of the virtual teams.

Deliverables Useful Tools

- Audit reports
- Configuration management tool

- Audity process automation tool

3.3. Knowledge Management

Distributed environments should make use of a system
that facilitates collaborative knowledge management be-
tween remote sites. Many kind of collaborative tools are

reported in literature, the most popular in this field being the
wiki pages [8].

It is recommended that each project has a Web portal in-
tegrated with other tools involved in the software lifecycle,
with customizable content in which members can share
documents through a control versions system and manage
schedules, meetings, calendars, etc., thus allowing access
control based on roles and using collaborative spaces.

One member of each virtual team should assume the role
of document manager, who is responsible for the local con-
tent in the portal. In some cases, the different documents will
need different tools for their edition, it being desirable to use
the fewest possible number of tools to facilitate ease of ac-
cess to the information. The organization must institutional-
ize document templates to provide team members with a
guide to help them to organize the information through the
tools employed by the organization.

Useful Tools

- Collaborative tools (such as wiki pages and project Web portals)

3.4. Quality Management

In distributed environments, it is important to obtain in-

formation about the progress of the different teams and to

ensure the existence of automated tools that will guide the

development in compliance with the established standards.

This issue is of great importance in CMMI which, through

the area of "Measurement and Analysis", provides guidance

about what organizations need to focus their improvement

efforts on, and which is orientated towards the planning,

monitoring, control and evaluation of software processes

[64].

One of the most frequently employed strategies consists

of the automation of code inspections through a tool that

checks certain coding rules that are institutionalized within

the organization.

Quantitative information about the project status and

progress must be readily available, thus facilitating decision

making. In our proposal, all information related to the soft-

ware lifecycle is stored as suggestions, which allows all the

team members to view and follow all the formal interactions.

The global coordinator of quality assurance is responsi-
ble for defining the quality management strategy. Each vir-
tual team will have a local quality manager who is respon-
sible for the fulfilment of the local strategy.

Each team member should complete an evaluation form
with a certain frequency, which should be sent to the global
coordinator through the local coordinators. The global coor-
dinator will then review the evaluation forms to complete a
final report on the problems, and this will be sent to the local
coordinators who should take corrective actions according to
this document.

Finally, the metrics used must be adjusted by taking into
account the new factors introduced by DSD, adding vari-
ables such as team size, the percentage of reused code, size
of the code or effort (person / hours), combined with other
traditional metrics.

We recommend the use of the work dispersion variable,
which is similar to the Herfindahl-Hirschman Index [65], to
quantify the degree of distribution of the work, and which is
defined as follows for the case of two sites:

Work dispersion = 100
2
 – (% effort in the first factory)

2
–

(% effort in the second factory)
2

Deliverables Useful Tools

- Review evaluations

- Problems report

- Code inspection automation tool

- Metrics management tool

3.5. Risk Management

The Risk Plan must be developed by considering the
risks arising from the new problems caused by DSD that
directly affect productivity and the project budget. This also
necessitates the adaptation of the Mitigation Plan. As in the
case of requirements, here it is also necessary to maintain
records of the changes. The information related to the teams’
interaction must also be stored. Team members must be able
to report problems encountered during development, which
will speed up problem solving and will permit a list of prob-
lems to be maintained that will serve to create a realistic
risks catalogue.

It is also recommendable to conduct periodic surveys
that take up little time and allow developers to provide pro-
ject managers with a vision of the progress and the problems
encountered.

In response to the indications of CMMI, it is vital to keep
track of the Risk Plan with a certain frequency (which could
depend on the type of project), and the immediate response
to the occurrence of risks during the project lifecycle must be
ensured. It is therefore advisable to designate a local person
responsible for monitoring at each distributed location, who
must reach a consensus with the global person responsible
for determining priorities and actions to be carried out.

Deliverables

- Risk list (including new risks derived from DSD)

- Mitigation plan

- Surveys concerning problems discovered

- Risk Reports

32 The Open Software Engineering Journal, 2010, Volume 4 Jiménez et al.

3.6. Project Management

Project planning should minimize dependencies among
the different sites to minimize accumulated delays. This de-
cision is reflected in the planning design distribution
document, which is elaborated during the final stage of
analysis design, and should be based both on historical data
and on the opinion of the local sub-directors. Generally, a
higher coupling level between work units will require a
greater coordination effort. Therefore the task distribution
should consider the organization’s structure and its possibili-
ties for coordination and communication.

It is recommendable to take into account the fact that
those activities that require extensive knowledge of the de-
veloped system, such as the development of installers or the
generation of documentation, should be carried out at the
location at which the highest percentage of time has been
devoted to the development.

The project planning document should also indicate
where each module will be developed. During this stage an
interaction plan must be defined among participants, which
should determine how to perform the interaction between
virtual teams in the case of specific needs.

The planning should consider frequent deliveries, which
will increase the developers’ motivation and will permit the
definition of several control points in order to make early
decisions by concentrating on project goals, software quality
or development costs.

It is therefore recommendable to use a cost estimation
method that takes into account the number of distributed
teams, their size, the time at the different locations, the costs
associated with distance, etc. [28].

According to the CMMI recommendations, it is vital to
specify the frequency with which tracking is conducted, in
which key aspects of development must be reviewed to en-
sure the project’s consistency. A formal document that de-
termines how to perform this review must be institutional-
ized.

Once the project has finished, a set of data that could be
used to analyze the final results should be collected. Con-
cretely, it would be of interest to have an estimation data-

base containing the following information:

- Brief description of project and technology em-
ployed.

- Structure of project tasks, their description and
people involved.

- Development distribution degree and sites in-
volved.

- Number and complexity of the modules.

- Variation between the estimated duration and
budget versus actual.

- List of incidents or problems not covered by the
Risk Plan.

This information must be used to estimate the planning of
subsequent projects through methods based on the detection
of analogies.

Deliverables Useful Tools

- Project planning

- Interaction plan

- Cost estimation

- Cost estimation tool

based on detection of

analogies

3.7. Process Support

The process support must provide mechanisms with
which to carry out process improvement. The CMMI Proc-
ess Improvement area provides guidelines to facilitate a bet-
ter development in future projects using the experience ac-
cumulated from previous experiences. This task requires the
establishment of a criterion with which to periodically evalu-
ate the processes followed by the organization in order to
identify improvements through a process assessment re-
port.

Taking into account this document and the projects
evaluation results, a committee should agree on a process

improvement planning document. The implementation of
this improvement should include the collaborative edition of
the processes, through a tool that will permit the participa-
tion of distributed members.

After implementing the process improvements, the
changes applied should be reflected in the process guide.
This document may be accessed by any member of the team
through the project portal.

The implementation of changes in the processes requires
the use of a version control that permits a return to a previ-
ous state in the case of inconsistencies. It is also necessary to
know the process that each project is using, and its version.

All the changes implemented in the process must be
tested, which requires the elaboration of a process test plan
to ensure that the objectives of the improvement plan are met
without errors. With the aim of solving problems which have
gone unnoticed during the tests and of fulfilling the changing
needs of the projects, it should be possible to make changes
in processes even during enactment.

The possibility of having distributed processes that run
on different local servers is not generally considered to be
necessary in SME environments.

Deliverables Useful Tools

- Process assessment report.

- Process improvement plan-

ning.

- Process guide.

- Process test plan.

- Collaborative edition of proces-

ses

- Automatic generation of proc-

ess guides

- Process management with ver-

sion control

- Distributed process engines

3.8. Collaboration

In relation with collaboration, we have focused on the
software design and analysis phase. Documentation gener-
ated in this phase is critical for the virtual teams, and the
analysts that defines the architecture should be as reduced as
far possible, since having too many analysts might be coun-

Improving Distributed Software Development The Open Software Engineering Journal, 2010, Volume 4 33

terproductive, especially if they cannot have face-to-face
meetings.

A tendency currently exists which involves explicitly de-
scribing the decisions made during the design phase and ex-
plaining the reasoning behind the making of such decisions
[66]. The main objective of this consists of providing devel-
opers with all the information related to the context of the
problem, which might help them to understand the design
reasons. A rational design must include [67]:

- The reasoning behind a design reason.

- The different alternatives taken into account.

- The drawbacks of each alternative.

- Justification for each decision.

- The reasons that led to this decision.

One recommendable method in DSD consists of record-
ing the realization of the analysis by using a video and other
means, and storing the reasoning in a knowledge base so that
the information can be consulted by any team member. The
rational design benefits DSD in the following manners:

- Verification: it can be used to verify whether the de-
sign decisions correspond with designers’ and us-
ers’ expectations.

- Evaluation: it can evaluate the various alternatives
that were discussed in the design.

- Maintenance: it helps to evaluate the changes.

- Reutilization: it helps to develop new requirements
from previous reasoning.

- Learning: it facilitates the learning of the system to
new users.

- Decision making: the information stored may be use-
ful in the decision making process in subsequent
projects, thus avoiding the repetition of mistakes.

- Documentation: it can be used to document the design
process.

If a project member is unable to attend a meeting, s/he
could use the documentation generated to discover the deci-
sions that were made. Various tools focused on rational de-
sign exist, such as bCisive (http://bcisive.austhink.com/) or
Compendium (http://compendiuminstitute.org).

Once the engineering design phase is completed, it is
necessary to discuss the planning and tasks division, estab-
lishing a separation of the work between the different sites.
This decision must be agreed with the local sub-director of
each site, identifying the most appropriate team, and attempt-
ing to minimize the communication requirements between
sites, taking into account the fact that the critical tasks must
be assigned to the most experienced members.

3.9. Coordination

The first step in the development process must consists of
designating a global director to coordinate the project and a
local sub-director for each distributed site that takes part in
the project lifecycle.

The local sub-director is in charge of coordinating the
work at his/her site, and is responsible for assigning re-
sources to the team and monitoring its activities, taking local
corrective actions when necessary. All communication with
other sites should be carried out through the local sub-
directors, the global director being the person the responsible
for the global coordination and the success of the project.

The next step consists of assigning the requirements that
team members must fulfil, defining their associated respon-
sibilities and tasks. Potential team members will be selected
by considering these requirements in order to strengthen per-
formance and their interaction.

CMMI establishes that a document with the team struc-

ture should be institutionalized. The size of the teams should
be as reduced as far possible in order to facilitate collabora-
tion. In addition, it will be necessary to evaluate the team
periodically and modify its structure in order to adapt to the
project’s changing necessities.

In some cases the project’s requirements may make it
necessary to designate an integration team, which should be
made up of at least one member of each virtual team with the
aim of reducing communication times. In projects with a
high degree of distribution, a higher frequency of integra-
tions would be desirable.

It would also be recommendable to employ the method-
ology presented by Aranda et al. [19], in which a set of
guidelines are proposed to help to determine the problems
that might appear during the development, concentrating on
team members’ cognitive factors and the project’s charac-
teristics.

This analysis should be performed through the use of the
Felder-Silverman test [68], which gathers information about
the psychological behaviour of each person, which in turn
serves as an indicator of how an individual perceives, inter-
acts and reacts to the environment. This information classi-
fies learning styles, thus classifying the individual as sens-
ing/intuitive, visual/verbal and sequential/global. This in-
formation is extremely useful when carrying out the assigna-
tion of tasks and in determining the tools and elicitation
techniques that are more appropriate for each team.

Although this work does not consider cultural differ-
ences, it might also be of interest to make use of a glossary
of terms for all the documents related to the project in order
to avoid ambiguities and assure a common understanding.

Finally, regular meetings between virtual teams should
be planned. If possible, a first meeting with all the members

Deliverables Useful Tools

- UML models

- Reasoning about decisions

- Development division planning

- Rational design tools (such as bCisive or Compendium)

34 The Open Software Engineering Journal, 2010, Volume 4 Jiménez et al.

of the project is recommendable. This could take place at the
location of the greatest number of members involved in the
project in order to minimize travel costs. This meeting en-
courages a better understanding between and implication of
the members, and will promote future informal communica-
tions. The technical specialist should then visit the virtual
team regularly in order to monitor and audit the project and
carry out demonstrations of the project.

Deliverables Useful Tools

- Responsibilities assigned to

each team

- Structure of teams

- Planning of meetings

- Groupware tools presented

by Aranda et al. [19]

3.10. Requirements Elicitation

Requirements Engineering (RE) activities must promote
the understandability of the requirements and establish their
priorities. UML models [52, 69] must facilitate visual com-
prehension by avoiding ambiguities.

During the initial phase, the requirements must be de-
fined through meetings with the customers, during which the
presence of the local sub-directors of each virtual team is
desirable if misunderstandings in subsequent phases are to be
minimized.

The organization must institutionalize a set of criteria

for the requirements selection, which will establish a basis
for their acceptation with certain uniformity, concentrating
on the organization’s characteristics.

The requirements specification obtained must be con-
tained in a document which is accessible to all the members.
This document must be more detailed than in the case of a
co-localized environment, and must indicate the motive, con-
text and related decisions of every requirement, avoiding
assumptions and misunderstandings through a glossary of
terms. It is also necessary to state the reasons behind the
rejection of those requirements that have been ruled out.

The initial creation of the document must be based on a
predefined template which assures the generation of a well
structured and detailed specification. During the develop-
ment, this document must be reviewed periodically, and
meetings with the members will be helpful to assure a com-
mon understanding.

One of the most critical aspects of RE in DSD environ-
ments is the exchange of information and the notification of
changes to the team members [70]. Both the automation of

notifications and the bidirectional traceability between re-
quirements and design models and tests through links that
permit the impact of changes to be discovered are conse-
quently necessary. Historical information with regard to re-

quirements must also be accessible to facilitate the discovery
of the reasons behind certain decisions, and to assist the per-
son responsible for any changes.

3.11. Software Testing

The high complexity of the systems which must be tested
and the communication difficulties in DSD environments
necessitate that the testing process begin as soon as possible
to facilitate an early detection of errors. This task requires
the use of specific tools, and their interoperability with other
tools involved in the software lifecycle. Distributed sites
should interact through a local testing manager at each fac-
tory, who is in charge of managing the local tests.

On several occasions, similar test cases are modelled at
different levels of granularity. A set of guidelines to stan-
dardize the formal test modelling is therefore necessary. The
use of Model-Based Testing (MBT) [71] is thus recom-
mended. This method permits the automatic generation of
efficient test procedures through the use of the system’s re-
quirements and functional specifications. MBT provides the
following advantages:

- Planning is shorter, at a lower cost and is of higher
quality.

- It improves communications between developers and
test engineers.

- Early discovery of ambiguities during specification
and design.

- Easy to update before changes in test requirements.

- Ability to manage software quality.

Various case studies concerning several kinds of models
[72], and reports regarding the integration of MBTs into in-
dustrial environments [73] exist in literature.

Once the Test Plan has been developed, the distribution

of testing tasks between the different sites must be planned,
deciding which teams will be responsible for conducting
each set of tests. This decision must be agreed with the local
sub-directors of each site.

It is necessary to use collaborative tools that facilitate
testing tasks and monitor them so that the analysts can be
aware of the status of the project at any time. Formal com-
munication between the team members involved in the test-
ing must be carried out through suggestions to standardize
the information of the tests.

Deliverables Useful Tools

- Testing plan

- Design division planning

- Integration testing report

- MBT tools for the collabora-

tive generation of test pro-

cedures

Deliverables Useful Tools

- Requirements specification document

- List of criteria for the requirements selection

- Traceability matrix

- Changes carried out and analysis of their impact

- Concurrent edition of UML models

- Traceability and change management automation

Improving Distributed Software Development The Open Software Engineering Journal, 2010, Volume 4 35

4 CONCLUSIONS

In this paper we have provided a global vision of the
challenges related to the DSD which is oriented towards
SMEs, and the main proposals found in literature to tackle
them. Moreover we propose various strategies that could
form part of a DSD methodology. In these strategies we de-
scribe certain tools for and solutions to the different prob-
lems which, according to literature and our own experience,
occur when SMEs begin to develop software in distributed
settings. These guidelines and recommendations can there-
fore be used by SMEs to adapt a traditional software process
model to a distributed model. These proposals attempt to be
generic and extensible to SMEs, and are based on the experi-
ences of a company that applies DSD.

Every organization has concrete needs which basically
depend on its distribution characteristics, its activity and the
tools it employs. These factors therefore cause this subject to
be extremely wide-ranging, and lead to the necessity to adapt
both the technical and organizational procedures, according
to each organization’s specific needs. However, we have
attempted to present some proposals that could be applicable
to a wide range of SMEs.

The application of agile methodologies based on incre-
mental integration, frequent deliveries, and frequent
reviews of problems to adjust the process becomes an im-
portant success factor, along with the application of matur-
ity models such as CMM or CMMI, which provide a good
basis through which to carry out adaptation towards DSD.

The tools employed by the organization must be adapted
and integrated, thus assuring their interoperability and suit-
ability for the application of the proposed methods.

The development process must be automated through a
tool that provides an efficient communication mechanism
between the members of the organization. The application of
an appropriate PML and the use of environments such as
Spearmint, Rational Method Composer or Eclipse Process
Framework Composer for the model definition are essential
to the generation of structured process guidelines which will
facilitate process understandability and the training of human
resources in the processes introduced.

Our immediate future work will include the empiric vali-
dation of the proposed methodology through the definition of
a set of metrics that will allow us to quantify the improve-
ment based on a set of study cases. In order to achieve this,
we shall apply the Research-Action method [74] to our target
company, which will be useful in that it will allow us to
study the problems of this methodology and propose new
solutions.

ACKNOWLEDGMENTS

We would like to acknowledge the assistance of the
MELISA project (PAC08-0142-3315) which was financed
by the “Junta de Comunidades de Castilla-La Mancha” of
Spain, PEGASO project (TIN2009-13718-C02-01), financed
by the “Ministerio de Ciencia e Innovación” of Spain and
MEVALHE project (HITO-09-126) funded by Consejería de
Educación y Ciencia, Junta de Comunidades de Castilla-La
Mancha, co-funded by Fondos FEDER. This work is part of

FABRUM project (PPT-430000-2008-63), financed by the
“Ministerio de Ciencia e Innovación” of Spain and by
Alhambra-Eidos (http://www.alhambra-eidos.es/).

REFERENCES

[1] W. Aspray, F. Mayadas, and M. Y. Vardi, "Globalization and

offshoring of software. A report of the ACM job migration task
force," New York 2006.

[2] R. Davison, "Offshoring information technology: sourcing and
outsourcing to a global workforce," Inf. Technol. Dev., vol. 13, no.

1, pp. 101-102, 2007.
[3] R. Prikladnicki, D. Damian, and J. L. N. Audy, "Patterns of

evolution in the practice of distributed software development:
quantitative results from a systematic review," In: 12th

International Conference on Evaluation and Assessment in
Software Engineering (EASE) University of Bari, Italy, 2008.

[4] M. A. Cusumano, "Managing software development in globally
distributed teams," Commun. ACM, vol. 51, no. 2, pp. 15-17, 2008.

[5] L. Layman, L. Williams, D. Damian, and H. Bures, "Essential
communication practices for Extreme Programming in a global

software development team.," Inf. Softw. Technol., vol. 48, no. 9,
pp. 781-794, 2006.

[6] S. Krishna, S. Sahay, and G. Walsham, "Managing cross-cultural
issues in global software outsourcing," Commun. ACM, vol. 47,

no. 4, pp. 62-66, 2004.
[7] D. Damian, F. Lanubile, and H. Oppenheimer, "Addressing the

Challenges of Software Industry Globalization: The Workshop on
Global Software Development," ICSE, pp. 793-794, 2003.

[8] R. Sangwan, M. Bass, N. Mullick, D. J. Paulish, and J. Kazmeier,
Global Software Development Handbook (Auerbach Series on

Applied Software Engineering Series), Auerbach Publications:
Boston, MA, USA, 2006.

[9] OECD, "OECD small and medium enterprise outlook,"
Organisation for Economic Co-operation and Development, Paris,

2002.
[10] M. Laitinen, M. Fayad, and R. Ward, "Software engineering in the

small," IEEE Softw., vol. 17, no. 5, pp. 75-77, 2000.
[11] F. J. Pino, F. García, and M. Piattini, "Software process

improvement in small and medium software enterprises: a
systematic review," Softw. Quality Control, vol. 16, no. 2, pp. 237-

261, 2008.
[12] CMMI, Capability Maturity Model Integration (CMMI). Version

1.2: Software Engineering Institute. Carnegie Mellon., 2006.
[13] J. Zavala-Ruiz, "Organizational Analysis of Small Software

Organizations: Framework and Case Study," In: Software Process
Improvement for Small and Medium Enterprises: Techniques and

Case Studies, H. Oktaba, and M. Piattini, Eds. USA: IGI Global,
pp. 1-41, 2008.

[14] M. Jiménez, and M. Piattini, "Problems and Solutions in
Distributed Software Development: A systematic Review," In:

Software Engineering Approaches For Offshore and Outsourced
Development (SEAFOOD), Zurich, pp. 107-125, 2008.

[15] M. A. Babar, B. Kitchenham, L. Zhu, I. Gorton, and R. Jeffery,
"An empirical study of groupware support for distributed software

architecture evaluation process," J. Syst. Softw., vol. 79, no. 7, pp.
912-925, 2006.

[16] M. R. Thissen, J. M. Page, M. C. Bharathi, and T. L. Austin,
Communication tools for distributed software development teams.

ACM Press: St. Louis, Missouri, USA, 2007.
[17] J. M. Carey, "Creating global software: A conspectus and review,"

Interact. Comput., vol. 9, no. 4, pp. 449-465, 1998.
[18] K. M. Babu, "Globalization and offshoring of software," Ubiquity,

vol. 7, no. 43, pp. 2-2, 2006.
[19] G. N. Aranda, A. Vizcaíno, A. Cechich, and M. Piattini, "Strategies

to recommend groupware tools according to virtual team
characteristics," In: Conference on Cognitive Informatics, 2008.

ICCI 2008. 7th IEEE International Stanford, CA, pp. 168-174,
2008.

[20] S. E. Dossick , and G. E. Kaiser, CHIME: a metadata-based
distributed software development environment. Springer-Verlag:

Toulouse France, 1999.
[21] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson,

FASTDash: a visual dashboard for fostering awareness in software
teams. ACM Press: San Jose, California, USA, 2007.

36 The Open Software Engineering Journal, 2010, Volume 4 Jiménez et al.

[22] H. Zhuge, "Knowledge flow management for distributed team

software development," Knowledge-Based Syst., vol. 15, no. 8, pp.
465-471, 2002.

[23] L. Al-Jadiri , and B. Bruegge, "Enabling offshore software testing:
A case study," In: Proceedings of the 11th IASTED International

Conference Software Engineering and Applicattions, Cambridge,
MA, USA, 2007, pp. 282-289.

[24] B. B. Kerstin, V. Siakas, "Software outsourcing quality achieved
by global virtual collaboration," Softw. Process Improv. Pract., vol.

11, no. 3, pp. 319-328, 2006.
[25] J. D. Herbsleb, and D. Moitra, "Guest editor’s introduction: Global

software development," IEEE Softw., vol. 18, no. 2, pp. 16-20,
2001.

[26] R. Kuni, and N. Bhushan, "IT application assessment model for
global software development," In: International Conference on

Global Software Engineering (ICGSE'06), pp. 92-100, 2006.
[27] I. Richardson, V. Casey, D. Zage, and W. Zage, "Global Software

Development – the Challenges," University of Limerick, Ball State
University, SERC Technical Report 278 September 2005.

[28] R. J. Madachy, "Cost modeling of distributed team processes for
global development and Software-Intensive Systems of Systems,"

Softw. Process Improv. Pract., vol. 13, no. 1, pp. 51-61, 2008.
[29] M. Paasivaara, and C. Lassenius, "Collaboration practices in global

inter-organizational software development projects," Softw.
Process Improv. Pract., vol. 8, no. 4, pp. 183-199, 2003.

[30] H. Spanjers, M. T. Huurne, B. Graaf, M. Lormans, D. Bendas, and
R. v. Solingen, "Tool support for distributed software engineering,"

In: International Conference on Global Software Engineering
(ICGSE'06), pp. 187-198, 2006.

[31] G. Gousios, E. Kalliamvakou, and D. Spinellis, Measuring
developer contribution from software repository data. Leipzig,

Germany: ACM, 2008.
[32] Z. B.-S. Israel, and E. K. Gail, A paradigm for decentralized

process modeling and its realization in the Oz environment. IEEE
Computer Society Press: Sorrento, Italy, 1994,

[33] T. Pierre Fernand, Modelling the Federation of Process Sensitive
Engineering Environments: Basic Concepts and Perspectives:

Springer-Verlag, 1998.
[34] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber,

Capability Maturity Model for Software, Version 1.1, Pittsburgh:
Software Engineering Institute, 1993.

[35] P. Garg, Process-Centered Software Engineering Environments,
IEEE Computer Society Press: Los Alamitos, CA, USA, 1995.

[36] C. J. Hagen, A Generic Kernel for Reliable Process Support.
Zurich, 1999.

[37] L. Osterweil, Software processes are software too. Monterey, IEEE
Computer Society Press: California, United States, 1987.

[38] A. Fuggetta, Software process: a roadmap. Limerick, Ireland:
ACM, 2000.

[39] K. Z. Zamli, "Process modeling languages: a literature review,"
Malaysian J. Comput. Sci., vol. 14, no. 2, pp. 26-37, 2001.

[40] S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi, and G. P. Picco,
"Modeling and improving an industrial software process," IEEE

Trans. Softw. Eng., vol. 21, no. 5, pp. 440-454, 1995.
[41] U. Becker-Kornstaedt, L. Scott, and J. Zettel, Process engineering

with Spearmint/EPG. Limerick, Ireland: ACM, 2000.
[42] IBM, Rational Method Composer – Rational unified process, ver-

sion 7.1, 2006.
[43] P. Haumer, Eclipse Process Framework Composer: Part 1: Key

Concepts. Technical Report, IBM Rational Software, 2006.
[44] S.-o. Setamanit, W. Wakeland, and D. Raffo, "Using simulation to

evaluate global software development task allocation strategies,"
Softw. Process Improv. Pract., vol. 12, no. 5, pp. 491-503, 2007.

[45] A. I. Wang, R. Conradi, and C. Thuv, "A Framework for Evaluat-
ing Process Modelling Languages for Distributed Environments",

in Peter Kokol (Ed.): Proc. IASTED International Conference on
Software Engineering and Applications (SEA 2005), Phoenix, Ari-

zona, USA, ACTA Press, pp. 168-176, November 14-16, 2005.
[46] Object Management Group. MDA guide version 1.0.1. OMG

Document Number omg/2003-06-01, June 2003.
[47] R. S. P. Maciel, C. G. Ferraz, and N. S. Rosa, "An MDA domain

specific architecture to provide interoperability among
collaborative environments," In: 19º Brazilian Symposium on

Software Engineering, 2005.
[48] S. Goldmann, J. Münch, and H. Holz, "A meta-model for

distributed software development," In: IEEE 8th International

Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprises, 1999. (WET ICE '99) Proceedings.,
Stanford, CA, USA, pp. 48-53, 1999.

[49] L. Aversano, A. D. Lucia, M. Gaeta, P. Ritrovato, S. Stefanucci,
and M. L. Villani, "Managing coordination and cooperation in

distributed software processes: the GENESIS environment," Softw.
Process Improv. Pract., vol. 9, no. 4, pp. 239-263, 2004.

[50] G. Cugola, and C. Ghezzi, "Design and Implementation of
PROSYT: A Distributed Process Support System," In: IEEE 8th

International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, Stanford, CA, USA, pp. 32-39,

1999.
[51] I. Z. Ben-Shaul, and G. E. Kaiser, "Federating Process-Centered

Environments: The Oz Experience," Automated Softw. Eng., vol. 5,
no. 1, pp. 97-132, 1998.

[52] B. Berenbach, and M. Gall, "Toward a unified model for
requirements engineering," In: Proceedings of the IEEE

international conference on Global Software Engineering, pp. 237-
238, 2006.

[53] J. D. Herbsleb, and D. Moitra, "Global software development,"
IEEE Softw., vol. 18, no. 2, pp. 16-20, 2001.

[54] P. Ovaska, M. Rossi, and P. Marttiin, "Architecture as a
coordination tool in multi-site software development," Softw.

Process Improv. Pract., vol. 8, no. 4, pp. 233-247, 2003.
[55] C. R. d. Souza, S. Quirk, E. Trainer, and D. F. Redmiles,

Supporting collaborative software development through the
visualization of socio-technical dependencies. Sanibel Island,

Florida, USA, ACM, 2007.
[56] R. Holmes, and R. J. Walker, Promoting developer-specific

awareness. Leipzig, Germany: ACM, 2008.
[57] J. Froehlich, and P. Dourish, "Unifying artifacts and Aactivities in

a visual tool for distributed software development teams," In:
Proceedings of the 26th International Conference on Software

Engineering, Washington, DC, USA, pp. 387-396, 2004.
[58] R. R. Palacio, A. L. Morán, V. M. González, and A. Vizcaíno,

"Providing support for starting collaboration in distributed software
development: A multi-agent approach," In: 2009 World Congress

on Computer Science and Information Engineering (CSIE 2009),
Los Angeles/Anaheim, USA, 2009.

[59] J. Suzuki, and Y. Yamamoto, "SoftDock: A distributed
collaborative platform for model-based software development," In:

10th International Workshop on Database & Expert Systems
Applications 1999.

[60] W. Xiao, C. Chi, and M. Yang, On-line collaborative software
development via wiki. Montreal, Quebec, Canada: ACM, 2007.

[61] C.-W. Ho, S. Raha, E. Gehringer, and L. Williams, "Sangam: a
distributed pair programming plug-in for Eclipse," In: Proceedings

of the 2004 OOPSLA workshop on eclipse technology eXchange,
Vancouver, British Columbia, Canada, pp. 73-77, 2004.

[62] W. Lloyd, M. B. Rosson, and J. Arthur, "Effectiveness of
elicitation techniques in distributed requirements engineering," In:

10th Anniversary IEEE Joint International Conference on
Requirements Engineering, RE'02, Essen, Germany, pp. 311-318,

2002.
[63] K. Narayanaswamy , and N. M. Goldman, "A flexible framework

for cooperative distributed software development," J. Syst. Softw.,
vol. 16, no. 2, pp. 97-105, 1991.

[64] D. Goldenson, J. Jarzombek, and T. Rout, "Measurement and
analysis in capability maturity model integration models and

software process improvement," CROSSTALK J. Defense Softw.
Eng., vol. 6, no. 7, pp. 20-24, 2003.

[65] F. M. Scherer , and D. Ross, Industrial Market Structure and
Economic Performance: Houghton Mifflin Company, 1990.

[66] A. P. Jarczyk, P. Löffler, and F. M. S. III, "Design rationale for
software engineering: a survey," In: 25th Hawaii International

Conference on System Sciences, HI, USA, pp. 577-586, 1992.
[67] J. Lee, "Design Rationale Systems: Understanding the Issues,"

IEEE Expert Intellig. Syst. Appl., vol. 12, no. 3, pp. 78-85, 1997.
[68] R. M. Felder , and L. K. Silverman, "Learning and Teaching Styles

in Engineering Education," Eng. Educ., vol. 78, no. 7, pp. 674-681,
1988.

[69] B. Berenbach, "The automated extraction of requirements from
UML models," In: Proceedings of the 11th IEEE International

Conference on Requirements Engineering, pp. 287-288, 2003.
[70] M. Heindl, and S. Biffl, "Risk management with enhanced tracing

of requirements rationale in highly distributed projects," In:

Improving Distributed Software Development The Open Software Engineering Journal, 2010, Volume 4 37

Proceedings of the 2006 international workshop on Global

software development for the practitioner, Shanghai, China, pp. 20-
26, 2006.

[71] I. K. El-Far, and J. A. Whittaker, "Model-based Software Testing,"
In: Encyclopedia on Software Engineering, J. J. Marciniak, Ed.,

Wiley, pp. 1-22, 2001.
[72] SoftwareTech, Software Acquisition Gold Practice Model-based

Testing (Webpage), 2008.

[73] H. Robinson, "Obstacles and opportunities for model-based testing

in an industrial software environment," In: Proc. 1st European
Conference on Model Driven Software Engineering, Germany, pp.

118-127, 2003.
[74] E. W. Eisner, "On the differences between scientific and artistic

approaches to qualitative research," Educ. Res., vol. 10, no. 4, pp.
5-9, 1981.

Received: July 01, 2009 Revised: July 30, 2009 Accepted: May 03, 2010

© Jiménez et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the

work is properly cited.

