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Abstract: Background: Little kinematic or kinetic information is available to understand risks associated with water skier 

falls. The present study assessed accelerations during low-speed falls and then contrasted these data against information 

obtained from automotive crash tests to better delineate risk of injury. The goal was to establish baseline impact 

information for low-speed falls during water skiing. 

Methods: Twenty-seven experienced skiers were asked to deliberately make replicate forward falls at 20 miles per hour. A 

three-axis, electronic, waterproof accelerometer monitored either the torso or head during these maneuvers and recorded 

the magnitude of impacts in multiples of the force of gravity (e.g., ‘g’s’). Both anatomical sites were assessed for each 

participant. Data were averaged for the replicate runs. Using these averages, grand means were calculated for 

accelerations encountered along each of the three orthogonal axes measured. As well, 95% confidence intervals of these 

grand means were calculated. Peak accelerations were identified for each of the three orthogonal axes measured and 

plotted against time to estimate durations of acceleration events (impulse). 

Results: Grand means for torso accelerations ranged from 2.7 g’s (95% CI: 1.6-3.9) to 3.6 g’s (95%CI: 2.5-4.6). Grand 

means for head accelerations ranged from 2.5g (95%CI: 1.6-3.4) to 2.6g (95%CI: 1.4-3.8). Peak accelerations did not 

exceed 44 g’s for any participant. The average duration of these accelerations was approximately 110 milliseconds. 

Conclusions: The average magnitude of accelerations during low-speed water skier falls approximates 2-4g’s for either 

the head or torso. Based on a recent report of a 50-g threshold for brain injury, these impacts pose little risk of serious 

injury. 
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INTRODUCTION 

 Over 12 million water craft were registered throughout 
the United States in 2010 [1]. This popularity in watercraft 
use, has seen a parallel in the water ski-related injuries. A 
recent epidemiologic study cited an estimated 23,460 water 
skiing– and 4810 wakeboarding-related injuries treated in 
US emergency departments between 2001 and 2003 [2]. 
Within this same time frame, so-called skier mishaps 
represented the fourth-most common source of accident in 
2010 as ranked by the US Coast Guard [1]. Broadly, injury 
etiology consisted of ski line entanglement, collision with 
fixed objects, propeller injuries, and falls. Falls have long 
been associated with intrarectal and vaginal laceration, 
described as rapid pressurization of an orfice [3-6] Foot, hip, 
and knee fracture and/or dislocations have been reported 
[7,8], as well as tendon ruptures [9-12]. Spondylodystrophy 
or vertebral body wedging has been reported in competitive 
jumping, especially those who started skiing before skeletal 
maturity [13]. Of graver consequence, two case reports have 
documented significant internal injuries, dissection of 
cerebral [14] or coronary [15] vessels. Vascular injury can be 
induced by rapid decelerations as typified by the case report 
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of a renal artery pseudoaneurysm three years after a 
deceleration injury [16]. Despite the potential for injury, we 
are unaware of any deceleration thresholds that have been 
established for water-based impacts. Roberts and Roberts 
(1996) cited estimates of between 5 and 9 g accelerations 
during routine, competitive water skiing maneuvers [17]. By 
contrast, the aerospace and automotive industries have made 
significant strides in measuring decelerations during an 
impact and then promulgating thresholds for injury. These 
fields have posited human tolerance to injury that spans 
extremely brief bouts of very high acceleration (in excess of 
100g) to more sustained levels, on the order of 10 g [18] to 
35 g [19,20]. To our knowledge, no data are available for 
water impacts arising from water skiing. 

 Given that little or no kinematic or kinetic data are 
available to characterize the severity of water skier falls, we 
sought to quantify accelerations experienced by the head and 
torso during low-speed impacts. These data were then 
contrasted to established information derived from 
automotive crash testing to discern the potential for injury 
during a low-speed water skier fall. We hypothesized that 
accelerations derived from low-speed water impacts would 
be relatively low in magnitude, consistent with the absence 
of injury reporting seen in this sport. 
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MATERIALS AND METHODOLOGY 

 Twenty-seven experienced water skiers volunteered who 
signed informed consent. Experienced skiers were utilized to 
minimize inadvertent falls, reducing both the risk associated 
with this study as well as eliminating spurious events. Skiers 
included 18 males and nine females, ages 23-49 (average: 26 
± 5.3 years) ranging in bodyweight from 47.7 to 100 kg. 
(average: 79.5 ± 19.1 kgs). All were screened by the senior 
author for preexisting medical morbidities that would have 
posed a risk to their safety. This study conformed to the 
principles established by the Declaration of Helsinki and was 
approved by the hospital Institutional Review Board. 

 Trials consisted of six, contrived, forward falls at a speed 
of 20 mile per hour (32 kilometers per hour or 17.5 knots). 
Skiers were pulled by either a Sea Doo three-person jet ski 
(Bombardier Recreational Products, Sturtevant, WI) 
(n=3) or a 28-foot Sea Ray Sundancer sport cruiser (Sea 
Ray, Knoxville, TN) (n=24). Vessel speed was verified by 
onboard instrumentation. Skiers were equipped with 185-cm 
water skis (OBrien, Redmond, WA), a standard adult ski 
jacket (Bart’s Water Sports, North Webster, IN) and an adult 
ProTec water sport helmet (Bart’s Water Sports, North 
Webster, IN). Skiers were instructed to release the ski rope 
when ready and fall forward once speed was attained. An on-
board spotter provided input to the pilot about the welfare of 
the skier and documented the clock time of each event (fall). 
These times were used to abstract acceleration data at the 
moment of impact. Skier rotation permitted rest after the 
acquisition of one set (three replicates) of falls to minimize 
fatigue and foster skier safety. 

 The magnitude of impacts was measured by a 
waterproof, electronic, three-axis accelerometer (SnapShock 
Plus, Instrumented Sensor Technology, Okemos, MI). The 
device records data at a rate of 1200 hz with an accuracy of 
±1% and was self-contained, using a rechargeable lithium-
ion battery for operation. Triggering was programmable so 
that spurious recordings could be minimized or eliminated. 
Once a trigger threshold was reached, the ‘event’ was 
recorded as a time-stamped entry. For three of the falls, torso 
accelerations were monitored using a vest pouch affixed to 
the ski jacket (Fig. 1a). For the other half of the trials, head 
accelerations were monitored by attaching the device to the 
helmet (Fig. 1b). In either case, the device was rigidly 
affixed to the piece of safety equipment. The order of 
monitoring was varied for each session to obviate effects of a 
learning curve for performing the falls. The head and torso 
were selected as target areas for monitoring accelerations 
given they house critical organs that would be susceptible to 
deceleration injury. 

 Data were downloaded from the accelerometer and 
summarized via descriptive statistical measures. Downloads 
or changes in accelerometer operating parameters were 
accomplished via an infrared wand connected to an IBM 
ThinkPad 760EL PC (IBM, Morrisville, NC). Raw data were 
imported into DynaMax™ Suite v1.5.3 (Instrumented Sensor 
Technology, Okemos, MI), a software package that allowed 
graphic analysis of the data as well as its tabulation. Event 
times were cross-referenced to documented clock times to 
distinguish falls from spurious triggering. The data from 
these falls were then imported into Microsoft Excel 2002 to 
generate summary data. Averages and standard deviations 

were calculated for each set of triplicate runs per monitored 
site. Grand means (means of the average values obtained for 
each subject) and 95% confidence intervals were then 
generated as a summary measures for each orthogonal axis 
and anatomical area monitored. Given that duration of 
acceleration is used in estimating Head injury Criteria [21], 
the largest peak accelerations and their duration were plotted 
for head accelerations. Since we were unaware of any prior 
publication of decelerations associated with water impacts, a 
power analysis was not performed. Rather, we recruited a 
sufficient number of subjects to reduce the overall 
coefficient of variation to less than 25%. 

(a) Torso 

 

(b) Posterior Head 

 

Fig. (1). (a) skier vest with accelerometer ‘pocket’ located on left 

anterolateral aspect of the torso, (b) Skier helmet with 

accelerometer mounting frame on the posterior aspect. 

RESULTS 

 Means for torso accelerations for volunteer skiers (Fig. 2) 
ranged from -7.5 g to + 10.8 g in the anteroposterior 
direction, -3.6 g to +13.4 g in the craniocaudal direction, and 
-2.2 g to + 27.7 g in the lateral direction. Discounting 
directionality, absolute means were 2.7 g’s (95% CI: 1.6-
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3.9), 3.0 g’s (95%CI: 1.9-4.1), and 3.6 g’s (95%CI: 2.5-4.6) 
with peak accelerations of 33, 42, and 44 g’s, respectively. 

 Means for head accelerations (Fig. 3) ranged from -6.3 g 
to + 7.8 g in the anteroposterior direction, -6.5 g to +5.7 g in 
the craniocaudal direction, and -2.0 g to 10.2 g in the 
anteroposterior direction. Absolute mean values were 2.5 g 
(95%CI: 1.6-3.4), 2.4 g (95% CI: 1.8-3.1) and 2.6 g (95%CI: 
1.4-3.8) with peaks of 29, 14, and 31 g, respectively. 

Fig. (2). Graph of average torso accelerations by axis, skier. Data 

represent averages of three, forward falls initiated at. 

Fig. (3). Graph of average head accelerations by axis, skier. 

 Duration of peak accelerations was generally less than 
0.1 seconds (Fig. 4). Several outliers are apparent ( 1.0 s); 
their occurrence conceivably may represent a skier who falls 
and is towed for a short period prior to rope release. Overall, 
skiers tolerated the falls well and no mishaps occurred. 

 

Fig. (4). Scatter plot of peak accelerations by duration. 

DISCUSSION 

 Our data indicate that contrived, forward falls at 20 miles 
per hour produced impacts averaging between 2 and 4 g’s 
with highly transient peaks of up to 44 g’s. Despite attempts 
to standardize falls, data were highly variable. 

 These results appear to be supported by or, at the very 
least, consistent with other human impact studies. Literature 
pertinent to water impacts is limited. Zillmer (2003) failed to 
observe neurologic impairment following repetition dives by 
3-meter springboard divers [22]. Roberts and Roberts (1996) 
cited estimates of between 5 and 9g accelerations during 
routine, competitive water skiing maneuvers [17]. 

 By contrast, there is a wealth of data obtained from 
automotive impacts that have established human tolerance to 
accelerations. Early studies simulating automotive crashes 
with human volunteers demonstrated tolerances to lateral 
accelerations of up to 10 g [18], frontal or rear impacts of 
11-14 g [23], and test sled decelerations up to 35g [19,20]. 
At some of the higher levels of decelerations, only transient 
discomfort or headaches in test subjects were observed 
without permanent, untoward consequences. Hirsh (1968), 
however, noted that duration of the acceleration is also an 
important aspect, especially as it relates to the injury 
potential, citing examples of minor injury in the face of 
accelerations exceeding 100g [24]. When contrasted against 
these automotive impacts, even the largest peak acceleration 
recorded in this study, 44 g’s, was less than half that cited by 
Hirsh. In a study of Indy car crashes, Weaver et al. (2006) 
suggested a “mean maximal” G threshold of 50 as  
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potentiating ten-times greater frequency of head injury [25]. 
These comparisons suggest that, consistent with our 
hypothesis, low-speed impacts on water result have little 
potential for inducing injury. 

 More recently, changes in human research ethics coupled 
with interest in tissue response to impact have prompted the 
use of human surrogates in impact tests. Intervertebral 
foramen narrowing and cervical vertebral compression and 
shearing have been observed in cadaver vertebrae around 3.5 
g’s [26,27]. Others have shown aberrant motion of the first 
thoracic vertebra with rear impacts of between 5 and 8 g’s 
[28, 29]. While these recent studies provide glimpses of 
anatomical/structural changes, they fail to provide relevant 
injury information. Of greater relevance, hepatic injury was 
accompanied by cadaver torso decelerations of 60g [30] 
while neck injury was associated with cadaver head 
decelerations of 112g [31]. These cadaveric studies, then, 
suggest varied responses to accelerations as a function of 
anatomic site and impact characteristics. 

 Our methods pose limitations on the usefulness of the 
data. We used experienced skiers who committed contrived 
falls to standardize the event, reduce variability, increase 
efficiency in data capture, and maximize participant safety. 
Nonetheless, these falls represent an artificial event and 
likely represent only one of an entire spectrum of fall 
directionalities. As well, experienced skiers may not 
represent the population at greatest risk for falling. The 
present study, then, is an attempt to furnish preliminary 
insights into the impacts arising from water skier falls – it 
certainly is not a definitive or conclusive effort. 

 As well, aberrant instrument movement may have 
contributed to some of the large accelerations seen. Our 
strategy to secure the accelerometer was one designed to 
provide instrument rigidity while facilitating relatively quick 
instrument exchanges between skiers as well as anatomical 
areas. Finally, high speed video would have provided more 
exacting analysis of initial contact at the moment of impact. 
This is especially relevant as the axes of orientation changes 
with a change in body position, from an upright to a prone 
posture at impact. Even slight twists or turns of the torso or 
head change the coordinate axis and make precise analysis 
impossible without concomitant video data. 

CONCLUSION 

 We conclude that low-speed skier falls generate sub-
injurious impacts that are characterized by short-duration, 
low magnitude accelerations. Additional study of human 
falls onto water at higher speeds is needed to provide a more 
comprehensive, broader view of impact accelerations 
associated with this recreational sports activity. This, in turn, 
would permit a more realistic assessment of the potential for 
injury. 
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