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Abstract: A theoretical analysis of the cumulative sum (CUSUM) technique for detecting a series of time signals from 

noisy background is provided. The statistic using CUSUM-slope is introduced as a measure for capturing the average of 

signals within the time-window, in which the slope is computed. This provides a time-independent method for estimating 
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INTRODUCTION  

 Extracting signal from background noise is one of the 
most common problems faced in statistical analysis, espe-
cially in detection of changes in a data sequence from the 
random fluctuation of background noise. In this paper, we 
will limit the definition of noise to events that are generated 
by a random process, while signals that are events that gen-
erated by non-random processes. Thus, noise in this context 
is usually generated from a stationary process that has a 
zero-mean, while signal has a non-zero mean. The statistical 
task is to identify the events that are generated from the non-
random process in the midst of the background noise gener-
ated from a random process. 

 Specifically, when the unknown signal is embedded in 
background noise, the task is to identify the signal by remov-
ing the background noise. If the signal-to-noise ratio is large, 
it is a trivial problem. But if the signal-to-noise ratio is low 
(especially when background noise is an order of magnitude 
bigger than the signal), then it is a daunting task to extract 
signal from noise when the signal is “buried” in the back-
ground noise. This definition of signal and noise is also the 
classical definition used in engineering and industrial quality 
control in defining signal-to-noise ratio as a measure of 
meaningful information (non-random signal) compared to 
background noise (random signal). No other assumptions 
about the putative signal or noise are made except for the 
non-random and random processes under consideration, re-
spectively. 

 For example, in electrical engineering, the statics in radio 
transmission is considered as noise, whereas the sound 
transmitted is considered as signal. Similarly, in industrial  
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quality control for detecting failure of components in assem-
bly line, the random variability in components sampled at 
control point is considered as noise due to statistical fluctua-
tions, whereas if the components consistently failed when 
sampled at control point that is considered as signal (i.e., 
change from random background fluctuations). Deriving a 
sensitive measure for detecting changes in the presence of 
background fluctuations would provide a good quality con-
trol criterion for product safety in manufacturing. 

 Since we usually do not have any a priori knowledge of 
the underlying non-random process in most practical situa-
tions, we would not know what the signal might be if we 
were to design a detection method for such as unknown sig-
nal. Furthermore, statistical methods are often used to detect 
and deduce the unknown underlying process in spite of the 
variability in the data sequence. Thus, it is non-essential to 
define “signal”, in this statistical analysis, as long as the sig-
nal is generated by a non-random process, which is different 
from the “noise” that is generated by a random process. 

 Finding a sensitive statistical measure to detect such non-
random process is particularly important in many real-world 
applications when the presumed relevant signal generated is 
unknown prior to the analysis. Examples include brain (neu-
ral) signals recorded in experiments, using fMRI (functional 
magnetic resonance imaging) and EEG (electroencephalo-
gram) techniques, where the signal-to-noise ratio is ex-
tremely low and the presumed signal generated by the brain 
is unknown prior to the experiment. 

 Furthermore, when a time-series signal is considered, it is 
often essential to detect trends (i.e., sequential changes) – 
when the signal appears and when it disappears from the 
background noise. Stock market fluctuation is a good exam-
ple to show how trend analysis can help delineate the daily 
fluctuation in a volatile market from the underlying trend of 
market crash or economic recovery (non-random process). 
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 Thus, the detection of the onset time of appearance of 
signal (i.e., deviation from background noise) and the offset 
time of the disappearance of signal with statistical signifi-
cance is important in signal trend analysis when the signal is 
unknown. This poses a difficult problem to extract the signal 
when [1] the signal is unknown in the first place, and [2] the 
signal-to-noise ratio is very small, i.e., when the putative 
signal is much smaller than the random fluctuation of back-
ground noise. In other words, we seek to detect non-random 
events in amidst of a random process. 

 More precisely, signal in this definition is the deviation 
from the background noise. In other words, we make no as-
sumptions about the signals, except that they deviate from 
background noise. For instance, in the search of possible 
intelligent intergalactic communication from outer space, we 
would not know what that signal might be, except that the 
signal would be different from the background radiation 
noise in the universe. 

CLASSICAL CUMULATIVE SUM (CUSUM) TECH-

NIQUE 

 One of the traditional statistical techniques to detect sig-
nificant changes in a data sequence from its random back-
ground noise is the cumulative sum (CUSUM) test intro-
duced by Page [1], in 1954. It is used to detect sequential 
changes in a sequence of data points in a discrete-time ran-
dom process. Most often, a time-series is considered in 
CUSUM analysis, which can be applied to any data sequence 
without loss of generality. 

 Many different statistical detection methods, using the 
CUSUM technique, have been developed to establish the 
statistical significance criteria for detection of signal onset, 
such as CUSUM-charts [2-10], cumulative observed-
expected (O-E) plots [11], and resetting sequential probabil-
ity ratio (RSPRT) charts [12-14]. In particular, these 
CUSUM statistics were widely used in detecting onset of 
deviation in sequential data in areas such as quality control 
[15-17] as well as the medical fields [11,14,18-21]. Various 
statistical significance tests have been applied to CUSUM 
analysis to detect significant deviations from the mean by the 
CUSUM-chart method, using the V-mask form of CUSUM 
[16,22], which depends on run length [23-26]. 

 The most commonly used CUSUM-chart [2-10] proce-
dure is a statistical technique for the detection of changes 
from the mean level of a series of sequential data points. 
Since, by definition of background noise, the statistical mean 
of the noise is zero and constant. On the contrary, the “sig-
nal” is defined as the deviation from this constant mean. 
Thus, the CUSUM procedure, when applied appropriately, is 
very sensitive to changes that are small compared to the fluc-
tuation of individual data points from its mean. 

 Since most of the above CUSUM statistics rely on sam-
ple run history in the detection of signal from background 
noise, the statistical measures used are dependent on the cu-
mulative sum of the total signal and noise since the begin-
ning of the data sample, which is precisely the definition of 
CUSUM – cumulative sum of the signal plus noise since the 
beginning of time. Because of the dependence on the time 
origin of the data sample, statistical measures derived from 
the cumulative sum are also dependent on the selection of 

the specific time origin of the data sample during the analy-
sis and the entire prior sequential history of the data sample 
by definition. In essence, CUSUM is a statistical measure to 
detect the serial-dependence of the signal in the presence of 
background noise since the beginning of time. 

ALTERNATE ORIGIN-INDEPENDENT CUSUM 

METHOD 

 In this paper, we propose to use an alternate statistical 
method to detect the time of signal onset that is independent 
of the specific sample time origin, thus, independent of the 
cumulative run history, unlike the other CUSUM statistics. 
In other words, we seek to eliminate the dependence on the 
selection of time origin in the statistical criteria. Developing 
the statistical detection method that is independent of its cu-
mulative history since the beginning of time could theoreti-
cally eliminate the accumulation of serial-dependence that is 
dependent on the selection of a particular time origin in the 
data set for analysis. 

 In this paper, we will prove that the “slope” of the 
CUSUM (CUSUM-slope) is a statistical measure that esti-
mates the “average signal content” (without the background 
noise) during the interval (time-window), over which the 
CUSUM-slope is computed [27]. This CUSUM-slope meas-
ure also represents the trend of signals (i.e., how they deviate 
from the background noise). It can also be used to detect the 
onset (beginning), and offset (end) of the signal, and the du-
ration of such signal. Furthermore, we will prove that the 
CUSUM-slope value is statistically measured that estimates 
the normalized algebraic sum of all signals within that time-
window, in which the CUSUM-slope is computed.  

 The statistical decision criteria are also given in this pa-
per to determine the signal onset time, i.e., the time that the 
data sequence starts to deviate significantly from the mean 
background noise level. Provision of statistical criteria are 
especially important for determining the onset time of 
changes when the signal-to-noise ratio is very small (i.e., for 
determining the time of signal onset when background noise 
is much greater than the signal itself). 

BRIEF REVIEW OF THE CUSUM METHOD 

 Suppose we have a set of discrete sequential data points 
{x-n, … , x0, x1, x2, …, xn,}, where n is a positive integer (see 
Fig. 1). Without any loss of generality, this sequence of data 
points can be considered as a time-series, where n denotes 
the time of occurrence of the data point. The cumulative sum 
(CUSUM) at time t is given by [1,2] 

 

ct = xi
i=1

t

     (1a) 

 Note that the CUSUM ct is monotonically increasing 
function where xi are non-negative (if xi  0), such as a 
counting process (see Fig. 2). Note that the CUSUM in Fig. 
(2) is essentially a measure of the area under the curve in 
Fig. (1). It is intuitively obvious that if there is a deviation 
(change) in the data sequence from the background noise 
level, the slope of such monotonically increasing curve 
would change (with a steeper or shallower slope). It will be 
shown below that the traditional CUSUM-chart plot method 
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uses a horizontal V-mask envelope to capture such change in 
slope in the CUSUM curve as the statistical significance 
criterion. 

 In general, ct is not necessarily monotonically increasing 
if xi are real numbers. Furthermore, ct is serially dependent 
on the prior signal content from the selected time origin to 
sample interval of interest, i.e., between time 1 and t. If a 
different time origin, l, is used, and different run length, t, is 
used, then the computed CUSUM will be different because it 
will include different segments of signal such that: 

 

ct = xi
i= l

t+ l 1

     (1b) 

 Thus, the choice of time origin and the run length in 
computing the CUSUM is essential. It can affect the result 
because if the signal varies over time (i.e., non-constant), 
then the CUSUM measure would not be time-independent, 
but dependent on the choice of the selected time origin and 
the length of cumulated prior history. 

CUSUM-CHART PLOT DETECTION METHOD 

 One of the statistical detection criteria proposed was the 
CUSUM-chart plot method [2-10], in which the “mean path” 
of the sum is given by: 

 

Ct = xi k( )
i=1

t

    (2) 

where k is a constant. It is used to detect positive drift in the 
process parameter, in this case, the observed mean is k. This 
CUSUM-chart plot will take a turn upward if the process 
mean increases above k. Thus, it is a one-sided test for posi-
tive deviations above the mean. 

 If xi – k < 0, the path of CUSUM-chart plot will point 
downwards, indicating that there is no positive deviation. 
The CUSUM-chart method will reset the time origin if Ct 
falls below zero so as to detect positive deviations only in 
this one-sided test [3]. The duration from time-origin to the 
reset-point is called the “run length” in CUSUM-chart plot 
analysis. Thus, the run length is highly dependent on the data 
segment under consideration, and varies depending on not 
only the particular data sequence but also the time-origin 
(i.e., i = l in Eq. 1b) used as the reference point that “slides” 
along the x-axis and resets by the above criterion. 

 The statistical detection criterion in CUSUM-chart plot is 
set by an “alarm value”, h, in which Ct > h will trigger an 
alarm as significant deviation from the mean. Thus, the sta-
tistical detection criteria in CUSUM-chart plot is given by: 

 Ct > h      (3) 

where h is a predefined (most often, an ad hoc) criterion. If 
the process is known beforehand in both of its normal target 
state and all its possible departure states, it would be possible 
to derive the optimum value for h mathematically. But full 
knowledge of the underlying process is rarely known in real-
ity without any a priori knowledge. Thus, most CUSUM-
chart detection methods provide an estimate of h for a given 
“average run length” (A.R.L.), t. 

 In order to provide a two-sided test for the positive and 
negative deviations, then two one-sided schemes would be 
applied simultaneously to detect upward and downward de-
viations of the mean path. When the process exceeds this 
threshold h, it marks the time of deviation at ta: 

 
ta =min k :Rt h{ }   (4) 

where 

 

Rt =max
j t

xi μ( )
i=1

j

min
j t

xi μ( )
i=1

j

 (5) 

and μ represents the expected mean.  

CUSUM-CHART V-MASK METHOD 

 To overcome those limitations, the traditional CUSUM-
chart V-mask was introduced [2] such that a horizontal-V is 
used as an envelope, sliding along the Ct curve, for the chart-
ing method to detect both positive and negative deviation 
simultaneously, such that if Ct deviates/drifts beyond this V-
mask, then the detection alarm is set. More specifically, the 
V-mask envelope is bounded by an angle 2 , with its vertex 
at the current point and at a distance d from its horizontal 
axis. That is, d is considered to be the “leading distance”, 
and  the angle between each of the arms of the horizontal 
V-mask and the horizontal axis. The value of the detection 
criteria, d and , are often chosen arbitrarily from empirical 
trials. Assuming μ be the target mean of the process, 

 

Ct = xi μ( )
i=1

t

    (6) 

then the difference between the observed mean, k, and target 
mean, μ, would be given by: 

 
c = k μ = d + a( ) tan    (7) 

where a is the horizontal distance between successive points 
on the chart, and  is the scale-factor converting the vertical 
distance on the chart to x-units. Solving for the trigonometry 
of the control-chart V-mask envelope will yield, 

 
y = xt+1 μ( ) 2cos

   (8) 

as the detection threshold criterion for setting the alarm. 

CUSUM-SLOPE 

 If one wants to detect local changes in signal content, the 
statistical variable used must be independent of the time ori-
gin. To achieve such time-independence, one could use the 
time-derivative of the CUSUM in Eq. (1a) as the statistical 
variable for detection of such changes: 

 
st =

dci
dt      (9) 

For finite discrete variables, let us define the “slope” (mt, ) of 
the CUSUM between time t and t+  as an approximation of 
the time derivative in Eq. (9) by: 

 
mt, =

ct+
ct

    (10) 
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where  is the time-window in the CUSUM-slope calcula-
tion. Rewriting Eq. (10) using the definition of the CUSUM 
in Eq. (1a) gives: 

 

mt, =
1

xi
i= t+1

t+

    (11) 

SIGNAL AND NOISE CONTENT 

 The data point xt at time t can be considered as the sum of 
signal (st) and noise (nt). Assuming the principle of superpo-
sition applies, i.e., linearality for additive noise, 

 xt = st + nt      (12) 

 In this case, without any loss of generality, we will define 
the background noise generated by a random process as data 
sequence that has a zero-mean over the interval of interest, t, 
i.e.,  

 

n t =
1

t
ni

i=1

t

0
    (13) 

for large t, and similarly, signal as the data sequence that has 
non-zero mean over the interval of interest, t, i.e., 

 

s t =
1

t
si

i=1

t

0
    (14)  

CUSUM-SLOPE AS MOVING-AVERAGE OF THE 

“CAPTURED” SIGNAL WITH BACKGROUND 
NOISE REMOVED 

 Decomposing the signal and noise in CUSUM-slope of 
Eq. (11) by Eq. (12), it becomes 

 

mt, =
1

si + ni( )
i= t+1

t+

=
1

si
i= t

t+

+
1

ni
i= t

t+

 (15) 

 By definition of noise in Eq. (13), the CUSUM-slope 
becomes 

 

mt,

1
si

i= t+1

t+

    (16) 

for a finite time-window, . This shows that CUSUM-slope 
is approximately equal to the time average of the signal over 
a finite interval from t and t+ , the time-window-of-interest. 
That is, the CUSUM-slope captures the signal content (the 
sum of signal with noise removed) within this time-window 
. Thus, the CUSUM-slope between time t and t+  approxi-

mates the moving-average of the signal component of the 
data sequence between time t and t+  (starting at time origin 
t). 

INDEPENDENCE OF CUMULATIVE TIME HIS-

TORY BY CUSUM-SLOPE METHOD 

 The above analysis shows that CUSUM-slope estimates 
the signal content within this time-window  independent of 
the prior history prior to time origin, t, for any t in the data 
sequence. This moving-average provides history independ-
ence in the computation of the CUSUM statistics for estab-

lishing significance criteria. This history independence is 
extremely important when the data sequence is serially de-
pendent, and the signal onset time is unknown without any a 
priori knowledge of what the signal is or when the signal 
starts.  

SIGNIFICANCE TEST FOR THE CUSUM-SLOPE 

 The variance of the CUSUM-slope can be expressed in 
terms of original data set using Eq. (11) such that:  

 

Var mt ,( ) =Var
1

xi
i= t+1

t+ 

 
 

 

 
 

=
1
2 Var xi( )
i= t+1

t+

=
1
2 x( )

2

=
x( )

2

   (17) 

where  represents the standard deviation. Thus, the variance 
of the CUSUM-slope, Var(m), is inversely proportional to 
window length, , 

 
Var mt ,( )

1

    (18) 

for a given data segment. That is, the variance of the 
CUSUM-slope is inversely proportional to the sample size, 
, for computing the moving-average of the signal and noise. 

Thus, statistical criteria used to detect significant changes 
from the background noise level would also be inversely 
proportional to , the sampling size used in the CUSUM-
slope calculation. 

NULL HYPOTHESIS 

 For a special case, assume the data sequence contains 
that noise only, i.e., xt = nt and st = 0 (a null hypothesis). 
Then, Eq. (17) becomes: 

 

Var mt ,( )noise =Var
1

ni
i= t+1

t+ 

 
 

 

 
 

=
n( )

2

  (19) 

 Since the variance of the noise, Var(n), is a constant for a 
given data segment of stationary noise, any deviation of the 
variance of the CUSUM-slope, Var(m), from this constant 
can be used to detect significant changes from the back-
ground noise. Note that the criterion used to detect signifi-
cant changes is inversely proportional to  (the time-window 
used in the calculation of the CUSUM-slope). Thus, statisti-
cal significance tests can be applied to the variance of the 
CUSUM-slope to determine the threshold criterion for onset 
time of the signal that is above and beyond the noise level. 

 Ideally, if a segment of data is known to contain noise 
only, it can be used as the “control” for determining the em-
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pirical mean and standard deviation of the background noise 
level. Thus, the observed mean of background noise prior to 
the CUSUM-slope analysis is given by: 

 

x t =
xi

ti= t

0

     (20) 

 In some practical situations, this a priori knowledge of 
noise is known, such as in quality control where a pre-
determined data sequence contains only perfect components 
(without defects), or in neurophysiological experiment in 
which the data is collected in the resting state prior to the 
delivery of stimulus, these known data sequences can be 
considered as containing background noise only, i.e., without 
the signal of interest. 

 In other cases, if such background noise sequence is not 
known, then the current mean and standard deviation can be 
used as an approximation even though its mean level may be 
over or underestimated. In this case, the “control” statistic is 
estimating the deviation from the current level instead of 
deviation from the background noise level.  

FACTORS AFFECTING THE CHOICE OF TIME-

WINDOW IN CUSUM-SLOPE METHOD 

 As described above, an increase in the time-window  is 
equivalent to increasing the sampling size in the moving-
average calculation. This not only increases the sample size, 
but also potentially includes more signals within this time-
window in the CUSUM-slope calculation. That is, the longer 
the time-window, the larger the sample size is used in the 
moving-average calculation; the more the observed mean 
will approach the expected mean of the signal. But since the 
variance of CUSUM-slope is inversely proportional to the 
time-window  (see Eq. (18)), such an increase in time-
window length for computing CUSUM-slope would also 
reduce the level of significance in the criterion used for de-
tecting changes from background noise level. 

 Furthermore, most importantly, the above is true only if 
the signal, xi, continues to exist within this time-window, . 
If the signal stops during this time-window, extending the 
sampling time-window would not yield extra statistical sig-
nificance in the calculation, and (or estimation) of the ob-
served signal mean. In fact, it will underestimate the ob-
served signal mean when the signal stops, while the sam-
pling size increases. This is because extending the time-
window after the signal had ceased would include only back-
ground noise (which has zero-mean), thus resulting in a 
smaller observed mean than the true mean of the signal in 
the moving-average (CUSUM-slope) calculation. 

 This shows that there is a realistic limit, in which expand-
ing the time-window, , may be helpful. If the signal contin-
ues to exist within the time-window, , in the calculation of 
the moving-average represented by CUSUM-slope, then it 
would improve the statistic significance of the computed 
mean. If the signal ceases to exist within the extended time- 
window, , then it will result in an underestimation of the 
observed signal mean. That is to say, if the signal is station-
ary, increasing the sampling size would improve the statisti-
cal significance. If the signal is non-stationary, increasing the 
sampling size would potentially bias the observed mean, 
reducing the statistical significance of that estimated mean. 

CHOICE OF TIME-WINDOW IN CUSUM-SLOPE 
METHOD 

 Thus, the best choice of  used for finding the signal av-
erage is governed by various factors. If si is a constant during 
an interval [t, t+ ], then the CUSUM-slope would be ap-
proximately constant, so the longer the time-window, , 
taken for the calculation of CUSUM-slope, the more the ob-
served mean will approach the expected mean of the signals. 

 But if si is not constant (or non-stationary), then the 
choice of the time-window  will be dictated by the duration 
in which signal is stationary locally. That is, if there is a sub-
set of time-duration in which the signal is stationary locally 
(even though it may not be stationary globally), this time-
window can be used to enclose this local stationarity dura-
tion. For instance, in the analysis of daily temperature fluc-
tuations, the temperature may show seasonal variations 
(global non-stationarity) but temperature may exhibit local 
stationarity over a shorter period within a season. Thus, the 
time-windows that span over multiple seasons will capture 
non-stationary signal whereas time-window that spans over 
the duration within a season can capture local stationary sig-
nal. In this case, piecewise stationarity can be obtained. 

 Consequently, the best choice of  may assume a priori 
knowledge of the duration of signal, but in practice this dif-
ficulty may be overcome in some situations. For instance, 
let’s say that the data sequence is a sinusoidal signal, using a 
time-window that corresponds to the period of the sinusoidal 
will yield a constant mean when sliding along the data se-
quence for computing the moving-average. If the time-
window used is longer (or shorter) than the period, then the 
CUSUM-slope (or the moving-average) will not be a con-
stant when sliding along the data sequence. That is, if 
CUSUM-slope is a constant when sliding along the data se-
quence, the moving-average computed for the signal will 
also be a constant. If mt,  is a constant, then s t  is also a con-
stant from Eq. (16) for a given . Thus, the CUSUM-slope 
can be used to detect the finite period of local piecewise sta-
tionarity by using different  in the calculation, and see 
which CUSUM-slope remains a constant. 

TWO-PASS DETECTION METHOD FOR DETER-
MINING AN OPTIMAL TIME-WINDOW 

 In general, one can determine the optimal  and the best 
estimate of the duration of signal by a two-pass procedure. 
First, obtain the optimal  by observing the constancy char-
acteristic of the CUSUM-slope, mt, , as  varies. Secondly, 
use the value of the  selected above as the time-window in 
the calculation of the CUSUM-slope to determine the sig-
nificant deviation of the CUSUM-slope above (or below) a 
certain statistical criterion level. 

 Since the observed mean and standard deviation of the 
CUSUM-slope are, in fact, corresponding to the mean and 
standard deviation of any sampled data (in moving-average 
calculation), classical statistical significance criteria can be 
used for detecting changes from the background noise level 
taking the consideration that such criteria is inversely pro-
portional to the  used. 

RESULTS 

 We will apply the CUSUM-slope method to a sequence 
of data obtained from a pseudo-random number generator to 
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illustrate the sensitivity of this signal detection method in 
trend analysis. In the first example, a sequence of uniformly 
distributed random data is generated by a widely-used soft-
ware: Microsoft Excel (see Fig. 1). (Although other pseudo-
random number generating algorithms, such as those pro-
vided by Numerical Recipe [28], could be used to generate 
pseudo-random sequences with lesser degree of serial-
dependence, we want to use this data set to illustrate the sen-
sitivity of the CUSUM-slope method). 

 The corresponding CUSUM-chart is given in Fig. (2). 
The CUSUM curve in Fig. (2) essentially plots the area un-
der the curve in Fig. (1). Because it is calculating the area 
under the curve, it is a monotonically increasing function, 
and the slope of the CUSUM-chart is almost a constant for 
this time-series for a random process. If the slope (diagonal 
line) becomes steeper or shallower, it usually indicates a 
change deviating from this random process. The divergence 
from this constant slope above (or below) the diagonal 
CUSUM-curve is used as the criterion for the traditional 
CUSUM-chart plot [2-10] to detect significant changes, in 
which an enveloping V-mask is used to delimit the threshold 
criteria for sounding an “alarm.”  

 

 

 

 

 

 

 

 

 

 
Fig. (1). Time-series of pseudo-random data generated by Micro-
soft Excel pseudo-random number generator. 

  

 

 

 

 

 

 

 

 

Fig. (2). CUSUM-chart plot of pseudo-random data in Fig. (1), 

showing the monotonically increasing characteristic of CUSUM 

chart method for a non-negative time-series of Fig. (1). 

 Figs. (3-5) show the CUSUM-slope plots with time-win- 
dow  = 2, 5, and 10, respectively. Note that the CUSUM-
slope plots all capture the original pseudo-random data se-
quence with the noise removed. Different time-window 
length used in the CUSUM-slope yields different results. For 
short time-window (  = 2), it approximates the original data 

sequence (Fig. 3). For mid time-window (  = 5), it revealed 
the periodicity of the pseudo-random data sequence, showing 
approximately 9 periods in this sequence (Fig. 4). For longer 
time-window (  = 10), it revealed yet another periodicity of 
2 periods in this same data sequence (Fig. 5). 

 

 

 

 

 

 

 

 

 

Fig. (3). CUSUM-slope plot of pseudo-random data in Fig. (1), 

using time-window, , of 2. 

 

 

 

 

 

 

 

 

 
 
Fig. (4). CUSUM-slope plot of pseudo-random data in Fig. (1), 

using time-window, , of 5, revealing serial-dependence (and perio-

dicity) of the pseudo-random sequence. 

 

 

 

 

 

 

 

 

 

Fig. (5). CUSUM-slope plot of pseudo-random data in Fig. (1), 

using time-window, , of 10, revealing serial-dependence (and pe-

riodicity) of the pseudo-random sequence, which has a longer pe-
riod than that of Fig. (4). 

 This shows that the CUSUM-slope method not only de-
tected that the pseudo-random number generator is periodic 
and serially dependent, but also repeated with different sub-
periodicities, i.e., a shorter period (in Fig. 4) and a longer 
period (in Fig. 5). Note that the CUSUM-slope automatically 
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centers the data sequence around the zero-mean. Any devia-
tion from this zero-mean can be used to test against the sig-
nificance criterion for signal detection. Note also that since 
the Var(mt, ) criterion is inversely proportional to , the 
longer the time-window, , the lower the criterion is needed 
to detect statistical significance. 

 

 

 

 

 

 

 

 

 
 
Fig. (6). Time-series of another pseudo-random data sequence gen-

erated from Microsoft Excel to compare the difference between the 
serial-dependence of the data sequences in Figs. (1 and 6). 

 In the second example, another pseudo-random number 
sequence is generated as shown in Fig. (6). In this case, the 
CUSUM-slope plots (Figs. 7-9) reveal similar underlying 
trends relatively independent of the time-window, , used in 
computing the CUSUM-slope. This shows the data sequence 
in Fig. (6) is stationary for a longer duration than Fig. (1). In 
all cases, visual inspection reveals that the CUSUM-slope 
plots faithfully reproduced the original data sequence with 
the background noise filtered (or removed). 

 

 

 

 

 

 

 

 

 

Fig. (7). CUSUM-slope plot of pseudo-random data in Fig. (6), 

using time-window, , of 2. 

DISCUSSION 

 A novel detection method was introduced to augment the 
analysis of CUSUM using CUSUM-slope as a measure to 
estimate the signal content within a noisy background statis-
tically. The CUSUM-slope essentially computes the time-
average signal within the segment of data included in the 
CUSUM-slope calculation window without the noise, essen-
tially corresponding to the moving-average calculation. This 
slope calculation enables the detection of signal anywhere 
along the data sequence, independent of the time-origin se-
lected for the calculation of CUSUM. 

 

 

 

 

 

 

 

 

 

 

Fig. (8). CUSUM-slope plot of pseudo-random data in Fig. (6) 

using time-window, , of 5. 

 

 

 

 

 

 

 

 

 

Fig. (9). CUSUM-slope plot of pseudo-random data in Fig. (6) 

using time-window, , of 10. 

 Because of this independence of time-origin, the detec-
tion statistic can be independent of the serial-dependence on 
its prior history, unlike CUSUM-chart detection method. 
Furthermore, no sliding V-mask envelope detection is 
needed to detect signals along the monotonically increasing 
CUSUM curve because of this time-origin independence. In 
fact, the CUSUM-slope is centered with a zero-mean hori-
zontally rather than increasing monotonically, if a known 
background noise segment is used as the “control” for com-
puting the observed mean of the background noise. A simple 
horizontal threshold crossing can be used as the statistical 
criterion for CUSUM-slope method rather than a sliding V-
mask crossing for CUSUM-chart method. 

 The CUSUM-slope essentially captures the time-
averaged signal within the time-window . The time-
averaged signal within that time-window is equal to the 
CUSUM-slope value (mt, ) at that point, starting at time t. 
This deviation from the zero-mean baseline noise level rep-
resents the signal that exceeds the background random fluc-
tuations. Thus, the interpretation is much more straightfor-
ward than the CUSUM V-mask envelope chart method along 
the time-varying CUSUM-chart curve. 

 Furthermore, if the deviation of CUSUM-slope curve 
returns to the zero-mean level, it signifies that the signal dis-
appears at that point, leaving only the noise behind. Such 
return to background noise level is not readily available in 
the V-mask method, since it only detects onset (beginning) 
of the signal but not the offset (end) of signal. If the  
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CUSUM-slope deviates below the zero-mean level, it sug-
gests that signal is removed from the noise in the negative 
direction, i.e., “inhibition” of signal rather than “excitation” 
of signal. 

 Extending this analysis can also be used to reveal trends 
in the data sequence, i.e., serial-dependence and serial corre-
lation of the data. The pseudo-random number sequences 
illustrated above are examples to show how sensitive this 
CUSUM-slope method is in detecting the periodicity of the 
pseudo-random number generators, and trends in any data 
sequence. A true random number sequence would be re-
vealed as a horizontal line with zero-mean for the CUSUM-
slope curve, but neither sequence in our example showed this 
characteristic. In fact, casual observation of the above two 
data sequence examples looked rather random and uniformly 
distributed, but the CUSUM-slope method revealed the tale-
telling characteristics of the pseudo-random sequence with 
either periodicity or sequential trend. 

 Although this CUSUM-slope method is similar to a 
band-pass filter operation using a moving-average, the dif-
ference is five-fold. First, the computed CUSUM-slope data 
sequence is centered at a zero-mean by definition of noise, 
which makes the statistical significance analysis much sim-
pler than the CUSUM-chart statistical detection method us-
ing a V-mask envelope on the time-varying CUSUM curve 
such as Fig. (2). Second, the significant detection criterion is 
a constant for a given time-window, , compared to the 
monotonically increasing criterion for the V-mask. Third, no 
sliding V-mask along the time-varying CUSUM-chart curve 
is needed to detect the significance level that requires a reset 
once it crosses the “alarm” level. The significance criterion 
is a simple horizontal line threshold crossing for the 
CUSUM-slope curve. Fourth, the signal detection criterion is 
independent of the selected time-origin for the analysis, 
whereas CUSUM-chart method is dependent on the selected 
time-origin in which CUSUM includes all prior signals (cu-
mulative sum), by definition. Thus, the CUSUM-slope 
method can be applied to any arbitrary sequence of data at 
any time-origin without any dependence on the selected 
time-origin. The only dependence is the time-window length, 
, used to compute the CUSUM-slope. Consequently, no 

reset of origin is needed, unlike the CUSUM-chart method 
that resets the origin producing different run-lengths in each 
reset. Fifth, the time-window in which the CUSUM-slope is 
calculated, can be used to capture the length (duration) of the 
signal or to detect the duration of local stationarity. The 
longer the window, the more data points will be included in 
the estimation of the observed signal mean. Assuming that 
the signal does not cease to exist within this time-window, 
this will increase the sampling size of the signal in the ob-
served mean calculation. An iterative search method can be 
used to hunt for the signal duration with various window-
lengths, , to capture the maximal duration of the signal in 
the data sequence. 

SUMMARY 

 A statistic based on the time derivative, or the “slope” of 
the CUSUM (CUSUM-slope), is introduced for the detection 
of signals in noisy background. Using the CUSUM-slope as 
the statistical variable, the trend, the time of occurrence and 
the duration of the signal component can be detected and 

quantified statistically. The time-averaged value of the signal 
within a time-window can also be obtained from CUSUM-
slope as a moving-average. 

 The criteria for detecting significant deviations from 
noise level can be expressed in terms of the standard devia-
tion of the background noise and is inversely proportional to 
the value of ; the time-window used in the calculation of 
the CUSUM-slope. 
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