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Abstract: E. coli heat stable enterotoxin STa is an agonist of the membrane guanylate cyclase C whose endogenous 
ligands are the peptide hormones guanylin and uroguanylin. Whereas these peptides contain only two disulfide bonds, 
STa is stabilized by one additional disulfide bridge. We chemically synthesized the enterotoxin STh that originates from 
the E. coli strain found in humans, and we determined its structure and its dynamics by nuclear magnetic resonance spec-
troscopy and molecular dynamics calculations. Chemical synthesis clearly proved successful and resulted in the formation 
of the native disulfide bonds. The endogenous ligands guanylin and uroguanylin show the same general structural features 
and dynamics properties as the enterotoxin. 
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INTRODUCTION 

 Many bacterial pathogens synthesize toxins that serve as 
virulence factors. Recently, these toxins became a topic of 
interest as a medication [1-3], inactive toxin components 
(toxoids) were suggested to be used as as a vaccine [4], tox-
ins were used as tools to elucidate the complex events during 
signal transduction [5], even as tumor markers and potential 
therapeutics in the treatment of colorectal and breast cancer 
[6-8]. 

 Enterotoxigenic E. coli bacteria (ETEC) produce two 
forms of heat-stable enterotoxins: STa (or STI) and STb (or 
STII) [9,10]. These toxins cause acute and secretory diarrhea 
in humans, known as traveler's disease. In developing coun-
tries, this type of diarrhea is a major cause of death of infants 
[11]. STa consists of two subtypes that differ slightly in 
amino acid sequence and that are, for historic reasons, called 
STh (originally thought to occur in human E. coli strains 
only) and STp (originally thought to occur in porcine E. coli 
strains only). 

 STh is expressed as a precursor protein of 72 amino acids 
and it is cleaved twice before it is secreted as the mature 19 
amino acid toxin [12-15]. The toxic domain of STh is lo-
cated in its carboxy-terminal region, between C6-C18, and it 
is highly conserved within the whole toxin family [5]. The 6 
cysteins in this domain are arranged in three disulfide 
bridges, C6-C10, C7-C15 and C11-C18 [10] (Fig. 1) that are 
crucial for the peptide's toxicity [16,17]. The same disulfide 
pattern and, generally, high sequence similarity is observed  
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in guanylin and uroguanylin (Fig. 1), the endogenous peptide 
hormones that physiologically target the same receptor, 
membrane guanylate cyclase C, which is located at the brush 
border of the surface of cells of the intestine, and STh is able 
to displace both of these hormones from their receptor bind-
ing site [5,18-22]. 

 

Fig. (1). Comparison of the amino acid sequences and disulfide 
bridge patterns of the heat stable enterotoxin from the human strain 
of enterotoxigenic E. coli and human hormones guanylin and 
uroguanylin. Possible binding region of the peptides are marked 
gray. 

 The initial step for the biological effect of STa is its bind-
ing to the extracellular domain of GC-C. This interaction 
leads to over activation of the intracellular GC-C cGMP 
kinase, which, in turn, results in an excessive signal to the 
cystic fibrosis transmembrane conductance regulator on the 
apical plasma membrane of small intestinal enterocytes that, 
in turn, elicits extreme chloride and fluid secretion 
[5,20,23,24]. 

 Although the interaction of STa with GC-C is of crucial 
importance to this process, little is known about its molecu-
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lar basis, and only a crystal structure (PDB: 1ETN, [25]) and 
an NMR solution structure of STI are known [26]. We are 
currently examining the structural basis of STh recognition 
by GC-C, and, as an initial step, we determined the solution 
structure of the chemically synthesized STh(6-19). 

ENTEROTOXIN SYNTHESIS AND REFOLDING 

 The synthesis of STh(6-19) was performed using the 
Fmoc/But and maximal temporary protection strategy on a 
Syro II peptide synthesizer (MultiSynTech, Witten, Ger-
many). The chemical procedure used 0.05 mmol of Fmoc-
Tyr(tBu)-2-chlorotrityl resin, an eightfold excess of each 
amino acid (Fmoc Cys(Trt)-OH, Fmoc-Gly-OH, Fmoc-
Thr(tBu)-OH, Fmoc-Ala-OH), Fmoc-Pro-OH, Fmoc-
Asn(Trt)-OH, Fmoc-Leu-OH and Fmoc-Glu(OtBu)-OH and 
2-(1H-benzotriazole-1-yl)1,1,3,3-tetramethyluronium tetra-
fluoroborat/1-hydroxybenzotriazole (TBTU/HOBt) activa-
tion. Deprotection (2 h) and cleavage (100 mg peptide of 
resin) were achieved using 5 ml of a mixture of trifluoroace-
tic acid/thioanisole/ethandithiole (90/8/2, vol/vol/vol). The 
acidic mixture was then precipitated three times with dieth-
ylether, dissolved in 10 % aqueous acetic acid and freeze 
dried. The crude toxin was purified by RP-HPLC on a C18 
semi-preparative column (10 x 150 mm; Nucleosil) using a 
40-min gradient of acetonitrile in 0.055% trifluoroacetic acid 
(10–80% B in 40 min, where B is 80 % acetoni-
trile/H2O/0.05 % trifluoroacetic acid). 

 Oxidation of the reduced toxin was achieved by dissolv-
ing the purified peptide into 2 M acetic acid, and diluted to a 
peptide concentration of 0.015 mM in the presence of re-
duced/oxidized glutathione (molar ratio of pep-
tide/GSH/GSSG was 1: 100: 10) and 2 M guanidine hydro-
chloride. The solution was adjusted to pH 8.0 with aqueous 
NH4OH and stirred slowly at 4 °C for 7 d. The folding reac-
tion was monitored by analytical HPLC. The solution was 
concentrated using a C18 SepPak (Waters) cartridge and 
finally lyophilized. Initial purification of the oxidized prod-
uct was achieved by chromatography on a C8 column using 
the system above and yielding a purity of ~ 90 %. Finally, 
the product was highly purified on a C18 column using a 60-
min gradient, resulting in a purity of 95 %. The quality of the 
product was confirmed by analytical HPLC, matrix-assisted 
laser desorption/ionization time of flight mass spectrometry 
(MALDI-MS) giving the correct mass in excellent agree-
ment of the oxidized product. (M+H+)calc reduced: 1482.45; 
found: 1482.42; (M+H+)calc. oxidized: 1476.41; found 
1476.43. 

NMR SPECTROSCOPY 

 Two-dimensional NMR spectra were recorded on Bruker 
DRX600 and AV800 spectrometers at 283 K with standard 
methods [27]. Standard 1H-1H correlated spectroscopy 
(COSY), 1H-1H total correlated spectroscopy (TOCSY) and 
1H-1H homonuclear Overhauser enhancement spectroscopy 
(NOESY) were carried out with 4096x512 complex data 
points with excitation sculpting for water suppression [28] or 
coherence selection by pulsed field gradients [29]. Presatura-
tion was applied for residual water suppression in experi-
ments with the D2O sample. 1H-13C heteronuclear single 
quantum correlation (1H-13C HSQC) and 1H-13C-HMQC-
TOCSY were  used for 13C assignment and  validation of  the  
 

1H assignments. Peptide concentration was 3 mM, pH 3.0 in 
H2O/D2O (9: 1, v/v, 600 L) and in D2O (99.98 %). For 
measurement in D2O, STh was lyophilized repetitively from 
D2O to exchange the amide protons and finally dissolved in 
D2O, pH3. Spectra were processed and analyzed with in-
house software and NMRView 5.2.2 [30]. 

STRUCTURE CALCULATIONS AND ANALYSIS 

 The total number of nontrivial unambiguous cross peaks 
in NOESY spectra was 190. The cross peaks were divided 
into three groups according to their relative intensities: 
strong with upper distance limit < 0.3 nm; medium, < 0.4 
nm; and weak < 0.5 nm. Structure calculations were per-
formed by using a modified ab initio SA protocol with the 
X-PLOR-NIH package [31]. The disulfide bonds were in-
cluded explicitly. For each calculation 30 structures were 
calculated and 7 structures for each state were selected with 
the criteria for the lowest overall energy. Rasmol 2.7.3 
[32,33] and PyMol [34] were used for molecular presenta-
tion. The geometry of the structures was analyzed using 
PROCHECK-NMR [35-37]. 

MD-SIMULATIONS 

 For further analysis and verification of our structural re-
sults we did an ab initio molecular dynamics simulation for 
STH and the hormones uroguanylin and guanylin [38]. The 
Amber 9 program package [39] and the ff03 force-field 
[40,41] were used for the simulations of the three peptides. 
Each of them was constructed as an elongated peptide chain 
within the LEaP module of AMBER with the disulfide bond-
ing as the only restraints. 

 The peptides were solvated in a TIP3P waterbox [42] 
with the dimensions of 80x60x40 Å, and for neutralization of 
the system sodium counterions were added. Calculations 
were performed at 286 K and an external pressure of 1 atm. 
At this conditions the systems were minimized and equili-
brated using the program SANDER. Initially, the whole sys-
tem was minimized for 1000 steps and the water molecules 
and the counterions were relaxed around the fixed solute 
with a 100-ps MD run. The systems were slowly heated 
stepwise to 286 K for equilibrating at each temperature. MD 
production runs of 2-ns duration were then performed for the 
systems. The MD data was analyzed by using the PTRAJ 
program. Root mean square deviation (r.m.s.d.) calculations 
of the heavy atoms were referenced to the NMR-structure of 
STH and the structures of the hormones deposited in the 
PDB (Guanylin: 1GUA, Uroguanylin; 1UYA), respectively. 

RESULTS AND DISCUSSION 

 A detailed and well resolved solution structure of STh is 
needed for better understanding of processes that are in-
volved into peptide recognition by its receptor. We thus 
chemically synthesized STh(6-19) and analyzed its NMR 
spectra. The chemical synthesis resulted in a peptide that was 
active in binding to the membrane proximal extracellular 
subdomain of human GCC with a nanomolar dissociation 
constant (Matecko et al., unpublished). 

 The amide region of the proton NMR spectrum of STh 
showed the large dispersion of 2.5 ppm characteristic for a 
peptide with defined structure (Fig. 2). Using  standard  through-  
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bond and through-space 2D homonuclear and heteronuclear 
correlation experiments at natural abundance most of the 
resonances could be assigned (Table 1), and only the amide 
proton of C7 and the resonances of C6 were not identified in 
the spectra. The severely increased linewidth of amide pro-
tons as well as the beta protons of residues C10, C11, L9 
likely reflects conformational dynamics on the intermediate 
chemical shift time scale (μs-ms). The 13C chemical shifts of 
cysteines are very sensitive to the oxidation state of the sul-
fur atom [43]. The C  resonances of C10, C11, C15 and C18 
are in the range between 36.9 - 39.8 ppm. This characteristic 
down field shift indicates the oxidized state of these cys-
teines. The chemical shift of C7 (33.9 ppm) is in the inter-
mediate region between upfield shifted resonances of re-

duced cysteines and downfield shifted resonances of oxided 
cysteines, the NOE cross peaks between C7-HA and C15-
HB1,2 protons, however, clearly demonstrate the presence of 
the disulfide bond between these two residues. From this 
data it can be deduced that C6 must also be oxidized. Direct 
observation of the other two disulfide bonds by means of 
NOE cross peaks was not possible due to overlap with trivial 
intraresidual signals. The presence of the three disulfide 
bonds is also consistent with the observed molecular weight 
by mass spectroscopy (expected mass: 1475.46 Da, meas-
ured: 1475.43 Da). The NOESY cross peaks between P13 -
protons and the -proton of N12 show the trans conforma-
tion of the proline. Slow solvent exchange of amide protons 
of C11, N12, and C15 (Fig. 2) suggests these residues to be 

 

Fig. (2). NOESY spectra of STh(6-19) in H2O, pH 3.0 and 288K. 

Table 1. 
1
H and 

13
C Chemical Shifts and the Assignment of STh(6-19) in H2O at pH 3.0. 

 

 HN  HA1 HA2 CA  HB1 HB2 CB  HG1 HG2 CG1  HD1 HD2 CD  

Glu8 9.84 4.33  59.30 2.15 2.15 26.70 2.64 2.43     

Leu9 7.41 4.66  53.73 1.84 1.58 41.88 1.49   0.94 0.87 22.79 

Cys10 9.33   58.11 3.31 3.46 39.80       

Cys11 8.38 4.33  58.11 3.21 2.88 36.87       

Asn12 7.19 5.16  51.42 2.89 2.82 41.80       

Pro13  4.31  64.55 2.28 2.28 32.10 1.97   3.72 3.76 51.75 

Ala14 8.45 4.31  52.62 1.37 1.37 18.49       

Cys15 7.69 4.53  55.53 3.18 3.11 37.91       

Thr16 8.60 4.07  63.92 4.08  69.33 1.29  21.92    

Gly17 9.02 4.05 3.75 45.86          

Cys18 7.58 4.63  56.68 2.92 2.92 39.26       

Tyr19 8.38 4.57  57.95 3.11 2.91      HE2/– 6.79 

Chemical shifts for Cys6, Sys7 could not be determined due to flexibility of amino terminus. 
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involved in hydrogen bonds. During the iterative structure 
determination hydrogen bonds between N12 CO and C15 
HN; C18 HN and C15 CO and C10 HN and C7 CO were de-
duced. 

 For the structure calculation 190 experimentally derived 
distance restrains were obtained. Due to the observed line 
broadening by conformational exchange NOE peak intensi-
ties were classified very conservatively to include effects of 
dynamical averaging. The ten accepted structures out of ten 
calculated superimpose with a backbone r.m.s.d. of 0.89 Å 
and show only low violations of experimental and geometri-
cal restraints (Table 2). A PROCHECK-NMR analysis of 
STh shows that 51 % of the residues of the accepted struc-
tures are found in the most favoured regions and an addi-
tional 49 % in the allowed regions of the Ramachandran plot 
(Table 2). 

Table 2. Structural Statistics 

 

NOE Statistics  

Total NOE number 190 

Short range 21 

Medium range 16 

Long range  153 

Deviation from Standard Geometry and 

Experimental Restrains 

 

Bonds 0.00095 ± 0.0002 

Angles 0.169 ± 0.023 

Distance restrains 0.0036 ± 0.0011 

Ramachandrans plot statisticsa 51 % / 31 % / 18 % / 0 % 
a Ramachandran plot statistics are determined by PROCHECK-NMR and are deter-
mined as follow: residues in most favored region, in additional region, in generously 
allowed region, and in disallowed region. 

 

 The solution structure of STh(6-19) is composed of an -
helical turn at its N-termius region and two  - turns, be-
tween C11-C15, C15-C18 stabilised by the three disulfide 
bridges as mentioned before (Fig. 3). 

 The unavailability of the coordinates of the solution con-
formation from Gariepy et al. [26] renders direct comparison 
of the structures impossible. Superimposing the present STh 
structure with the crystal structure (pdb code 1ETN [25]), 
however, resulted in a backbone r.m.s.d. of 1.6 Å for resi-
dues C7-C18, mainly due to different orientation of the car-
boxy terminus. Restricting the fit to residues C7-G16 lowers 
the rmsd to 0.9 Å, demonstrating similar conformations in 
solution and in the crystal. The receptor binding region of 
STh and the endogenic GC-C pedptide ligands uroguanylin 
and guanylin is found to be from N12 - A14 for STh [44] 
and Y9 - A11 for guanylin [45]. In fact, these regions are 
highly solvent exposed for guanylin, uroguanylin, STp, and 
STh (Fig. 4). 

 

Fig. (3). (A) Overlay of 13 NMR derived structures of STh (6-19). 
(B) Presentation of disulfide bridges in STh (6-19). 

 Ab initio MD simulations with the NMR structures of 
guanylin, uroguanylin, and STh as starting structures show 
high flexibility of all three peptides in the loop regions (Fig. 

 

Fig. (4). Comparison of structures of (A) STp (5-17), PDB: 1ETN; (B) Uroguanylin human, PDB: 1UYA; (C) Guanylin human, PDB: 
1GNA and (D) our calculated STh (6-19) structure. Possible binding sites are shown as sticks. 
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5). The r.m.s.d. values of heavy atoms are in the same range 
for all three peptides, despite the additional disulfide bridge 
in STh. To evaluate the importance of the three disulfide 
bridges for the structure calculation of STh, we performed 
the identical calculations as we did for the NMR-structure 
determination, however, without taking into account the di-
sulfide bridges. The energetically most favourable 15 struc-
tures were virtually the same as from the calculation contain-
ing both, the NOE restraints and the disulfide bridges. The 
largest difference in the structures was in the N-terminal 
loop and the carboxy-terminus of the peptide which both 
were observed to show higher flexibility. 

 

Fig. (5). RMSD of the heavy atoms during the MD. Sth ( 6-19) 
referenced to the present structure (black); Uroguanylin referenced 
to PDB: 1UYA (light grey); Guanylin referenced to PDB: 1GNA 
(dark grey). 

 In addition to differences in structure and dynamics, STh 
may act as a toxin because it does not contain the chymo-
trypsin cleavage site found in guanylin, the endogenous pep-
tide that predominantly acts in the large intestine, as opposed 
to uroguanylin [45]. Chymotrypsin is an enzyme of the intes-
tinal tract, and it cleaves after aromatic amino acids such as 
Y9 of guanylin (Fig. 1). In fact, the Y9NA10P double mu-
tant of guanylin causes diarrhoea in suckling mice at much 
lower concentrations than the native peptide does [45]. Thus, 
one reason for the only transient action of native guanylin in 
the large intestine could be its rapid loss of its structure by 
enzymatic digestion. 
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